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HIGH ORDER APPROXIMATION THEORY
FOR BANACH SPACE VALUED FUNCTIONS

GEORGE A. ANASTASSIOU*

Abstract. Here we study quantitatively the high degree of approximation of
sequences of linear operators acting on Banach space valued differentiable func-
tions to the unit operator. These operators are bounded by real positive linear
companion operators. The Banach spaces considered here are general and no pos-
itivity assumption is made on the initial linear operators whose we study their
approximation properties. We derive pointwise and uniform estimates which im-
ply the approximation of these operators to the unit assuming differentiability
of functions. At the end we study the special case where the high order deriva-
tive of the on hand function fulfills a convexity condition resulting into sharper
estimates.
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1. MOTIVATION

Let (X,|-]|) be a Banach space, N € N. Consider g € C([0,1]) and the
classic Bernstein polynomials

N
(1.1) (Bng) (1) =Y g(#) (Dt (1 -, vielo,1].
k=0

Let also f € C(][0,1],X) and define the vector valued in X Bernsein linear
operators

N

(1.2) (Bnf) (1) =Y fF) ()=, vieeo].

k=0

That is (Bnyf) (t) € X.
Clearly here || f|| € C ([0, 1]).
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We notice that
(1.3)

(BN ) ( H<Z|\f% (M@ =N = By (IF1)) (¢) .Vt € [0,1]

The property
(1.4) 1By f) (O < By (I£1)) (8), vVt e [0,1],

is shared by almost all summation/integration similar operators and motivates
our work here.
If f(z) = ¢ € X the constant function, then

(1.5) (Byc) = c.

If g€ C([0,1]) and ¢ € X, then cg € C (]0,1], X) and

(1.6) (Bw (cg)) = ¢Bn (9) -

Again (1.5 , 1.6 are fulfilled by many summation/integration operators.
In fact here 1.} implies (1.5} i when g = 1.

The above can be generalized from [0, 1] to any interval [a,b] C R. All this
discussion motivates us to consider the following situation.

Let Ly : C([a,b],X) — C([a,b],X), (X,|||) a Banach space, Ly is a
linear operator, V N € N, zg € [a,b]. Let also Ly : C ([a,b]) < C ([a,}]), a
sequence of positive linear operators, V N € N.

We assume that

(1.7) I(Lx (F)) (o)l < (L (I£11)) (o) 4

YNeEN,Vae X,V feC(ab],X).
When g € C ([a,b]), ¢ € X, we assume that

(1.8) (Ly () = cLn (g) -
The special case of

(1.9) Ly(1)=1,
implies

(1.10) Ly(c)=¢, VcelX.

We call Ly the companion operator of Ly.

Based on the above fundamental properties we study the high order ap-
proximation properties of the sequence of linear operators { Ly} ¢y i-e. their
high speed convergence to the unit operator. No kind of positivity property of
{LN} ye is assumed. Other important motivation comes from [T, [2], [3]-[6].

Our vector valued differentiation here resembles completely the numerical
one, see [7, pp. 83-84].
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2. MAIN RESULTS

We need vector Taylor’s formula
THEOREM 2.1. [7, pp. 93]. Let n € N and f € C"([a,b],X), where
[a,b] C R and X is a Banach space. Then

n—1

@1 fO) =3 "0 0) + iy / (b— 1 F) (1) .

i=0
Above the integral is the usual vector valued Riemann integral, see [7), p.
86].
We also need
THEOREM 2.2. Letn € N and f € C" ([a,b],X), where [a,b] C R and X is
a Banach space. Then

n—1

22 f@) =3 PO+ gty [ - @
1=0
Proof. Let
n—1 )
F(z):=Y @ ) e lab).

=0
Here F' € C ([a,b], X) . Notice that F (a) = f (a), and
(2.3) i (@)’ £(0) (3

=0

We have

n—1

F' () = 525 [ (@), V€[],

Clearly F' € C ([a,b], X) .
By [7, pp. 92] we get

b
(2.4) F(b)— F(a) = /a F' () dt

That is we have
(2.5)

n—1

i, b n-1 @ (a—t)n? n
Z%f(z) () — £ (a) :/ (Oznt—)l)! £ (t)dt:_/b ((nt—)l)! f( )(t) dt

=0
proving (2.2). O
Based on the above Theorems we have

COROLLARY 2.3. Let (X, ||||) be a Banach space and f € C"([a,b],X),
then we have the vector valued Taylor’s formula

(2.6) Z f(l (y 136) W 11)| /y (y - t)n_l f(n) (t) dt,
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Y x,y € [a,b] or

27) fy) =3 f0 @) v = A / (=" (F™ (1) = £ () ),

1=0

YV z,y € [a,b].
We need

DEFINITION 2.4. Let f € C ([a,b],X), where (X,|]|) is a Banach space.
We define

(2.8) a1 (1.6) = suwp [f (@) = f W, 0<<b=a
lz—y|<d
the first modulus of continuity of f.
REMARK 2.5. We study the remainder of ([2.7)):

29 Ral@y)i= gy [ -0 0 @ - £ @),

YV z,y € [a,b].
We estimate Ry, (z,y).
Case of y > x. We have

7, p. 88]

1R @)l = | [ =077 (1 (0 = £ )]

210) <ot [0 |10 @) - 1 @)

let h>0

(y— )" wr (f, )t — x| )dt

IN
£l
= | =
=
H\
< <

w (n)vh Y n— —
2.11) < 1((51),)/1: (y— )" (14 =2hyar

n
= - tae [Tt -0 al
(212) =2 L ATONE gy
= M(gi))’!h) [(y_f)n + (ny(;?:;” = M(fri?)’h) (y — )" [1 + (gi:la;)h} :
We have found that
(2.13) 1R )l < 28 (g ay 14 o],

for y > x, and h > 0.
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Case of y < .
Then

Y
1R (2, 9)]| = Gt

(=0 (1 (0 = 5 @) |

(2.14) — 1 H/ (t— )" (f™ () — f® (a;))dtH
<m0 0 @ - 1 @) o
= ﬁ/ (t—y)nflm(f(")’@h)dt
w1 (f™),h) r—
= 1(n 0! /y 1+ ht))dt
w (n) z _ _
(2.15) = l(rf 1),h Uy )" hdt + + /y (x—t)> (t—y)" Lt
_ @i(fh) [a—y)* | @y
- (n— 1)' [ nn—&-l)h}

£ .
= ( ) (z—y)" [1 + gl+1y))h}
Hence

w1 (™ h n P
(2.16) 1B )l < 2T @ gy [+ ],

when y <z, h > 0.
We have proved that

1B @)l = | ey [ =0 () () = £ @) )dtH <

w f( ). h n —
< 2l |z =yl {1 + (‘n—i-ly)'h} )

(2.17)
YV x,y € [a,b], h > 0.
We have established
THEOREM 2.6. Let (X, ||-||) be a Banach space and f € C" ([a,b],X), n €
N. Then

(2.18) Hf 3 40 () 2

1= 0
V z,y € [a,b], h > 0.

wi (£ h _
= ! nl ) [z —yl" [1 T (|7f+1y)|h} ’

It follows our first main result

THEOREM 2.7. Let N € N and Ly : C([a,b],X) — C([a,b],X), where
(X, [I-I) is @ Banach space and Ly s a linear operator. Let the positive linear
operators Ly : C ([a,b]) — C ([a,b]), such that

(2.19) 1L () (o)l < (L (I£1)) (o),
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VNeN,V feC(ab],X), VY xo€la,bl.
Furthermore assume that

(2.20) Ly (cg) =cLn(g), VgeC(ab),VeceX.

Let n € N, here we deal with f € C™ ([a,b],X).
Then

1)

<

H (Ix (F)) (o) = 3 L2960 (0 (- = 20))) (0)
=0

< w1 (f<n),((zN('_E?I"Jﬂ))(l‘ﬂ))"}*‘l) ((EN( ‘ . $O|n+1 )) (l’o))(#ﬂ)

X

~ 1

(221)  x [((Ev (1)) (@)™ + 4],

2)
I(Ln () (xo) = f (o) <
<N (@o)ll (L (1)) (o) — 1|+

IO (Ep (] =) (@) +

+
tﬂ_:

from 1D and as (Ly (1)) (x0) = 1, (Ln (] - 71:0|n+1 )) (o) — 0, we obtain
(Ln (f)) (z0) = f(x0), as N — oo,
2) if f%) (z0) =0, k=0,1,...,n, we get that

I(Ln (f)) (zo) — f (o)l <
< (O (Ex (=m0 )) ) 7T)

— n!

(2.23) % ((Eav(] - =0 1)) (0) T [ (v (1)) (20) 7T + %]

X

an extreme high speed of convergence,
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4) one also derives
U () = Pl gy <
< Mgy || By (1)) = 1|

L E 1/
Y e

i[a,b] *
(L (|- =wol*)) o)

= 00,z0€[a,b]
(1 Ex (=) @0 | 2 )
+ 1 ’ N 0 ' 0 0,xqE|a,b]
T n (ni) T L
(2.24) [ Ex (= o™ ) )| 7200 IEw )7+ ),

if Ly (1) % 1, uniformly, and (L (|- — xo["™)) (o) = 0, uniformly in xo €
[a,b], by (2.24), we obtain Ly (f) < f, uniformly, as N — co.
Proof. 1) One can rewrite (2.18)) as follows

w1 (f™),h) |- —ao["H?
S [|' = zol" + i m ] ,

(2.25) Hf (1) — Z f(i) (z0) (-*ia!fo)"

n
=0

~

for a fixed zg € [a,b], h > 0.
We observe that (N € N)

=0
< (Ex (0 - 32 19 o) =2 o) E
=0
220 = %[@N (I = z0l") ) (zo) + (LN(l'z;f:);l))(zO)} = (&1) -

Above notice that (f (-) — >t m (- —x)") € C([a,0], X).

(2
By Holder’s inequality and Riesz representation theorem we obtain

(2.28)
(EN (I = xO’n)) (o) < ((EN( |- — $0|n+1)) (fﬂo))(m)((zfv (1)) (xo))m-
Therefore

(€)= U (o (1= (00) F (e (1) ) 7D

(L (]:—0|"*1)) (o)

(229) 43 Ullonl } (&)
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We choose
(230) o= (L] = o™™)) (@) 77,

in case of (Ly (|- — xo|™™)) (z0) > 0.
Then it holds

(2.31) (&) = — (v (n)’((LN(|'—9:!|”+1))(IO)) )

. [((EN( |- = 2o"™)) (x0) )(”L“) ((Ln (1)) (w0) ) ™D
((ZN('—x()’“Ll))(IO))(”il):l

(n+1)

+

~ 1
w1 (f(")»((LN(l_zoI"H)) (aco)) (n+1) )

n!

232)  x ((En(]-—2o™)) (@) FD (T (1)) (20)) ™0 + 2
We have proved that

H (o () (o) — 3 2280 (Eg (- — 20 ) (z0)

1=0

~ 1
o (70, (Ex (=0l ) )

— n!

233)  x (Ll =ol™)) (@0) T [(Tn (1) (@0) ™0 + 4],
By Riesz representation theorem we have
@30 (Ex) )= [ aOdu 0. ¥oeC(al).
where py, is a positive finite measure on [a, b].
That is
(2.35) (Ln (1)) (x0) = prag ([a,b]) =2 M
We have that pg, ([a,b]) > 0, because otherwise, if uz, ([a,b]) = 0, then
(L (9)) (x0) =0,V g € C([a,b]), and the whole theory here becomes trivial.
Therefore it holds (Ly (1)) () >

In case of
(2.36) (Ln (|- = 2ol™")) (o) =0,
we have
(2.37) =l duay (0 =0

The last implies |t — zo|"™" = 0, a.e, hence |t — zo| = 0, a.e, then t — 29 = 0

a.e., and t = xo, a.e. on [a,b]. Consequently p,, ({t € [a,b] :t # zo}) = 0.



9 High order approximation theory for Banach space valued functions 121

That is pg, = 9z, M, where 04, is the Dirac measure at {xo}. In that case
holds

(2.38) (Ln(9)) (xo) = g(zo) M, Vg€ C([a,b]).

Under ([2.36)), the right hand side of (2.33)) equals zero. Furthermore it holds
(2.39)

(Zn(]|r ) - Zf“ (w0) 522

So that by (2.26) to have

) o) B £ (20) - f ()| 12 = 0.

n

H (Ln (f -y o —20)")) (w0) || =
=0
(2.40) = (L () (x0) — f (x0) M]| =0,

also implying

(2.41) (L (f)) (w0) = M f (z0) .

So we have proved that inequality (2.33)) will be always true.
2) Next we see that

| (Ln (f)) (o) — f (20) || =
. \<LN (1)) o) — 32 L208) (E (- —0)" ) (o) +
k=0

(2.42)

+ Xn: %(EN( (- — 20)")) (zo) — f (xo0)
k=0

<

< H (L () (0) — 3" L2560 (v (- = 2o)* ) (o) |+
k=0
IS 2960 (E (= 20)*) (o) + £ (w0) (B (1)) (o) — Flao)]| 2
k=1

< @l [(Ew (1) (o) — 1] + 3 WM E oy (1 — wof)) () +

ar (10, (Ev (=0l o)) 77T )

n!

_|_
(2.43)

% (L (| = 2o™)) (20)) T [((Z (1)) (20)) ™0 + 2.
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We have proved that

[(Ln (1)) (20) = f (w0)
<|If @o)ll|(Zw (1)) (o) — 1| +

(z
n ‘f(k)(;vo H B
Z (|- —ol")) (xo) +

=1
s (1), ( (B (=0l"1)) () TT)

n!

(2.44)

< <<EN<|- —ao™1)) (20)) T [(Ly (1)) (0) ) =0 + 24,

By Holder’s inequality for k = 1,...,n, we obtain
(2.45)
n+17k)

(Ex (|- =e0l")) (o) < (L (|- =ao]"*")) () T2 (L (1)) ) 7
Clealry by and , when (Ly (1)) (x9) — 1and (EN(|-—:E0|”+1)) (z0) —

0, we obtain (Ly (f)) (z0) = f(20), as N — oo. Notice that (Ly (1)) (zo)
will be bounded.
3) If f¥) (29) =0, k=0,1,...,n, we get that

(54)
I(Ln (f)) (zo) = f (o)l <
on (50, (En (1—20l™)) () T4 )

— n!

246)  x ((En(l-—wo™*")) (w0) )

an extreme high speed of convergence.
4) One also derives from ([2.44]) that

(L (£) = Flllo gy <

< Moo |2 O =1
N o | 7 k
+k§17 (LN(‘ —:L'()’ )) (xo)Hoo,on[a,b]
s (10| B (=0l ) o0 [T )
n!
ean) x| E - ol @) T T ()17 4 ],
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Inequality (2.45)), for k = 1,...,n, implies

| @ (1= 0*)) (wo)|

oo,.’EoE[CL,b}
= n+1 (757) )
(248) < H(LN(| _:E0| )) (a?o) 00,20 Ea,b] H Hoo :poe[ab]

U,

Consequently, if Ly (1) —> 1, uniformly, and (Ly (|- — zo|"™)) (x0) % 0,

uniformly in xg € [a, b], by 7) and -, we obtain Ly (f) - f, uniformly,
as N — oo.

Here the assumption EN(I) 2 1, uniformly, as N — oo, implies that
| Ly (1) || is bounded.
The proof of the theorem now is complete. O

We make

REMARK 2.8. Let (X, ||-||) be a Banach space and f € C" ([a,b], X), n € N,
and xo € (a,b) be fixed. Then

=70 (o) U5 = i [0 (0 (0 - 1) (o)
=0 o

(2.49) =: Ry (z0,9), Vy € [a,l]

We assume that g () := || f™) (t) — £ (20) || is convex in t € [a,b].
We consider 0 < h < min (zg — a,b — ) . Obviously g (o) = 0. Then by
Lemma 8.1.1, p. 243 of [I], we obtain

(2.50) g(t) <@l )y g0l Vit e a,b].

For any t,t € [a,b] : |[t; — ta] < h we get

17 ) = £ o) || = £ (t2) = £ (o)

(2.51) <™ (t1) = £O) () || < wr (f7h).
That is
(2.52) wi (g, h) < wi(F™, h).

The last implies

(2.53) 170 () — £ (o) || < UM 1t ) Wt e [a,1].

We estimate Ry, (xo,y) .
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Case of y > xy. We have

| B (0, )1l = 75y \ / (y— " (™) (&) = ) (a) )dt\ (7 pp =)
< mton / y (=) £ () = £ (o) |
< AU [ gy o)t =
-
(2.54) — Al re) () gyt = U () gyt

We proved that

w f(”),h n
(2.55) 1R (20,9l < S (4 — ag)™ 0, vy > .

Case of y < xg. Then

I o)l = it | [ =07 (1 0) = 7 ) et
= et [ =0 0 - £ o)
< G / )| () £ (a0t

(n—1)!
w1 (™ ,h o _ n—
(2.56) < %/ (wo = t)* " (t—y)" " dt
Yy
w1 (f™ R n
= }L((n+1)' (xO_y) i
That is proving
wi(f™ n
@57)  [|Ra (o)l < S (@ — )™ Wy € fab] 1y < o,
We have established that
w1 (f™ R n
(2.58) 1R (20, )l < S jy — g™+, vy € a8,

where 0 < h < min (29 — a,b — z¢), xo € (a,b), and ||f (-) — f (zo)]| is convex
over [a,b] .

We have proved

THEOREM 2.9. Let (X, |-||) be a Banach space and f € C" ([a,b],X), n €
N, and zo € (a,b) be fized. Let 0 < h < min (xg —a,b— x), and assume that
Hf(") () — f™ (:EO)H is convez over [a,b]. Then

n

@59 [ ) = X 19 (o)

=0

w1 (f™),h)
=  h(n+1)!

|y_m0|n+1z v Yy e [aab]'

We give our second main result under convexity.
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THEOREM 2.10. Let N € N and Ly : C ([a,b],X) — C([a,b],X), where
(X, [[1]) 4s a Banach space and Ly is a linear operator. Let the positive linear
operators Ly : C ([a,b]) — C ([a,b]), such that

(2.60) 1L (1) (o)l < (L (I£1)) (o),

VNeNV feC(ab],X), where xg € (a,b) is fived.
Furthermore assume that

(2.61) Ly (cg) = cLn (g), Y geC(la,b)),VceX.

Let n € N, here we deal with f € C™ ([a,b],X).
We further assume that || f™ (-) — f() (x0) || is convex over [a,b], and

(2.62) 0 < (L (| = z0[™™)) (x0) < min (2o — a,b — x0).

Then

1)
(2.63)
| 2 (7)) (o) = 30 2888 (T = )| ) < 2N ew),

i=0
2)
(Lo () () = 7 (@)l < 1 o)l (Eav (1) (o) — 1]+
3 OO (Ey (-l o))+
k=1

(2.64) e (T (™)) (o)

(n+1)! ’

as (Ly (1)) (w0) = 1, and (Ln (|- — zo|™™)) (o) — 0, we obtain (Ly (f)) (zo) —
f (o), as N — oo,
3) if %) (xg) =0, k=0,1,...,n, we get that

(2.65) ”(LN (f)) (l,o) _f ($0)H < w1 (f(">,(ZN(SJ~+—19;?‘n+1))(xo)) ’

a high speed of convergence.

Proof. 1) One can rewrite (2.59) as follows

i

wi (F),h)
= h(n+1)!

|- —zo"T, Yy € lab].

266) 762059 (o) 5

=0
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We observe that

@on) | @ () o) = 3 L T (- 0))) Ga0)

)) (20) (by )

wi(f™n) ,~ n
= W(LN(I'—%I 1)) (@) =

_ (O (I (I=ol"*)) (0))
- (n+1)! ’

@68 < (In(F O - 3059 (@)

(2.69)

by choosing
(2.70) hi=(Ln(]- = zo[")) (wo)
if (Ly (|- — o|™™)) (z0) > 0.

We have proved that

[ (5 o) = 32 2% (e (- = 0)) ) ()
=0

_ (IO (Ex (-0 )) @)

(2.71) oIy
By Riesz representation theorem we have
1) (Ix@) )= [ gOdun (), Ve Clab]).
where p,, is a positive finite measure on [a, b].

That is
(2.73) (Ln (1)) (w0) = pay ([a, b]) =: M.
Without loss of generality we assume that M > 0, if M = 0, then our theory
is trivial.

In case of
(2.74) (L (|- = aol"™™)) (z0) = 0,
we have
(2.75) / It — ao|"™ L dpuay (£) = 0.

[a,b]

The last implies [t — zq|"

= 0, a.e, hence |t — xg| = 0, a.e, then t — 9 = 0

a.e., and t = g, a.e. on [a,b]. Consequently pg, ({t € [a,b] : t # x0}) = 0.
That is pig, = 0z M, where dy, is the Dirac measure at {zp}. In that case

holds
(2.76) (Ln (9)) (x0) = g (z0) M,
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YV g€ C([a,b]).
Under ([2.74)), the right hand side of (2.71]) equals zero. Furthermore it holds

(2.77)
(Ew (]| £ () =2 £ (o) 52t
=0

) @) &2 1£ (o) — £ (wo) | M = 0.

So that by to have
e ()0 - 3 L% (L (¢ - o)) (o)
i=0

Therefore inequality (2.71]) is true again and always.
2) Next again we see that

(L (7)) o) — f (o)l =
H Ly () (@0) zf“““m (= 20)")) (z) +
(2.79)
3 L5 (= 20)) a0) = 1 0

=0.

<

< (5 0) = 3 L5 T (= 20))) ) |+
k=0
| 32 IS (= 20)*)) (00) + £ o) (B (1)) (00— £ )| 5
k=1
<1 o) || (B (1)) (o) — 1] + 32 I (E (1~ aof*)) (@) +
k=1
(2.80)
e (409, (L (10l 1)) )

(n+1)!
We have proved that

(L (1) (@) = @)l <1 (@)l | v (1)) aw0) — 1] +
£ S WOl F (1 ) (o) +
k=1

wr (£, (L (=0 "*)) (w0)
+ GES)] :
Clearly by (2.45) and (2.81)), when (L (1)) (o) — 1and (Ly (|- — zo|™™)) (z0) —
0, we obtain (Ly (f)) (z0) — f (x0), as N — oco. Notice that (Ly (1)) (o)
will be bounded.

(2.81)
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3) If f¥) (29) =0, k=0,1,...,n, we get that

(2.82) (L () (z0) — £ (0)| 2;1 w1 (f<">,(fN(Sl|;i_—lg;?|n+1))(mo))’

a high speed of convergence.
The theorem is proved. O

THEOREM 2.11. All as in Theorem .10 Consider n € N an odd number.
Then inequalities (2.63)—(2.65)) are sharp, in fact they are attained by f. (t) =
it —xo|™ ™, wherei e X, i =1,V telab.

Proof. Let n an odd natural number, then n + 1 is even. We consider
fot) =it —xo"™ =7 (t —20)"™ € X, where i € X, |é]| = 1. We have that
f« € C™([a,b],X) and

(2.83) M)y =i(n+ 1) (t —20), V€ [ab],

along with fﬁk) (r9) =0,k=0,1,....,n.
Furthermore it holds

(2.:84) S8 = £ (o) | = (0 + 1)1t = o),

which is a convex function in ¢ € [a,b]. So we apply f. to inequalities ([2.63)-
(2-65).

1) The left hand side of (2.63) equals (IN)N(\t — x0]"+1)) (x0). The right
hand side of (2.63) is
w1( in)’(zN(‘._mo|n+l))(zo)) _

(2.85)

(n+1)!

w1 ({n+1)1(t—20), (L (|-—20|™ ) ) (20))

- (n+1)!

(n+1)! sup [ (11 = w0) = 7(t2 — 20)|
Q,tge[a,b]:
_ |t1—t2|<(Ln (|- =0|" ")) (x0) _
(n+1)!
(2.86) = sup [ty —ta] = (L (|- — zo|™™)) (o) -

t1,t2€a,b]:

|t1—t2| <(Ln (|-—o|" 1)) (20)

Hence the right hand side of equals also (Ly (|- — xo[" ™)) (x0). That
is is an attained inequality by f..

2) The left hand side of (2.64) equals (Ln (|t — zo|™™)) (x0), which equals
its right hand side. That is (2.64) is an attained inequality by fi.

3) Same as above, inequality (2.65]) is attained by fi.

We have proved that 1) are sharp inequalities. O
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COROLLARY 2.12. (to Theorem[2.7) Let (X, ||||) be a Banach space and any
fecC([0,1],X). Then
1)

(2.87)
IBx (1) @) — £ @] < o (/) G < U0 (17, 1),

Vx € [0,1],VN € N, and
2)

(2.88) 1By () = Flllao oy < S (7', 3

Hence By, (f) = f, uniformly, as N — oco.

Proof. The operators By, By fulfill (2.19)), (2.20). We have that By (1) =
1, (By (id)) (z) = =,

(2.89) (By ((-—2))) () =0,

and

(Bx((-—2)*)) (2) = M52 < gy, Vaelo1].
We use for n = 1. We have (by use of (2.89))

I(Bx (F)) (2) — f ()] <
(290) < 3w (Bu((—2)) @) (B ((-—2)%)) (@))F =
= (1) VI < o () i -

(2.91) = Nl (f/’ 2\}N) = TR (f/’ ﬁﬁ) '

We finish with

COROLLARY 2.13. (to Theorem 2.10) Let (X, ||-||) be a Banach space and
any f € CY([0,1],X) such that || f'(t) — f' (z0)|| is convexr function in t €
[0, 1], where zp € (0,1) is a fized number. Then

(2.92)
I(Bx (£)) (w0) = £ (20)]| < Jeon (F, 2U2) < Jun (. ), Y NeN.
Above notice the high speed of convergence % under the convexity assumption.
Inequalities lb are sharp. The first part of (2.92)) is attained by ;(t — x0)2,

ieX, ||;H =1,V t€(0,1]. The second part of (2.92) is equality at xo = .
As N — oo, we have that (By (f)) (xo) — f (z0).
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Proof. Let zg € (0,1), then z¢ (1 — z9) < zp and x¢ (1 — z¢) < 1—x¢, hence
xo (1 — zp) < min (zg, 1 — z9) and

(2.93) w < min (9,1 —xz¢), VN € N.
The last shows that (see (2.89))
(2.94) 0 < (Bn((- —20)?)) (zo) < min (z9,1 — ), ¥V N € N.

Let here f € C'([0,1],X) such that ||f(-) — f' (z0)| is convex over [0,1].
Then, by (2.63)), we get

(2.95) 1B (F)) (o) — f ()] < 2B ((=e0))) @)

2

flyl"O(l*EO)
:wl( 2N )S%wl(f/’ﬁ).

IA
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