
JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY
J. Numer. Anal. Approx. Theory, vol. 46 (2017) no. 2, pp. 181–192

ictp.acad.ro/jnaat

A NUMERICAL COMPARISON BETWEEN
TWO EXACT SIMPLICIAL METHODS FOR SOLVING

A CAPACITATED 4-INDEX TRANSPORTATION PROBLEM

RACHID ZITOUNI∗ and MOHAMED ACHACHE†

Abstract. In this paper, we deal with a numerical comparison between two ex-
act simplicial methods for solving a capacitated four-index transportation prob-
lem. The first method was developed by R. Zitouni and A. Keraghel for solving
this problem [Resolution of a capacitated transportation problem with four sub-
scripts, Kybernetes, Emerald journals, 32, 9/10: 1450-1463 (2003)]. The second
approach is the well-known simplex method. We show across some obtained nu-
merical results that the first algorithm competes well with the simplex method.
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1. INTRODUCTION

The transportation problem is an important subject in real-world life that
covers many important problems in economy, telecommunication and local-
ization, among others. As a special case, the transportation problem with
two-dimensional index has been extensively studied and solved by L. V. Kan-
torovich and M. K. Gavurin (1949, [4]) and G. B. Dantzig (1951, [2]). Next, the
study and the solution have been extended to transportation problems where
the dimension of the index is higher than two. Since the sixties, several papers
have been published for uncapacitated problems with a three-dimensional in-
dex and a general multi-dimensional index, see for instance [3], [5], [6] and
[7].

Recently, Zitouni [10], first introduced an algorithm for solving a capacitated
transportation problem with 4-index (four subscripts). The choice for the
index transportation problem allows us to getting an idea for the more general
multi-dimensional transportation problem case.
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Our aim in this paper is to examine two exact simplicial methods for the
solution of the capacited 4-index transportation problem, the method devel-
oped in [10] and the simplex method. Because the algorithm developed in
[10], tackles directly the problem, and shows its elegant computation and its
rapidity convergence to provide a solution of this problem. For the comparison
purpose, the obtained numerical results are compared with those obtained by
the classical simplex approach applied to the reformulation of this problem as
a linear program.

The outline of the paper is as follows. In Section 2, the 4-index capacited
transportation problem formulation is stated. In section 3, the transporta-
tion problem solution is given. In section 4, the detailed description of two
exact simplicial algorithms and the convergence of the second algorithm are
presented. In section 5, some computational results are reported, followed by
an important numerical comparison between their performances. Finally, a
conclusion and future researchers are drawn in the last section.

Some notation used throughout the paper is as follows. Rr denotes the
space of r-dimensional real vectors whereas the set of all matrices with type
(r1, r2) is denoted by Rr1×r2 . If x, z ∈ Rr, then xT z denote their usual inner
product. If S ∈ Rr1×r2 , then its rank is defined as rank(S) = r ≤ min(r1, r2).

2. THE CAPACITATED 4-INDEX TRANSPORTATION PROBLEM FORMULATION

The capacitated transportation problem with a four-dimensional index, de-
noted by (T4C), is formulated as the following constrained optimization prob-
lem:

(1) MinimizeZ =
m∑
i=1

n∑
j=1

p∑
k=1

q∑
l=1

cijklxijkl

subject to the constraints:
n∑
j=1

p∑
k=1

q∑
l=1

xijkl = αi for all i = 1, ...,m(2)

m∑
i=1

p∑
k=1

q∑
l=1

xijkl = βj for all j = 1, ..., n(3)

m∑
i=1

n∑
j=1

q∑
l=1

xijkl = γk for all k = 1, ..., p(4)

m∑
i=1

n∑
j=1

p∑
k=1

xijkl = δl for all l = 1, ..., q(5)

(6) 0 ≤ xijkl ≤ dijkl for all (i, j, k, l),
where αi, βj , γk, δl, dijkl and cijkl are given and such that for all i, j, k, and
l, αi > 0, βj > 0, γk > 0, δl > 0, dijkl > 0 and cijkl ≥ 0.
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The T4C problem can be also reformulated as the following linear program:
(7) min

x
Z = cTx s.t. Ax = b, 0 ≤ x ≤ d,

with
• x = (x1111, ..., xmnpq)T ∈ RN ,
• c = (c1111, ..., cmnpq)T ∈ RN ,
• d = (d1111, ..., dmnpq)T ∈ RN ,
• b = (α1, ..., αm, β1, ..., βn, γ1, ..., γp, δ1, ..., δq)T ∈ RM ,
• A ∈ RM×N , whereM = m+ n+ p+ q and N = mnpq.

In this representation x = (x1111, x1211, ..., xmnpq) has been associated to
a vector x ∈ RN . To do that, we associate to each (i, j, k, l) ∈ {1, ..,m} ×
{1, .., n} × {1, .., p} × {1, .., q} a vector Pijkl ∈ RM . Only four entries of the
vector Pijkl are nonzero, they are located on lines i, m + j, m + n + k and
m+ n+ p+ l, and their common value is 1. Note that Pijkl are the columns
of A, they are called coefficients vectors.

In the sequel, we quote the following useful definitions (see [13]).

Definition 1. A feasible solution x of T4C is called basic solution if the
columns of the sub-matrix Ax obtained from A by keeping only the columns
corresponding to the variables xijkl such that

0 < xijkl < dijkl

are linearly independent.

Definition 2. A basic feasible solution is said to be non degenerate if
rank(Ax) = rank(A).

Definition 3. Given a basic feasible solution x = (xijkl), the 4-tuple
(i, j, k, l) is called interesting if

0 < xijkl < dijkl.

Throughout the paper, we assume that the following feasibility assumption
for T4C ,

(8)
m∑
i=1

αi =
n∑
j=1

βj =
p∑

k=1
γk =

q∑
l=1

δl = H

holds.
As a consequence, it results that

rank(A) = M − 3.
Unlike the transportation problem with two-dimensional index, the matrix

A is not totally unimodular since some of its minors do not belong to {−1, 0, 1}.
It is useful to present the data of the problem thanks to the following trans-

portation table. It consists of an array of M rows and N columns, three
additional rows and an additional column. The entries of these N columns
of the first, second, and third additional rows are reserved for the data of the
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quantities dijkl, cijkl, and xijkl, respectively. The additional column is for the
data of quantities αi, βj , γk, and δl, respectively. Finally, the entry of the
array on the line corresponding to αi′ and the column Pijkl is 1 if i = i

′ and 0
otherwise. Same things for βj′ , γk

′ , and δl′ . We illustrate that by the following
example.

d1111
.

d1211
.

... dmnpq
.

c1111
.

c1211
.

... cmnpq
.

x1111
.

x1211
.

... xmnpq
.

1 1 ... 0 α1 .
: : ... : :
0 0 ... 1 αm .
1 0 ... 0 β1 .
0 1 ... 0 β2 .
: : ... : :
0 0 ... 1 βn .
1 1 ... 0 γ1 .
: : ... : :
0 0 ... 1 γp .
1 1 ... 0 δ1 .
: : ... : :
0 0 ... 1 δq .

Table 1. T4C - Transportation table.

3. TRANSPORTATION PROBLEM SOLUTION

3.1. Feasibility conditions. We begin first to give a useful theorem that
ensures the feasibility of T4C problem (see [13]).

Theorem 4. (Feasibility)
1. A necessary condition for the feasibility of the problem T4C i.e., it has a
feasible solution if the condition (8) holds and the following conditions

(9)



αi ≤
n∑
j=1

p∑
k=1

q∑
l=1

dijkl for i = 1, ...,m,

βj ≤
m∑
i=1

p∑
k=1

q∑
l=1

dijkl for j = 1, ..., n,

γk ≤
m∑
i=1

n∑
j=1

q∑
l=1

dijkl for k = 1, ..., p,

δl ≤
m∑
i=1

n∑
j=1

p∑
k=1

dijkl for l = 1, ..., q,
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are satisfied.
2. A sufficient condition for the feasibility of the problem T4C , i.e., it has

a feasible solution if the condition (8) holds and the following conditions

(10) αiβjγkδl
H3 ≤ dijkl, for all (i, j, k, l)

are satisfied.

Proof. 1. It is clear that if x = (xijkl) is a feasible solution for the problem
T4C , then conditions (8) and (9) hold.
2. Assume that x = (xijkl) is a vector of RN such that

xijkl = αiβjγkδl
dijkl

, for all (i, j, k, l).

We can easily verify that x is a feasible solution for the problem T4C . Note
that if the set of feasible solutions of the problem T4C is non empty, then it
is a polytopes. Since the objective function is continuous, then the set of the
solution of the problem T4C is non empty, i.e., there exists at least an optimal
solution of it. �

3.2. Optimality conditions. In this subsection, we give a theorem that en-
sures when a feasible solution, is an optimal solution of T4C .

Theorem 5. Assume that the problem T4C is feasible. Then a feasible
solution x of T4C is optimal if and only if there exists a vector

y = (u1, . . . , um, v1, . . . , vn, w1, . . . , wp, t1, . . . , tq)T ∈ RM

such that: 
ui + vj + wk + tl ≤ cijkl if xijkl = 0,
ui + vj + wk + tl = cijkl if 0 < xijkl < dijkl,
ui + vj + wk + tl ≥ cijkl if xijkl = dijkl.

Proof. For that, we consider the following formulation of the problem T4C :

(11) min
x

[cTx : Ax = b,−x ≥ −d, x ≥ 0],

and its dual problem is given by

(12) max
(y, z)

[bT y − dT z : AT y − z ≤ c, z ≥ 0].

Let (y, z) an optimal solution of the problem (12). Then a feasible solution x
of the problem (11) is optimal if and only if the two following complementarity
conditions are satisfied

(13) (AT y − z − c)ijklxijkl = 0,

and

(14) (d− x)ijklzijkl = 0.
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• If xijkl = 0, then xijkl < dijkl and (14) imply zijkl = 0. So
(AT y)ijkl ≤ cijkl.
• If 0 < xijkl < dijkl then (14) implies zijkl = 0 and (13) leads to

(AT y − z − c)ijkl = 0. So (AT y)ijkl = cijkl.
• If xijkl = dijkl then xijkl > 0 and (13) imply (AT y − z − c)ijkl = 0,

consequently (AT y − c)ijkl = zijkl. Finally, we get (AT y)ijkl ≥ cijkl.
�

4. DESCRIPTION OF TWO SIMPLICIAL ALGORITHMS FOR T4C

4.1. The simplex algorithm. In this subsection, in order to apply the tech-
nical of the simplex algorithm for solving T4C problem, we need first to put
T4C in the framework of a special linear program. The simplex algorithm,
is referred to us as Algorithm 1. It is well-known that the problem T4C ,
according to (7), can be easily reformulated as the following linear program:

(15) min
x̂
Z = ĉT x̂ s.t. Âx̂ = b̂, x̂ ≥ 0,

in adding to the constraints those of the form: xijkl + yr = dijkl, (see (6)
above), for i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , p, l = 1, . . . , q, r = 1, ..., N ,
where

• yr is the gap variable,
• x̂ = (xT , yT )T ∈ R2N with y = (y1, . . . , yN )T ,
• ĉ = (cT , 0T )T ∈ R2N where 0 is a N -null vector,
• b̂ = (bT , dT )T ∈ RM+N , with d is the vector of N components dijkl.

• Â =
[
A 0
IN IN

]
∈ RM+N×2N with rank(Â) = M +N − 3.

• IN ∈ RN×N is the identity matrix.

4.2. Algorithm 2. According to the particularities of T4C problem, Zitouni
[10], proposed a modification of the simplex algorithm. This algorithm is
referred here as Algorithm 2, which shares with the simplex algorithm, a
structure consists also of two phases such as the finite convergence and the
use of the pivot principle. The advantage of this new algorithm is that it
tackles the T4C directly without passing by other reformulations. For more
comprehension of this new algorithm, we detail its fundamental ingredients
(steps) as follows.

Phase 1. (It finds a basic feasible solution or declare that T4C is not solv-
able)

Step 1:
Initialization: for all (i, j, k, l), α̂i = αi, β̂j = βj , γ̂k = γk,

δ̂l = δl and bijkl = 0, (bijkl is a boolean variable equal to 1 if
xijkl has already been determined and 0 if not yet),
E = {(i, j, k, l), such that bijkl = 0}.
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Iteration:
While E is non empty do
• Choose an 4-tuple (̄i, j̄, k̄, l̄) ∈ E, such that cīj̄k̄l̄ = min

(i,j,k,l)∈E
cijkl,

(see Remark 6)
• Take xīj̄k̄l̄ = min(α̂ī, β̂j̄ , γ̂k̄, δ̂l̄, dīj̄k̄l̄), and bīj̄k̄l̄ = 1, (i.e.,
xīj̄k̄l̄ is determined),
• Update α̂ī, β̂j̄ , γ̂k̄, and δ̂l̄ by the procedure (P1) below.

Step 2:
a) Determine ξ as shown in the procedure (P2) below.
If ξ = 0, then x = (xijkl) is an initial basic feasible solution
for the problem T4C , we denote it by x(0). Go to Phase 2.

Else, construct the problem T4C(M̃) (as shown in the proce-
dure (P3) below) and determine for it an initial basic feasible
solution x(0) as in step 1 by taking x̄

(0)
m+1,n+1,p+1,q+1 = 0.

Note that x(0) = (x(0)
ijkl), with i = 1, . . . ,m+1, j = 1, . . . , n+1,

k = 1, . . . , p + 1 and l = 1, . . . , q + 1. If x(0) is optimal then
the problem T4C is not solvable. Stop.

b) Improvement of a basic feasible solution for T4C(M̃).
Initialization: r = 1, ξ > 0 is known,
1) Determine x(r) as in Phase 2.
2) If x̄

(r)
m+1,n+1,p+1,q+1 = ξ, then x(r) = (x(r)

ijkl) with i =
1, . . . ,m, j = 1, . . . , n, k = 1, . . . , p, and l = 1, . . . , q, is an
initial basic feasible solution for the problem (T4C). Go to
Phase 2.

3) If x(r) is optimal (Phase 2), then the problem T4C is
not solvable. Stop. 4) Do r = r + 1 and repeat 1), to 3).

Next, we describe the second phase.
Phase 2. (Research of an optimal solution for T4C)

When Phase 2 starts, we know an initial basic feasible solution
x(0). Take r = 0.

a) Determine the set I(r) of the interesting 4-tuple (i, j, k, l),
(see Remark 7).

b) For all (i, j, k, l) ∈ I(r), solve the linear system

u
(r)
i + v

(r)
j + w

(r)
k + t

(r)
l = cijkl.

c) For all (i, j, k, l) /∈ I(r) determine

4(r)
ijkl = cijkl − (u(r)

i + v
(r)
j + w

(r)
k + t

(r)
l ).

d) Apply the procedure described in (P4) below.
If the optimality condition holds then the feasible solution

x(r) is optimal. stop.
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Else determine a vector Pi0j0k0l0 entering at the base, it
corresponds to 4(r)

i0j0k0l0
.

e) Construct a cycle µ(r) via the procedure described in (P5)
and determine a new feasible solution as the procedure (P6)
shows.

f) Do r = r + 1 and repeat a), to e) until the optimality
condition holds.

Remark 6. If there are several elements corresponding to the minimum of
cijkl, we choose one, for instance the first found in the transportation table by
going from the left to the right. �

Remark 7. If the feasible solution is degenerate, i.e., the number of columns
of Ax is strictly less than rank(A), we complete Ax with additional columns so
that we obtain a matrix having rank(A) linearly independent columns. Next
I(r) can be determined. Thus will be done in the procedure (P7). �

Also, the algorithm makes appeal to the following procedures.
(P1) - Updating of α̂ī, β̂j̄ , γ̂k̄, and δ̂l̄.

1) α̂ī = α̂ī − xīj̄k̄l̄,
if α̂ī = 0 then take xījkl = 0 for all (j, k, l) 6= (j̄, k̄, l̄) and

bījkl = 1 for all (j, k, l),
2) β̂j̄ = β̂j̄ − xīj̄k̄l̄,
if β̂j̄ = 0 then take xij̄kl = 0 for all (i, k, l) 6= (̄i, k̄, l̄) and

bij̄kl = 1 for all (i, k, l),
3) γ̂k̄ = γ̂k̄ − xīj̄k̄l̄,
if γ̂k̄ = 0 then take xijk̄l = 0 for all (i, j, l) 6= (̄i, j̄, l̄) and

bijk̄l = 1 for all (i, j, l),
4) δ̂l̄ = δ̂l̄ − xīj̄k̄l̄,
if δ̂l̄ = 0 then take xijkl̄ = 0 for all (i, j, k) 6= (̄i, j̄, k̄) and

bijkl̄ = 1 for all (i, j, k).
(P2) - Determination of ξ.

ξ =
m∑
i=1

ai =
n∑
j=1

bj =
p∑

k=1
ek =

q∑
l=1

fl, such that:

ai = αi −
n∑
j=1

p∑
k=1

q∑
l=1

xijkl with i = 1, ...,m,

bj = βj −
m∑
i=1

p∑
k=1

q∑
l=1

xijkl with j = 1, ..., n,

ek = γk −
m∑
i=1

n∑
j=1

q∑
l=1

xijkl with k = 1, ..., p,

fl = δl −
m∑
i=1

n∑
j=1

p∑
k=1

xijkl with l = 1, ..., q.
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Note that the numbers ai, bj , ek and fl are nonnegative.

(P3) - Construction of the problem T4C(M̃).

The problem T4C(M̃) is obtained from problem T4C by adding
four fictitious points with indices m+ 1, n+ 1, p+ 1, and q+ 1
such that: cm+1,n+1,p+1,q+1 = 0, and cm+1,jkl = ci,n+1,kl =
cij,p+1,l = cijk,q+1 = M̃, where M̃ is a very large number and
there are no limitation on the capacities for the paths involving
a fictitious point.

(P4) - Determination of a vector Pi0j0k0l0 entering at the base or con-
firming that the feasible solution x(r) is optimal.

Take Γ(r)
0 and Γ(r)

d as two tables such that

Γ(r)
0 =

{
4(r)
ijkl such that x

(r)
ijkl = 0

}
,

Γ(r)
d =

{
4(r)
ijkl such that x

(r)
ijkl = dijkl

}
,

and elements 4(r)
ijkl are represented as variables xijkl in the

transportation table.
By going from the left to the right in Γ(r)

0 , choose

4(r)
i0j0k0l0

as the first element 4(r)
ijkl < 0 found,

if all elements of Γ(r)
0 are nonnegative then choose in Γ(r)

d sim-
ilarly,

4(r)
i0j0k0l0

as the first element 4(r)
ijkl > 0 found.

If all elements of Γ(r)
d are non positive, then the feasible so-

lution x(r) is optimal. Stop.

(P5) - Determination of a cycle.
A cycle µ(r) containing some interesting 4-tuple (i, j, k, l) and the non inter-

esting 4-tuple (i0, j0, k0, l0) corresponding to 4(r)
i0j0k0l0

is determined by solving
the linear system

∑
(i,j,k,l)∈I(r)

α
(r)
ijklPijkl = −Pi0j0k0l0

The non null solutions α(r)
ijkl are called coefficients of the cycle µ(r).

(P6) - Determination of a new feasible solution.
Take

σ(r) =
{

(i, j, k, l) such that (i, j, k, l) is a case of the cycle µ(r)
}

σ(r)− =
{

(i, j, k, l) such that (i, j, k, l) ∈ σ(r), with α
(r)
ijkl < 0

}
σ(r)+ =

{
(i, j, k, l) such that (i, j, k, l) ∈ σ(r), with α

(r)
ijkl > 0

}
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If 4(r)
i0j0k0l0

∈ Γ(r)
0 , determine

θ
(r)
1 = min

(i,j,k,l)∈σ(r)−

(
x

(r)
ijkl

/
− α(r)

ijkl

)
,

θ
(r)
2 = min

(i,j,k,l)∈σ(r)+

((
dijkl − x

(r)
ijkl

)/
α

(r)
ijkl

)
,

θ(r) = min(θ(r)
1 , θ

(r)
2 ).

Next, take

x(r+1) =
{
x

(r)
ijkl , (i, j, k, l) /∈ σ(r)

}
∪
{
x

(r)
ijkl + α

(r)
ijklθ

(r), (i, j, k, l) ∈ σ(r)
}
.

Else (4(r)
i0j0k0l0

∈ Γ(r)
d ), determine

θ
(r)
1 = min

(i,j,k,l)∈σ(r)+

(
x

(r)
ijkl

/
α

(r)
ijkl

)
,

θ
(r)
2 = min

(i,j,k,l)∈σ(r)−

((
dijkl − x

(r)
ijkl

)/
− α(r)

ijkl

)
,

θ(r) = min(θ(r)
1 , θ

(r)
2 ).

Next, take

x(r+1) =
{
x

(r)
ijkl , (i, j, k, l) /∈ σ(r)

}
∪
{
x

(r)
ijkl − α

(r)
ijklθ

(r), (i, j, k, l) ∈ σ(r)
}
.

(P7) - Determination of a set I(r) in a degenerate case.
1. Take
• Eb the set of vectors corresponding to variables x(r)

ijkl verifying

0 < x
(r)
ijkl < dijkl

and Nb is its element number.
• Eh the set of vectors corresponding to variables x(r)

ijkl verifying

x
(r)
ijkl = 0 or x(r)

ijkl = dijkl

and Nh is its element number. We are Nh = N −Nb, with N = mnpq.
• Es any subset with s = rank(A) − Nb elements of Eh, for example

the first s elements in Eh by going from the left to the right in the
transportation table.

2. At the beginning of this procedure, we know a subset Es of Eh.
i) If the set(Es∪Eb) is a free base, then a set I(r) is determined.
Stop.
ii) Replace the first (the second, the third,..., or the sth) ele-
ment in Es by the (s + 1)th element in Eh, or take any other
subset Es of Eh, and repeat i) until a set I(r) will be deter-
mined. Stop.
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4.3. The convergence of Algorithm 2. Assume that the problem T4C is non
degenerate. Observe that if x(r) and x(r+1) are two successive feasible solutions
of the problem T4C with Z(r) and Z(r+1) are respectively the corresponding
objective values then

Z(r+1) = Z(r) − (−1)ηθ(r)4(r+1)
i0j0k0l0

with

η =

 1 if x
(r)
i0j0k0l0

= 0,
0 if x

(r)
i0j0k0l0

= di0j0k0l0 .

So Z(r+1) < Z(r).
Hence the Algorithm 2 guaranties that the same base never appear in two
distinct iterations and since the number of the visited vertices is necessarily
finite (at most CM−3

N ), then it converges finitely.

5. COMPUTATIONAL RESULTS

The implementation of the two algorithms is running on a Pentium IV with
a Microsoft Windows Environment, they are totally written with Borland Del-
phi. Table 2 summarizes the results obtained for a few numerical experiments.

Ex. Dimension of Number Optimal Time in
no. the problem of iterations value (Z∗) seconds

Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 22 × 32 22 6 41.6025 41.6025 0.078 0.016
2 46 × 72 26 8 1317.79 1317.79 0.391 0.031
3 121 × 216 38 10 369.536 369.536 0.172 0.078
4 149 × 270 46 11 22.25 22.25 0.282 0.125
5 167 × 300 55 16 40 40 0.375 0.172
6 198 × 360 67 17 10.25 10.25 0.609 0.266
7 257 × 480 81 26 10.4375 10.4375 2.281 0.329
8 318 × 600 54 15 38.75 38.75 1.282 0.485
9 378 × 720 102 35 95.0625 95.0625 3.609 0.687
10 469 × 900 178 55 11.3125 11.3125 6.437 1.000
11 560 × 1080 257 83 46.25 46.25 10.438 1.406
12 741 × 1440 383 117 48.75 48.75 22.890 8.672

Table 2. Comparison between Algorithm 1 and Algorithm 2.

6. CONCLUSION AND FUTURE RESEARCHES

In this paper, we presented two exact simplicial methods for solving the ca-
pacited 4-index transportation problem. The numerical experiments showed
that Algorithm 2 is more efficient than Algorithm 1 with respect to the num-
ber of iterations and also to the computational time. Moreover, as we have
successfully done in some experiments, the arrangements made on Algorithm 2
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have appropriately treated the degeneracy problems and led to a considerable
reduction of the computational results.

Finally, we point out that our obtained results are independent of the num-
ber of indices of the problem, so we can extend Algorithm 2 for solving ca-
pacitated transportation problems with the number of indices that are greater
than four.
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