JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY

J. Numer. Anal. Approx. Theory, vol. 47 (2018) no. 1, pp. 26-41 ictp.acad.ro/jnaat

NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR HA-CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR*

Abstract. Some new inequalities of Hermite-Hadamard type for HA-convex functions defined on positive intervals are given.

MSC 2010. 26D15; 25D10.

Keywords. Convex functions, Integral inequalities, HA-Convex functions.

1. INTRODUCTION

Following [1] (see also [41]) we say that the function $f: I \subset R \setminus \{0\} \to \mathbb{R}$ is HA-convex or harmonically convex if

(1)
$$f\left(\frac{xy}{tx+(1-t)y}\right) \le (1-t)f(x) + tf(y)$$

for all $x, y \in I$ and $t \in [0, 1]$. If the inequality in (1) is reversed, then f is said to be HA-concave or harmonically concave.

In order to avoid any confusion with the class of AH-convex functions, namely the functions satisfying the condition

(2)
$$f((1-t)x + ty) \le \frac{f(x)f(y)}{(1-t)f(y) + tf(x)},$$

we call the class of functions satisfying (1) as HA-convex functions.

If $I \subset (0, \infty)$ and f is convex and nondecreasing function then f is HA-convex and if f is HA-convex and nonincreasing function then f is convex.

The following simple but important fact is as follows:

Criterion 1. If $[a,b] \subset I \subset (0,\infty)$ and if we consider the function $g: [\frac{1}{b},\frac{1}{a}] \to \mathbb{R}$, defined by $g(t)=f(\frac{1}{t})$, then f is HA-convex on [a,b] if and only if g is convex in the usual sense on $[\frac{1}{b},\frac{1}{a}]$.

^{*}Mathematics, College of Engineering & Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia., DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa, e-mail: sever.dragomir@vu.edu.au.

For a convex function $h:[c,d]\to\mathbb{R}$, the following inequality is well known in the literature as the Hermite-Hadamard inequality

(3)
$$h\left(\frac{c+d}{2}\right) \le \frac{1}{d-c} \int_{c}^{d} h\left(t\right) dt \le \frac{h(c)+h(d)}{2}$$

for any convex function $h:[c,d]\to\mathbb{R}$.

For related results, see [1]–[18], [21]–[26], [27]–[37] and [38]–[49].

If we write the Hermite-Hadamard inequality for the convex function $g(t) = f(\frac{1}{t})$ on the closed interval $\begin{bmatrix} \frac{1}{b}, \frac{1}{a} \end{bmatrix}$, then we have

(4)
$$f\left(\frac{2ab}{a+b}\right) \le \frac{ab}{b-a} \int_{\frac{1}{t}}^{\frac{1}{a}} f\left(\frac{1}{t}\right) dt \le \frac{f(b)+f(a)}{2}.$$

Using the change of variable $s = \frac{1}{t}$, we have

$$\int_{\frac{1}{b}}^{\frac{1}{a}} f\left(\frac{1}{t}\right) dt = \int_{a}^{b} \frac{f(s)}{s^2} ds$$

and by (4) we get

(5)
$$f\left(\frac{2ab}{a+b}\right) \le \frac{ab}{b-a} \int_a^b \frac{f(s)}{s^2} ds \le \frac{f(b)+f(a)}{2}.$$

The inequality (5) has been obtained in a different manner in [41] by I. Işcan. The *identric mean* I(a,b) is defined by

$$I(a,b) := \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}}$$

while the logarithmic mean is defined by

$$L(a,b) := \frac{b-a}{\ln b - \ln a}.$$

In the recent paper [25] we established the following inequalities for HA-convex functions:

THEOREM 2. Let $f:[a,b]\subset (0,\infty)\to \mathbb{R}$ be an HA-convex function on the interval [a,b]. Then

(6)
$$f(L(a,b)) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \frac{(L(a,b)-a)bf(b)+(b-L(a,b))af(a)}{(b-a)L(a,b)},$$

and

Theorem 3. Let $f:[a,b]\subset (0,\infty)\to \mathbb{R}$ be a HA-convex function on the interval [a,b]. Then

(7)
$$f\left(\frac{a+b}{2}\right)\frac{a+b}{2} \le \frac{1}{b-a} \int_{a}^{b} xf\left(x\right) dx \le \frac{bf(b)+af(a)}{2}.$$

Motivated by the above results, we establish in this paper some new inequalities of Hermite-Hadamard type for HA-convex functions. Some applications for special means are also given.

2. FURTHER RESULTS

We start with the following characterization of HA-convex functions.

THEOREM 4. Let $f, h : [a, b] \subset (0, \infty) \to \mathbb{R}$ be so that h(t) = tf(t) for $t \in [a, b]$. Then f is HA-convex on the interval [a, b] if and only if h is convex on [a, b].

Proof. Assume that f is HA-convex on the interval [a,b]. Then the function $g: \left[\frac{1}{b}, \frac{1}{a}\right] \to \mathbb{R}, g(t) = f\left(\frac{1}{t}\right)$ is convex on $\left[\frac{1}{b}, \frac{1}{a}\right]$. By replacing t with $\frac{1}{t}$ we have $f(t) = g\left(\frac{1}{t}\right)$.

If $\lambda \in [0,1]$ and $x,y \in [a,b]$ then, by the convexity of g on $\left[\frac{1}{b},\frac{1}{a}\right]$, we have

$$h((1 - \lambda) x + \lambda y) = [(1 - \lambda) x + \lambda y] f((1 - \lambda) x + \lambda y)$$

$$= [(1 - \lambda) x + \lambda y] g\left(\frac{1}{(1 - \lambda) x + \lambda y}\right)$$

$$= [(1 - \lambda) x + \lambda y] g\left(\frac{(1 - \lambda) x \frac{1}{x} + \lambda y \frac{1}{y}}{(1 - \lambda) x + \lambda y}\right)$$

$$\leq [(1 - \lambda) x + \lambda y] \frac{(1 - \lambda) x g\left(\frac{1}{x}\right) + \lambda y g\left(\frac{1}{y}\right)}{(1 - \lambda) x + \lambda y}$$

$$= (1 - \lambda) x g\left(\frac{1}{x}\right) + \lambda y g\left(\frac{1}{y}\right)$$

$$= (1 - \lambda) x f(x) + \lambda y f(y) = (1 - \lambda) h(x) + \lambda h(y),$$

which shows that h is convex on [a, b].

We have $f(t) = \frac{h(t)}{t}$ for $t \in [a, b]$. If $\lambda \in [0, 1]$ and $x, y \in [a, b]$ then, by the convexity of h on [a, b], we have

$$f\left(\frac{xy}{\lambda x + (1-\lambda)y}\right) = \frac{h\left(\frac{xy}{\lambda x + (1-\lambda)y}\right)}{\frac{xy}{\lambda x + (1-\lambda)y}}$$

$$= \frac{\lambda x + (1-\lambda)y}{xy} h\left(\frac{xy}{\lambda x + (1-\lambda)y}\right)$$

$$= \frac{\lambda x + (1-\lambda)y}{xy} h\left(\frac{1}{(1-\lambda)\frac{1}{x} + \lambda\frac{1}{y}}\right)$$

$$= \frac{\lambda x + (1-\lambda)y}{xy} h\left(\frac{(1-\lambda)\frac{1}{x} x + \lambda\frac{1}{y}y}{(1-\lambda)\frac{1}{x} + \lambda\frac{1}{y}}\right)$$

$$\leq \frac{\lambda x + (1-\lambda)y}{xy} \frac{(1-\lambda)\frac{1}{x} h(x) + \lambda\frac{1}{y} h(y)}{(1-\lambda)\frac{1}{x} + \lambda\frac{1}{y}}$$

$$= (1-\lambda)\frac{1}{x} h(x) + \lambda\frac{1}{y} h(y) = (1-\lambda) f(x) + \lambda f(y),$$

which shows that f is HA-convex on the interval [a, b].

REMARK 5. If f is HA-convex on the interval [a, b], then by Theorem 4 the function h(t) = tf(t) is convex on [a, b] and by Hermite-Hadamard inequality (3) we get the inequality (7). This gives a direct proof of (7) and it is simpler than in [25].

In 1994, [11] (see also [32, p. 22]) we proved the following refinement of Hermite-Hadamard inequality. For a direct proof that is different from the one in [11], see the recent paper [24].

LEMMA 6. Let $p:[c,d] \to \mathbb{R}$ be a convex function on [c,d]. Then for any division $c = y_0 < y_1 < ... < y_{n-1} < y_n = d$ with $n \ge 1$ we have the inequalities

(8)
$$p\left(\frac{c+d}{2}\right) \leq \frac{1}{d-c} \sum_{i=0}^{n-1} (y_{i+1} - y_i) p\left(\frac{y_{i+1} + y_i}{2}\right)$$
$$\leq \frac{1}{d-c} \int_{c}^{d} p(y) dy \leq \frac{1}{d-c} \sum_{i=0}^{n-1} (y_{i+1} - y_i) \frac{p(y_i) + p(y_{i+1})}{2}$$
$$\leq \frac{1}{2} [p(c) + p(d)].$$

We can state the following result:

THEOREM 7. Let $f:[a,b] \subset (0,\infty) \to \mathbb{R}$ be a HA-convex function on the interval [a,b]. Then for any division $a=x_0 < x_1 < ... < x_{n-1} < x_n = b$ with $n \ge 1$ we have the inequalities

(9)
$$\frac{a+b}{2}f\left(\frac{a+b}{2}\right) \leq \frac{1}{2(b-a)} \sum_{i=0}^{n-1} \left(x_{i+1}^2 - x_i^2\right) f\left(\frac{x_{i+1} + x_i}{2}\right)$$
$$\leq \frac{1}{b-a} \int_a^b x f(x) dx$$
$$\leq \frac{1}{b-a} \sum_{i=0}^{n-1} \left(x_{i+1} - x_i\right) \frac{x_i f(x_i) + x_{i+1} f(x_{i+1})}{2}$$
$$\leq \frac{1}{2} \left[af(a) + bf(b)\right].$$

Follows by Lemma 6 for the convex function p(x) = xf(x), $x \in [a, b]$. If we take n = 2 and $x \in [a, b]$, then by (9) we have

$$(10) \qquad \frac{a+b}{2}f\left(\frac{a+b}{2}\right) \le \frac{1}{2(b-a)} \left[\left(x^2 - a^2\right)f\left(\frac{x+a}{2}\right) + \left(b^2 - x^2\right)f\left(\frac{x+b}{2}\right) \right]$$

$$\le \frac{1}{b-a} \int_a^b tf(t) dt$$

$$\le \frac{1}{2(b-a)} \left[(b-a)xf(x) + (x-a)af(a) + (b-x)bf(b) \right]$$

$$\le \frac{1}{2} \left[af(a) + bf(b) \right] .$$

If in this inequality we choose $x = \frac{a+b}{2}$, then we get the inequality

(11)
$$\frac{a+b}{2}f(\frac{a+b}{2}) \leq \frac{1}{2(b-a)} \left[\frac{b+3a}{4} f(\frac{b+3a}{4}) + \frac{a+3b}{4} f(\frac{a+3b}{4}) \right]$$

$$\leq \frac{1}{b-a} \int_{a}^{b} t f(t) dt$$

$$\leq \frac{1}{2} \left[\frac{a+b}{2} f(\frac{a+b}{2}) + \frac{af(a)+bf(b)}{2} \right] \leq \frac{1}{2} \left[af(a) + bf(b) \right].$$

If we take in (10) $x = \frac{2ab}{a+b}$, then we get

$$(12) \quad \frac{a+b}{2} f\left(\frac{a+b}{2}\right) \le \frac{1}{4(a+b)^2} \left[a^2 \left(a+3b\right) f\left(\frac{a(a+3b)}{2(a+b)}\right) + b^2 \left(3a+b\right) f\left(\frac{b(3a+b)}{2(a+b)}\right) \right]$$

$$\le \frac{1}{b-a} \int_a^b t f\left(t\right) dt$$

$$\le \frac{1}{a+b} \left[ab f\left(\frac{2ab}{a+b}\right) + \frac{a^2 f(a) + b^2 f(b)}{2} \right] \le \frac{1}{2} \left[af\left(a\right) + bf\left(b\right) \right].$$

We also have:

THEOREM 8. Let $f:[a,b] \subset (0,\infty) \to \mathbb{R}$ be a HA-convex function on the interval [a,b]. Then for any division $a=x_0 < x_1 < ... < x_{n-1} < x_n = b$ with $n \ge 1$ we have the inequalities

(13)
$$f\left(\frac{2ab}{a+b}\right) \le \frac{ab}{b-a} \sum_{j=0}^{n-1} \left(\frac{x_{j+1} - x_j}{x_{j+1} x_j}\right) f\left(\frac{2x_{j+1} x_j}{x_{j+1} + x_j}\right)$$
$$\le \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx$$
$$\le \frac{ab}{b-a} \sum_{j=0}^{n-1} \left(\frac{x_{j+1} - x_j}{x_{j+1} x_j}\right) \frac{f(x_j) + f(x_{j+1})}{2} \le \frac{f(b) + f(a)}{2}.$$

Proof. Consider the convex function $p(x) = f(\frac{1}{x})$ that is convex on the interval $\left[\frac{1}{b}, \frac{1}{a}\right]$. The division $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$ with $n \ge 1$ produces the division $y_i = \frac{1}{x_{n-i}}$, $i \in \{0, \dots, n\}$ of the interval $\left[\frac{1}{b}, \frac{1}{a}\right]$.

Using the inequality (8) we get

$$(14) f\left(\frac{1}{\frac{1}{b} + \frac{1}{a}}\right) \leq \frac{1}{\frac{1}{a} - \frac{1}{b}} \sum_{i=0}^{n-1} \left(t \frac{1}{x_{n-i-1}} - \frac{1}{x_{n-i}}\right) f\left(\frac{1}{\frac{1}{x_{n-i-1}} + \frac{1}{x_{n-i}}}\right)$$

$$\leq \frac{1}{\frac{1}{a} - \frac{1}{b}} \int_{\frac{1}{b}}^{\frac{1}{a}} f\left(\frac{1}{t}\right) dt$$

$$\leq \frac{1}{\frac{1}{a} - \frac{1}{b}} \sum_{i=0}^{n-1} \left(\frac{1}{x_{n-i-1}} - \frac{1}{x_{n-i}}\right) \frac{f\left(\frac{1}{\frac{1}{x_{n-i-1}}}\right) + f\left(\frac{1}{\frac{1}{x_{n-i}}}\right)}{2}$$

$$\leq \frac{1}{2} \left[f\left(\frac{1}{\frac{1}{b}}\right) + f\left(\frac{1}{\frac{1}{a}}\right)\right]$$

that is equivalent to

(15)
$$f\left(\frac{2ab}{a+b}\right) \leq \frac{ab}{b-a} \sum_{i=0}^{n-1} \left(\frac{x_{n-i}-x_{n-i-1}}{x_{n-i-1}x_{n-i}}\right) f\left(\frac{2x_{n-i-1}x_{n-i}}{x_{n-i}+x_{n-i-1}}\right)$$
$$\leq \frac{ab}{b-a} \int_{\frac{1}{b}}^{\frac{1}{a}} f\left(\frac{1}{t}\right) dt \leq$$

$$\leq \frac{ab}{b-a} \sum_{i=0}^{n-1} \left(\frac{x_{n-i} - x_{n-i-1}}{x_{n-i-1} x_{n-i}} \right) \frac{f(x_{n-i-1}) + f(x_{n-i})}{2}$$

$$\leq \frac{1}{2} [f(b) + f(a)].$$

By re-indexing the sums and taking into account that

$$\int_{\frac{1}{b}}^{\frac{1}{a}} f\left(\frac{1}{t}\right) dt = \int_{a}^{b} \frac{f(x)}{x^2} dx$$

we obtain the desired result (13).

Remark 9. If we take n=2 and $x\in [a,b]$, then by (13) we have, after appropriate calculations, that

(16)
$$f\left(\frac{2ab}{a+b}\right) \leq \frac{1}{x} \left[\frac{(x-a)bf\left(\frac{2ax}{a+x}\right) + (b-x)af\left(\frac{2xb}{x+b}\right)}{b-a} \right]$$
$$\leq \frac{ab}{b-a} \int_{a}^{b} \frac{f(x)}{x^{2}} dx$$
$$\leq \frac{1}{2} \left[f\left(x\right) + \frac{(x-a)bf(a) + (b-x)af(b)}{x(b-a)} \right]$$
$$\leq \frac{f(b) + f(a)}{2}.$$

If we take in (16) $x = \frac{2ab}{a+b} \in [a,b]$, then we get

(17)
$$f\left(\frac{2ab}{a+b}\right) \le \frac{1}{2} \left[f\left(\frac{4ab}{a+3b}\right) + f\left(\frac{4ab}{3a+b}\right) \right]$$
$$\le \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx$$
$$\le \frac{1}{2} \left[f\left(\frac{2ab}{a+b}\right) + \frac{f(a)+f(b)}{2} \right] \le \frac{f(a)+f(b)}{2}.$$

If we take in (16) $x = \frac{a+b}{2} \in [a,b]$, then we get

(18)
$$f\left(\frac{2ab}{a+b}\right) \le \frac{bf\left(\frac{a(a+b)}{3a+b}\right) + af\left(\frac{b(a+b)}{a+3b}\right)}{a+b}$$
$$\le \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx$$
$$\le \frac{1}{2} \left[f\left(\frac{a+b}{2}\right) + \frac{bf(a) + af(b)}{a+b} \right] \le \frac{f(b) + f(a)}{2}.$$

3. RELATED RESULTS

We recall some facts on the lateral derivatives of a convex function.

Suppose that I is an interval of real numbers with interior \mathring{I} and $f: I \to \mathbb{R}$ is a convex function on I. Then f is continuous on \mathring{I} and has finite left and right derivatives at each point of \mathring{I} . Moreover, if $x, y \in \mathring{I}$ and x < y, then $f'_{-}(x) \leq f'_{+}(x) \leq f'_{-}(y) \leq f'_{+}(y)$ which shows that both f'_{-} and f'_{+} are

nondecreasing function on \check{I} . It is also known that a convex function must be differentiable except for at most countably many points.

For a convex function $f: I \to \mathbb{R}$, the subdifferential of f denoted by ∂f is the set of all functions $\varphi: I \to [-\infty, \infty]$ such that $\varphi(\mathring{I}) \subset \mathbb{R}$ and

(19)
$$f(x) \ge f(a) + (x - a)\varphi(a) \text{ for any } x, a \in I.$$

It is also well known that if f is convex on I, then ∂f is nonempty, f'_{-} , $f'_{+} \in \partial f$ and if $\varphi \in \partial f$, then

$$f'_{-}(x) \le \varphi(x) \le f'_{+}(x)$$
 for any $x \in \mathring{I}$.

In particular, φ is a nondecreasing function. If f is differentiable and convex on \mathring{I} , then $\partial f = \{f'\}$.

LEMMA 10. Let $f:[a,b]\subset (0,\infty)\to \mathbb{R}$ be an HA-convex function on the interval [a,b]. Then f has lateral derivatives in every point of (a,b) and

(20)
$$f(t) - f(s) \ge sf'_{+}(s) \left(1 - \frac{s}{t}\right)$$

for any $s \in (a, b)$ and $t \in [a, b]$.

Also, we have

(21)
$$f(t) - f(a) \ge af'_{+}(a) \left(1 - \frac{a}{t}\right)$$

and

$$(22) f(t) - f(b) \ge bf'_{-}(b)\left(1 - \frac{b}{t}\right)$$

for any $t \in [a,b]$ provided the lateral derivatives $f'_{+}(a)$ and $f'_{-}(b)$ are finite.

Proof. If f is HA-convex function on the interval [a,b], then the function h(t) = tf(t) is convex on [a,b], therefore the function f has lateral derivatives in each point of (a,b) and

$$h'_{+}(t) = f(t) + tf'_{+}(t)$$

for any $t \in (a, b)$. Also, if $f'_{+}(a)$ and $f'_{-}(b)$ are finite then

$$h'_{+}(a) = f(a) + af'_{+}(a)$$
 and $h'_{-}(b) = f(b) + bf'_{-}(b)$.

Writing the gradient inequality for the convex function h, namely

$$h(t) - h(s) \ge h'_{+}(s)(t - s)$$

for any $s \in (a, b)$ and $t \in [a, b]$, we have

$$tf(t) - sf(s) \ge [f(s) + sf'_{\pm}(s)](t - s) = f(s)(t - s) + sf'_{\pm}(s)(t - s)$$

that is equivalent to

$$tf(t) - tf(s) \ge sf'_+(s)(t-s)$$

for any $s \in (a, b)$ and $t \in [a, b]$.

Now, by dividing with t > 0 we get the desired result (20).

The rest follows by the corresponding properties of convex function h.

We use the following results obtained by the author in [19] and [20]

LEMMA 11. Let $h : [\alpha, \beta] \to \mathbb{R}$ be a convex function on $[\alpha, \beta]$. Then we have the inequalities

(23)
$$\frac{1}{8} \left[h'_{+} \left(\frac{\alpha + \beta}{2} \right) - h'_{-} \left(\frac{\alpha + \beta}{2} \right) \right] (\beta - \alpha) \leq \frac{h(\alpha) + h(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(t) dt \\ \leq \frac{1}{8} \left[h'_{-} (\beta) - h'_{+} (\alpha) \right] (\beta - \alpha)$$

and

(24)
$$\frac{1}{8} \left[h'_{+} \left(\frac{\alpha + \beta}{2} \right) - h'_{-} \left(\frac{\alpha + \beta}{2} \right) \right] (\beta - \alpha) \leq \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(t) dt - h\left(\frac{\alpha + \beta}{2} \right)$$
$$\leq \frac{1}{8} \left[h'_{-} (\beta) - h'_{+} (\alpha) \right] (\beta - \alpha).$$

The constant $\frac{1}{8}$ is best possible in (23) and (24).

The following result holds:

THEOREM 12. Let $f:[a,b]\subset(0,\infty)\to\mathbb{R}$ be an HA-convex function on the interval [a,b]. Then we have

(25)
$$\frac{1}{16} \left[f'_{+} \left(\frac{a+b}{2} \right) - f'_{-} \left(\frac{a+b}{2} \right) \right] (b^{2} - a^{2}) \leq$$

$$\leq \frac{af(a) + bf(b)}{2} - \frac{1}{b-a} \int_{a}^{b} tf(t) dt$$

$$\leq \frac{1}{8} \left[f(b) - f(a) \right] (b-a) + \frac{1}{8} \left[bf'_{-}(b) - af'_{+}(a) \right] (b-a)$$

and

(26)
$$\frac{1}{16} \left[f'_{+} \left(\frac{a+b}{2} \right) - f'_{-} \left(\frac{a+b}{2} \right) \right] \left(b^{2} - a^{2} \right) \leq$$

$$\leq \frac{1}{b-a} \int_{a}^{b} t f(t) dt - \frac{a+b}{2} f\left(\frac{a+b}{2} \right)$$

$$\leq \frac{1}{8} \left[f(b) - f(a) \right] (b-a) + \frac{1}{8} \left[b f'_{-} (b) - a f'_{+} (a) \right] (b-a).$$

Proof. Making use of inequality (23) in Lemma 11 for the convex function $h\left(t\right)=tf\left(t\right)$ we have

$$\begin{split} &\frac{1}{8} \left[\frac{a+b}{2} f'_{+} \left(\frac{a+b}{2} \right) - \frac{a+b}{2} f'_{-} \left(\frac{a+b}{2} \right) \right] (b-a) \leq \\ &\leq \frac{af(a) + bf(b)}{2} - \frac{1}{b-a} \int_{a}^{b} tf(t) dt \\ &\leq \frac{1}{8} \left[f(b) + bf'_{-} (b) - f(a) - af'_{+} (a) \right] (b-a) \,, \end{split}$$

which proves the inequality (25).

The inequality (26) follows by (24).

COROLLARY 13. Let $f:[a,b]\subset(0,\infty)\to\mathbb{R}$ be a differentiable HA-convex function on the interval [a,b]. Then we have

(27)
$$0 \le \frac{af(a) + bf(b)}{2} - \frac{1}{b - a} \int_{a}^{b} tf(t) dt$$
$$\le \frac{1}{8} [f(b) - f(a)] (b - a) + \frac{1}{8} [bf'_{-}(b) - af'_{+}(a)] (b - a)$$

34 S. S. Dragomir

and

(28)
$$0 \le \frac{1}{b-a} \int_{a}^{b} t f(t) dt - \frac{a+b}{2} f\left(\frac{a+b}{2}\right)$$
$$\le \frac{1}{8} \left[f(b) - f(a) \right] (b-a) + \frac{1}{8} \left[b f'_{-}(b) - a f'_{+}(a) \right] (b-a).$$

We remark that from (27) we have

(29)
$$\frac{(3a+b)f(a)+(a+3b)f(b)}{8} - \frac{1}{8} \left[bf'_{-}(b) - af'_{+}(a) \right] (b-a) \le \frac{1}{b-a} \int_{a}^{b} tf(t) dt \le \frac{af(a)+bf(b)}{2}$$

and from (28) we have

(30)
$$\frac{a+b}{2}f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} tf(t) dt$$

$$\leq \frac{a+b}{2}f\left(\frac{a+b}{2}\right) + \frac{1}{8} [f(b) - f(a)] (b-a)$$

$$+ \frac{1}{8} [bf'_{-}(b) - af'_{+}(a)] (b-a) .$$

The *identric mean* I(a,b) is defined by

$$I(a,b) := \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}}$$

while the logarithmic mean is defined by

$$L(a,b) := \frac{b-a}{\ln b - \ln a}.$$

The following result also holds:

THEOREM 14. Let $f:[a,b]\subset (0,\infty)\to \mathbb{R}$ be an HA-convex function on the interval [a,b].

(i) If
$$bf(b) - af(a) \neq \int_a^b f(s) ds$$
 and

(31)
$$\alpha_f := \frac{\int_a^b s^2 f'(s) ds}{\int_a^b s f'(s) ds} = \frac{b^2 f(b) - a^2 f(a) - 2 \int_a^b s f(s) ds}{b f(b) - a f(a) - \int_a^b f(s) ds} \in [a, b]$$

then

(32)
$$f(\alpha_f) \ge \frac{1}{b-a} \int_a^b f(s) \, ds.$$

(ii) If
$$f(b) \neq f(a)$$
 and

(33)
$$\beta_f = \frac{\int_a^b sf'(s)ds}{\int_a^b f'(s)ds} = \frac{bf(b) - af(a) - \int_a^b f(s)ds}{f(b) - f(a)} \in [a, b]$$

then

(34)
$$f(\beta_f) \ge \frac{1}{\ln b - \ln a} \int_a^b f(s) \, ds.$$

(iii) If
$$af(b) \neq bf(a)$$
 and

(35)
$$\gamma_f := \frac{(f(b) - f(a))ab}{af(b) - bf(a)} \in [a, b]$$

then

(36)
$$f(\gamma_f) \ge \frac{2ab}{b-a} \int_a^b \frac{f(s)}{s^2} ds.$$

Proof. We know that if $f:[a,b]\subset(0,\infty)\to\mathbb{R}$ is an HA-convex function on the interval [a,b] then the functions is differentiable except for at most countably many points. Then, from (20) we have

$$(37) f(t) - f(s) \ge sf'(s)\left(1 - \frac{s}{t}\right)$$

for any $t \in [a, b]$ and almost every $s \in (a, b)$.

(i) If we take the Lebesgue integral mean in (37), then we get

(38)
$$f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \ge \frac{1}{b-a} \int_{a}^{b} s f'(s) \, ds - \frac{1}{t} \frac{1}{b-a} \int_{a}^{b} s^{2} f'(s) \, ds$$

for any $t \in [a, b]$.

If we take $t = \alpha_f$ in (38) then we get the desired inequality (32).

(ii) If we divide the inequality (37) by s then we get

(39)
$$\frac{1}{s}f(t) - \frac{f(s)}{s} \ge f'(s) - \frac{1}{t}sf'(s)$$

for any $t \in [a, b]$ and almost every $s \in (a, b)$.

If we take the Lebesgue integral mean in (39), then we get

$$f(t) = \int_{a}^{b} \int_{a}^{b} \frac{1}{s} ds - \frac{1}{b-a} \int_{a}^{b} \frac{f(s)}{s} ds + \frac{1}{b-a} \int_{a}^{b} f'(s) ds - \frac{1}{t} \frac{1}{b-a} \int_{a}^{b} s f'(s) ds$$

that is equivalent to

(40)
$$\frac{f(t)}{L(a,b)} - \frac{1}{b-a} \int_{a}^{b} \frac{f(s)}{s} ds \ge \frac{f(b) - f(a)}{b-a} - \frac{1}{t} \frac{bf(b) - af(a) - \int_{a}^{b} f(s) ds}{b-a}$$

for any $t \in [a, b]$

If we take $t = \beta_f$ in (40) then we get the desired result (34).

(iii) If we divide the inequality (37) by s^2 then we get

(41)
$$\frac{1}{s^2} f(t) - \frac{f(s)}{s^2} \ge \frac{f'(s)}{s} - \frac{1}{t} f'(s)$$

for any $t \in [a, b]$ and almost every $s \in (a, b)$.

If we take the Lebesgue integral mean in (41), then we get

$$f(t) \frac{1}{b-a} \int_{a}^{b} \frac{1}{s^{2}} ds - \frac{1}{b-a} \int_{a}^{b} \frac{f(s)}{s^{2}} ds \ge \frac{1}{b-a} \int_{a}^{b} \frac{f'(s)}{s} ds - \frac{1}{t} \frac{1}{b-a} \int_{a}^{b} f'(s) ds,$$

which is equivalent to

$$f(t) \frac{1}{ab} - \frac{1}{b-a} \int_{a}^{b} \frac{f(s)}{s^{2}} ds \ge \frac{1}{b-a} \left[\frac{f(b)}{b} - \frac{f(a)}{a} + \int_{a}^{b} \frac{f(s)}{s^{2}} ds \right] - \frac{1}{t} \frac{f(b) - f(a)}{b-a}$$

or, to

$$f(t) \frac{1}{ab} - \frac{2}{b-a} \int_{a}^{b} \frac{f(s)}{s^{2}} ds \ge \frac{1}{b-a} \frac{af(b) - bf(a)}{ba} - \frac{1}{t} \frac{f(b) - f(a)}{b-a}.$$

Remark 15. We observe that a sufficient condition for (31) and (33) to hold is that f is increasing on [a,b]. If f(a) < 0 < f(b), then the inequality (35) also holds.

We also have the following result:

THEOREM 16. Let $f:[a,b]\subset(0,\infty)\to\mathbb{R}$ be an HA-convex function on the interval [a,b]. Then we have

$$(42) f\left(\frac{a+b}{2}\right) \le \frac{1}{\ln b - \ln a} \int_a^b \frac{f(t)}{a+b-t} dt \le \frac{af(a) + bf(b)}{a+b}.$$

Proof. Since the function h(t) = tf(t) is convex, then we have

$$\frac{x+y}{2}f(\frac{x+y}{2}) \le \frac{xf(x)+yf(y)}{2}$$

for any $x, y \in [a, b]$.

If we divide this inequality by xy > 0 we get

(43)
$$\frac{1}{2} \left(\frac{1}{x} + \frac{1}{y} \right) f\left(\frac{x+y}{2} \right) \le \frac{1}{2} \left(\frac{f(x)}{y} + \frac{f(y)}{x} \right),$$

for any $x, y \in [a, b]$.

If we replace x by (1-t)a+tb and y by ta+(1-t)b in (43), then we get

$$(44) \qquad \frac{1}{2} \left(\frac{1}{(1-t)a+tb} + \frac{1}{ta+(1-t)b} \right) f\left(\frac{a+b}{2}\right) \le \frac{1}{2} \left(\frac{f((1-t)a+tb)}{ta+(1-t)b} + \frac{f(ta+(1-t)b)}{(1-t)a+tb} \right),$$

for any $t \in [0, 1]$.

Integrating (44) on [0,1] over t we get

(45)
$$\frac{1}{2} \left(\int_{0}^{1} \frac{1}{(1-t)a+tb} dt + \int_{0}^{1} \frac{1}{ta+(1-t)b} dt \right) f\left(\frac{a+b}{2}\right) \le$$

$$\le \frac{1}{2} \left(\int_{0}^{1} \frac{f((1-t)a+tb)}{ta+(1-t)b} dt + \int_{0}^{1} \frac{f(ta+(1-t)b)}{(1-t)a+tb} dt \right).$$

Observe that, by the appropriate change of variable,

$$\int_0^1 \frac{1}{(1-t)a+tb} dt = \int_0^1 \frac{1}{ta+(1-t)b} dt = \frac{1}{b-a} \int_a^b \frac{du}{u} = \frac{\ln b - \ln a}{b-a}$$

and

$$\int_0^1 \frac{f((1-t)a+tb)}{ta+(1-t)b} dt = \int_0^1 \frac{f(ta+(1-t)b)}{(1-t)a+tb} = \frac{1}{b-a} \int_a^b \frac{f(u)}{a+b-u} du$$

and by (45) we get the first inequality in (42).

From the convexity of h we also have

$$((1-t)a+tb) f ((1-t)a+tb) < (1-t)af (a) + tbf (b)$$

and

$$(ta + (1 - t)b) f (ta + (1 - t)b) \le taf (a) + (1 - t)bf (b)$$

for any $t \in [0, 1]$.

Add these inequalities to get

$$((1-t) a + tb) f ((1-t) a + tb) + (ta + (1-t) b) f (ta + (1-t) b) \le$$

 $\le af(a) + bf(b)$

for any $t \in [0, 1]$.

If we divide this inequality by ((1-t)a+tb)(ta+(1-t)b), then we get

(46)
$$\frac{f((1-t)a+tb)}{ta+(1-t)b} + \frac{f(ta+(1-t)b)}{(1-t)a+tb} \le \frac{af(a)+bf(b)}{((1-t)a+tb)(ta+(1-t)b)}$$

for any $t \in [0, 1]$.

If we integrate the inequality (46) over t on [0,1], then we obtain

(47)
$$\int_{0}^{1} \frac{f((1-t)a+tb)}{ta+(1-t)b} dt + \int_{0}^{1} \frac{f(ta+(1-t)b)}{(1-t)a+tb} dt \leq$$

$$\leq \left[af(a) + bf(b) \right] \int_{0}^{1} \frac{dt}{((1-t)a+tb)(ta+(1-t)b)}.$$

Since

$$\int_0^1 \frac{dt}{((1-t)a+tb)(ta+(1-t)b)} = \frac{1}{b-a} \int_a^b \frac{du}{u(a+b-u)}$$

and

$$\frac{1}{u(a+b-u)} = \frac{1}{a+b} \left(\frac{1}{u} + \frac{1}{a+b-u} \right),$$

then

$$\int_{a}^{b} \frac{du}{u(a+b-u)} = \frac{1}{a+b} \int_{a}^{b} \left(\frac{1}{u} + \frac{1}{a+b-u}\right) du = \frac{2}{a+b} \left(\ln b - \ln a\right).$$

By (47) we then have

$$\frac{2}{b-a} \int_{a}^{b} \frac{f(u)}{a+b-u} du \le 2 \left[\frac{af(a)+bf(b)}{a+b} \right] \frac{\ln b - \ln a}{b-a},$$

which proves the second inequality in (42).

4. APPLICATIONS

We consider the arithmetic mean $A\left(a,b\right)=\frac{a+b}{2}$, the geometric mean $G\left(a,b\right)=\sqrt{ab}$ and harmonic mean $H\left(a,b\right)=\frac{2ab}{a+b}$ for the positive numbers a,b>0.

If we use the inequalities (13) for the HA-convex function f(t) = t on the interval $[a,b] \subset (0,\infty)$ then for any division $a=x_0 < x_1 < ... < x_{n-1} < x_n = b$ with $n \ge 1$ we have the inequalities

$$(48) \qquad \frac{2ab}{a+b} \le \frac{2ab}{b-a} \sum_{j=0}^{n-1} \frac{x_{j+1}-x_j}{x_{j+1}+x_j} \le \frac{G^2(a,b)}{L(a,b)} \le \frac{ab}{2(b-a)} \sum_{j=0}^{n-1} \frac{x_{j+1}^2-x_j^2}{x_{j+1}x_j} \le A(a,b).$$

In particular, we have

$$(49) H(a,b) \le 2ab\left(\frac{1}{a+3b} + \frac{1}{3a+b}\right) \le \frac{G^2(a,b)}{L(a,b)} \le \frac{H(a,b) + A(a,b)}{2} \ (\le A(a,b)).$$

Consider the function $f:(0,\infty)\to\mathbb{R}$, $f(t)=\frac{\ln t}{t}$. Observe that $g(t)=f(\frac{1}{t})=-t\ln t$, which shows that f is HA-concave on $(0,\infty)$.

If we write the inequality (11) for the *HA*-concave function $f(t) = \frac{\ln t}{t}$ on $(0, \infty)$, then we have for any division $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$ with $n \ge 1$ that

(50)

$$A(a,b) \ge \prod_{i=0}^{n-1} \left(\frac{x_{i+1} + x_i}{2}\right)^{\frac{x_{i+1} - x_i}{b-a}} \ge I(a,b) \ge \prod_{i=0}^{n-1} \left(x_i x_{i+1}\right)^{\frac{x_{i+1} - x_i}{2(b-a)}} \ge G(a,b).$$

In particular, we have

(51)
$$A\left(a,b\right) \ge \left(\frac{b+3a}{4}\right)^{\frac{1}{2(b-a)}} \left(\frac{a+3b}{4}\right)^{\frac{1}{2(b-a)}}$$
$$\ge I\left(a,b\right) \ge \sqrt{A\left(a,b\right)G\left(a,b\right)} \left(\ge G\left(a,b\right)\right).$$

The interested reader may apply the above inequalities for other HA-convex functions such as $f(t) = \frac{h(t)}{t}$, t > 0 with h any convex function on an interval $I \subset (0, \infty)$ etc. The details are omitted.

REFERENCES

- [1] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294–1308.
- [2] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, M.R. PINHEIRO, A. SOFO, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications, Inequality Theory and Applications, 2 (Chinju/Masan, 2001), 19–32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), no. 2, art. 1.
- [3] E.F. BECKENBACH, Convex functions, Bull. Amer. Math. Soc., 54 (1948), 439–460.
- [4] M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009) no. 9, 1869– 1877
- [5] W.W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20 (in German).
- [6] W.W. Breckner, G. Orbán, Continuity properties of rationally s-convex mappings with values in an ordered topological linear space, Universitatea Babeş-Bolyai, Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.
- [7] P. CERONE, S.S. DRAGOMIR, Midpoint-type rules from an inequalities point of view, Ed. G.A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York, 135–200.
- [8] P. CERONE, S.S. DRAGOMIR, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53–62.
- [9] P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, **32** (1999) no. 2, 697—712.
- [10] G. CRISTESCU, Hadamard type inequalities for convolution of h-convex functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 8 (2010), 3–11.
- [11] S.S. Dragomir, Some remarks on Hadamard's inequalities for convex functions, Extracta Math., 9 (1994) no. 2, 88–94.

- [12] S.S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3 (1999) 1, 127–135.
- [13] S.S. DRAGOMIR, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33–37.
- [14] S.S. DRAGOMIR, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477–485.
- [15] S.S. DRAGOMIR, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. & Appl., 4 (2001) 1, 33–40.
- [16] S.S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_a^b f(t) du(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, **5** (2001) 1, 35–45.
- [17] S.S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math., 3 (2002) 5, art. 68.
- [18] S.S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math., 3 (2002) no. 2, Article 31, 8 pp.
- [19] S.S. DRAGOMIR, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math., 3 (2002) 2, article 31.
- [20] S.S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math., 3 (2002) 3, Article 35.
- [21] S.S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16 (2003) 2, 373–382.
- [22] S.S. DRAGOMIR, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
- [23] S.S. DRAGOMIR, Some new inequalities of Hermite-Hadamard type for GA-convex functions, Preprint RGMIA Res. Rep. Coll., 18 (2015), Art. 30. [http://rgmia.org/papers/v18/v18a30.pdf].
- [24] S.S. DRAGOMIR, Some new inequalities of Hermite-Hadamard type for GA-convex functions, Preprint RGMIA Res. Rep. Coll., 18 (2015), Art. 33. [http://rgmia.org/papers/v18/v18a33.pdf].
- [25] S.S. DRAGOMIR, Inequalities of Hermite-Hadamard type for HA-convex functions, Preprint RGMIA Res. Rep. Coll., 18 (2015), art. 38. [http://rgmia.org/papers/v18/v18a38.pdf].
- [26] S.S. Dragomir, P. Cerone, J. Roumeliotis, S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie, **42(90)** (1999) 4, 301–314.
- [27] S.S. DRAGOMIR, S. FITZPATRICK, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., 32 (1999) 4, 687–696.
- [28] S.S. Dragomir, S. Fitzpatrick, *The Jensen inequality for s-Breckner convex functions in linear spaces*, Demonstratio Math., **33** (2000) no. 1, 43–49.
- [29] S.S. Dragomir, B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin, Indian J. Math., 39 (1997) no. 1, 1–9.
- [30] S.S. DRAGOMIR, C.E.M. PEARCE, On Jensen's inequality for a class of functions of Godunova and Levin, Period. Math. Hungar., 33 (1996) no. 2, 93–100.
- [31] S.S. Dragomir, C.E.M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., **57** (1998), 377–385.
- [32] S.S. DRAGOMIR, C.E.M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000 [Online http://rgmia.org/monographs/hermite_hadamard.html].

- [33] S.S. DRAGOMIR, J. PEČARIĆ, L. PERSSON, Some inequalities of Hadamard type, Socchow J. Math., 21 (1995) no. 3, 335–341.
- [34] S.S. DRAGOMIR, TH.M. RASSIAS (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
- [35] S.S. Dragomir, S. Wang, A new inequality of Ostrowski's type in L₁-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., **28** (1997), 239–244.
- [36] S.S. DRAGOMIR, S. WANG, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105−109.

 ☐
- [37] S.S. DRAGOMIR, S. WANG, A new inequality of Ostrowski's type in L_p-norm and applications to some special means and to some numerical quadrature rules, Indian J. Math., 40 (1998) no. 3, 245–304.
- [38] A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Ineq., 4 (2010) no. 3, 365–369. □
- [39] E.K. GODUNOVA, V.I. LEVIN, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numerical mathematics and mathematical physics (Russian), 138–142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985 (in Russian).
- [40] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aeq. Math., 48 (1994) no. 1, 100–111.
- [41] I. IŞCAN, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat., 43 (2014) 6, 935–942.
- [42] E. KIKIANTY, S.S. DRAGOMIR, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl., 13 (2010) no. 1, 1–32.
- [43] U.S. KIRMACI, M. KLARIČIĆ BAKULA, M.E. ÖZDEMIR, J. PEČARIĆ, *Hadamard-type inequalities for s-convex functions*, Appl. Math. Comput., **193** (2007) no. 1, 26–35.
- [44] M.A. LATIF, On some inequalities for h-convex functions, Int. J. Math. Anal. (Ruse), 4 (2010) no. 29–32, 1473–1482.
- [45] D.S. MITRINOVIĆ, I.B. LACKOVIĆ, Hermite and convexity, Aeq. Math., 28 (1985), 229–232. □
- [46] D.S. MITRINOVIĆ, J.E. PEČARIĆ, Note on a class of functions of Godunova and Levin, C.R. Math. Rep. Acad. Sci. Canada, 12 (1990) no. 1, 33–36.
- [47] M.A. NOOR, K.I. NOOR, M.U. AWAN, Some inequalities for geometricallyarithmetically h-convex functions, Creat. Math. Inform., 23 (2014) no. 1, 91–98.
- [48] C.E.M. PEARCE, A.M. RUBINOV, P-functions, quasi-convex functions, and Hadamard-type inequalities, J. Math. Anal. Appl., 240 (1999) no. 1, 92–104.
- [49] J.E. PEČARIĆ, S.S. DRAGOMIR, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263–268, Preprint, 89-6, Univ. Babeş-Bolyai, Cluj-Napoca, 1989.
- [50] J. PEČARIĆ, S.S. DRAGOMIR, A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat. (Sarajevo), 7 (1991), 103–107.
- [51] M. RADULESCU, S. RADULESCU, P. ALEXANDRESCU, On the Godunova-Levin-Schur class of functions, Math. Inequal. Appl., 12 (2009) no. 4, 853–862.
- [52] M.Z. SARIKAYA, A. SAGLAM, H. YILDIRIM, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008) no. 3, 335–341.
- [53] E. Set, M.E. Özdemir, M.Z. Sarikaya, New inequalities of Ostrowski's type for sconvex functions in the second sense with applications, Facta Univ. Ser. Math. Inform., 27 (2012) no. 1, 67–82.

- [54] M.Z. SARIKAYA, E. SET, M.E. ÖZDEMIR, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.), 79 (2010) no. 2, 265–272.
- [55] M. Tung, Ostrowski-type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 2013, 2013:326.
- [56] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007) no. 1, 303–311.
- [57] X.-M. ZHANG, Y.-M. CHU, X.-H. ZHANG, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Ineq. Appl., 2010, Article ID 507560, 11 pp. 🖸

Received by the editors: April 11, 2017. Accepted: September 11, 2017. Published online: August 6, 2018.