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Abstract. We present a semi-local convergence analysis for a class of iterative
methods under generalized conditions. Some applications are suggested includ-
ing Banach space valued functions of fractional calculus, where all integrals are
of Bochner-type.

MSC 2010. 65G99, 65H10, 26A33, 46B25, 47J25, 47J05.
Keywords. iterative method, Banach space, semi-local convergence, fractional
calculus, Bochner-type integral.

1. INTRODUCTION

Let Bj, By stand for Banach space and let € stand for an open subset of
Bi. Let also U (z,p) := {u € By : ||lu—z| < p} and let U (2, p) stand for the
closure of U (z, p).

Many problems in Computational Sciences, Engineering, Mathematical Che-
mistry, Mathematical Physics, Mathematical Economics and other disciplines
can be brought in a form like

(1.1) F(z)=0

using Mathematical Modeling [I[-[I7], where F' : Q@ — Bs is a continuous

operator. The solution z* of equation is sought in closed form, but this is

attainable only in special cases. That explains why most solution methods for

such equations are usually iterative. There is a plethora of iterative methods

for solving equation . We can divide these methods in two categories.
Ezplicit Methods [6], [7], [11], [15], [16]: Newton’s method

(1.2) Tng1 = & — F' (2) " F () .
Secant method:
(1~3) Tn+l = Tp — [-fnfl,l‘n; F]_l F (xn) )
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where [, -; F'] denotes a divided difference of order one on Q x Q [7], [15], [16].
Newton-like method:

(1.4) Tptl = Tp — E;lF (zn),

where E,, = E(F) (z,) and E : Q — L (B, B2) the space of bounded linear
operators from Bj into Bs. Other explicit methods can be found in [7], [I1],
[15], [16] and the references there in.

Implicit Methods [6], [9], [11], [16]:

(1.5) F(xn) + Ap (Tp41 — ) =0

(1.6) Tl = Ty — A;lF (zn),

where A, = A (zpt1,2n) = A(F) (Tpt1,2n) and A: Q x Q — L(By, Ba) .

There is a plethora on local as well as semi-local convergence results for
explicit methods [I]-[8], [10]-]L6]. However, the research on the convergence
of implicit methods has received little attention. Authors, usually consider the
fixed point problem

(1.7) P, (z) ==z,

where

(1.8) P.(x)=x+F(2)+ A(z,2) (z — 2)
(1.9) P.(z)=z—A(x,2) ' F(z2)

for methods and , respectivelly, where z € € is given. If P is a
contraction operator mapping a closed set into itself, then according to the
contraction mapping principle [I1], [I5], [16], P, has a fixed point x} which
can be found using the method of succesive substitutions or Picard’s method
[16] defined for each fixed n by

(110) yk+1,n = Pin (yk,n> ) Yon = Tn, Tp41 = lim yk,n-
k——+o0

Let us also consider the analogous explicit methods

(1.11) F(z,)+ A(zn,zn) (Tps1 —x,) =0
(1.12) Tnit = Tn — A (Tn, ) " F (23)
(1.13) F(2n) + A(Zn, Tn1) (Tny1 — Tn) =0
and

(1.14) Tng1 = T — A(Tn, Tp_1) " F (23) .

In the present paper in Section 2, we present the semi-local convergence of

method and method (1.6]). Section 3 contains the semi-local convergence
of method (1.11]), method ((1.12), method (1.13) and method ((1.14). Some

applications to Abstract Fractional Calculus are suggested in Section 4 on a
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certain Banach space valued functions, where all the integrals are of Bochner-
type [8].
2. SEMI-LOCAL CONVERGENCE FOR IMPLICIT METHODS
We present the semi-local convergence analysis of method (1.6)) using con-
ditions (.5):
(s1) F :§Q C By — By is continuous and A (z,y) € L (B, Ba) for each
(x,y) € @ x Q.

(s2) There exist § > 0 and Qo C By such that A (z,y)"" € £ (B, By) for
each (z,y) € Qy x Qp and

1A (@, y) < 57"
Set 7 = QN Q.

(s3) There exists a continuous and nondecreasing function 1 : [0, +-00)3 —
[0, +00) such that for each x,y €

[F (z) = F(y) — A(z,y) (z —y)|| <
< By (lz =yl [lz = ol , ly — zoll) [lz =yl -
(s4) For each z € Qg there exists y € Qg such that
y=z—A(y,z)" F(2).
(s5) For zp € Qo and z; € Qg satisfying (s4) there exists n > 0 such that
HA (z1,20) ' F (mo)H <.
(s¢) Define ¢ (t) := 1 (n,t,t) for each t € [0, +00). Equation

t(1=q(t)—n=0
has positive solutions. Denote by s the smallest such solution.

(s7) U (zo,s) C §2, where

s= 12 and g =1 (n,5.5).

Next, we present the semi-local convergence analysis for method ((1.6)) using
the conditions (5) and the preceding notation.

THEOREM 2.1. Assume that the conditions (S) hold. Then, sequence {xy}
generated by method starting at o € Q is well defined in U (xg, s), re-
mains in U (xg,s) for each n = 0,1,2,... and converges to a solution x* €
U (0, 8) of equation F (z) = 0. Moreover, suppose that there exists a contin-
uous and nondecreasing function ¥y : [0, 4+00)* — [0, +00) such that for each
x,y,z €

[F(z) = F(y) — A(z,y) (z —y)|| <
< BY1(lz =yl lz — ol , [y — zoll , |2 — woll) 2 — vl

and g1 = Y1 (n,s,8,8) < 1. B
Then, x* is the unique solution of equation F (z) =0 in U (zo,s) .
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Proof. By the definition of s and (s5), we have x1 € U (z¢,s). The proof

is based on mathematical induction on k. Suppose that ||z, — zx_1]| < ¢8 'n

and ||z — x| < s.
We get by (1.6), (s2)—(s5) in turn that

ka1 =zl = [| AL F () |
= |4 (F (x) = F (zp-1) — Ap—1 (x — z3-1)) ||
< ANF (zk) = F (zp-1) — Ap—1 (z — 21|
< BB (lok — zr—a |l ok—1 — zoll, llye — zoll) [l — x|
< (,s,8) |z — zp-1ll = qo [|[wk — zp-1]| <
(2.1) < qf [lz1 — zoll < gin
and

lzre1 — woll < ll2p1 — oxll + -0+ 21 — 20|
k+1

k 1-gq
Sqont o tn=%n < T =s.
The induction is completed. Moreover, we have by (12.1]) that for m = 0,1,2, ...

1_ m
|25 tm — 2]l < T-2-gfn.

It follows from the preceding inequation that sequence {zy} is complete in
a Banach space By and as such it converges to some z* € U (zo,s) (since
U (x0,s) is a closed ball). By letting ¥ — +oo in (2.1) we get F (z*) = 0.
To show the uniqueness part, let z** € U (zg,s) be a solution of equation
F (z) = 0. By using (1.6) and the hypothesis on 1;, we obtain in turn that

[ = 2ppall =

= ||o** — zp, + ANF (vg) — A PF (27 ||

< [JAGHIF () = F (xx) — Ag (@™ — )|

< BB (o™ = well, lze—1 = woll, lzw — oll, l2™ — woll) ™ — all

< qi |2 =@l < @ @ = ol
so lim zp = ™. We have shown that lim x; = z*, so z* = z**. ]
k——+o0 k——+o0

REMARK 2.2. (1) The equation in (sg) is used to determine the smallness
of n. It can be replaced by a stronger condition as follows. Choose p € (0, 1).
Denote by sg the smallest positive solution of equation ¢ (¢) = p. Notice that
if function ¢ is strictly increasing, we can set sg = ¢~ ' (u). Then, we can
suppose instead of (sg) :

(s6) n<(1—n)so

which is a stronger condition than (sg).

However, we wanted to leave the equation in (sg) as uncluttered and as
weak as possible.
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(2) Condition (s2) can become part of condition (s3) by considering
(s3) There exists a continuous and nondecreasing function ¢ : [0, +00)? —
[0, +00) such that for each x,y €

JA (z,9) " [F (2) = F (y) — A(z,y) ()] || <
<@z =yl llz—zoll, ly — zoll) llz — yll -
Notice that
@ (u1,u2,uz) < ¥ (u1,uz, us3)
for each u; > 0, us > 0 and ug > 0. Similarly, a function ¢ can replace v for
the uniqueness of the solution part. These replacements are of Mysovskii-type

[6], [I1], [I5] and influence the weaking of the convergence criterion in (sg),
error bounds and the precision of s.

(3) Suppose that there exist 3> 0, 81 > 0 and L € L (B1, By) with L~! €
L (Bsg, By) such that

L=t < 87
[A(z,y) = L] < A
and
By =715 <L

Then, it follows from the Banach lemma on invertible operators [I1], and
ILTHA (2,y) = LI < 7181 = B2 < 1

that A (z,y)"" € L (By, By). Let 8 = % Then, under these replacements,
condition (sg) is implied, therefore it can be dropped from the conditions (.5).

(4) Clearly method converges under the conditions (), since
implies .

(5) We wanted to leave condition (ss4) as uncluttered as possible, since
in practice equations (or ) may be solvable in a way avoiding the
already mentioned conditions of the contraction mapping principle. However,
in what follows we examine the solvability of method under a stronger
version of the contraction mapping principle using the conditions (V) :

(v1) = (s1)-

(v2) There exist functions w; : [0,+00)* — [0,400), wy : [0,+00)* —
[0, +00) continuous and nondecreasing such that for each x,y, z €

I+ Az, 2) = Ay, 2)[| < wi(llz =yl llz—=zoll, ly — zoll, [z = zol)
[A(z,2) = Ay, 2)[| < w2 (= = yll, [lz = 2ol Iy — zoll , |z — zoll) [z — yl
and
wi (0,0,0,0) = w2 (0,0,0,0) = 0.
Set

ht,t,t,t) =

wy (2t,1,8,t) +ws (2,8, 8,0) T+ [[zol]), 2 # 2o
wy (2t,t,t,0) + wa (2t,t,¢,0) ||zo]| , z = xo.
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(v3) There exists 7 > 0 satisfying
h(t,t,t,t) <1
and
h(t,t,0,t)t+ ||F (zo)| <t
(va) U (z0,7) C D. O
THEOREM 2.3. Suppose that the conditions (V') are satisfied. Then, equa-

tion (1.5 is uniquely solvable for each n = 0,1,2,.... Moreover, if A;' €
L (Bg, By), the equation (1.6|) is also uniquely solvable for each n =0,1,2, ...

Proof. The result is an application of the contraction mapping principle.
Let x,y,z € U (x9,7). By the definition of operator P,, (v2) and (v3), we get
in turn that

1P (z) = P: (y)ll =
=[(I+A(z,2) = Ay, 2)) (x —y) = (A(2,2) = A(y, 2)) 2]
ST+ Az, 2) = Ay, 2 lz —yll + | A (2, 2) = Ay, 2) || |2

< [wi(le = yll, = = woll, Iy = woll, 12 — zoll)+

+w2(llz =yl llz = 2ol ly = 2ol |z — zoll) (Ilz — 2ol + onH)} |z —yll
<h(r777) |l =yl
and
1P: (z) = @ol| < || P: (x) — Pz (wo)| + | P: (z0) — wo|
< h(llz = moll, |z = zoll , 0, [z = @oll) l — @ol| + || F" (o)
< h(7,7,0,7) 7 + ||F (z0) || < 7.
O

REMARK 2.4. Section 2 and Section 3 have an interest independent of Sec-
tion 4. It is worth noticing that the results especially of Theorem [2.1] can
apply in Abstract Fractional Calculus as illustrated in Section 4. By special-
izing function 1, we can apply the results of say Theorem in the examples

c1 uzf

suggested in Section 4. In particular for (4.1)), we choose ¥ (u1, uz,uz) = S

for u; > 0, ug > 0, ug > 0 and ¢y, p are given in Section 4. Similar choices for
the other examples of Section 4. It is also worth noticing that estimate (4.2)
derived in Section 4 is of independent interest but not needed in Theorem

21l O
3. SEMI-LOCAL CONVERGENCE FOR EXPLICIT METHODS

A specialization of Theorem [2.I] can be utilized to study the semi-local
convergence of the explicit methods given in the introduction of this study.
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In particular, for the study of method (1.12) (and consequently of method
1. 11), we use the conditions (5’) :
s ) F : Q C By — By is continuous and A (z,z) € L (Bj,Bg) for each

T

/\m/\

52) There exist > 0 and Qo C B; such that A (z,2)"" € £ (By, By) for
each = € )y and
1A (2, 2)7 | < 57

Set Q1 = QN Q.

(s5) There exist continuous and nondecreasing functions g : [0, +00)?
[0, +00), s : [0, +00)3 — [0, +00) with 1 (0,0,0) = 12 (0,0,0) = 0 such that
for each z,y €

£ (z) = F(y) — A(y,y) (z —y)[| <
< Bo (llz =yl , lz = zoll , ly — zoll) lz — ¥l

and

1A (2, y) = Ay, y)|| < B (lz =yl [l = xoll, ly — woll) -

Set 1 = o + Yo.
(s)) There exist 2o € Qo and 7 > 0 such that A (zg,z0) " € L (Ba, By)
and

|A (20, 20) " F (w0) || < 1.

(s5) = (s6)

(s5) = (s7).

Next, we present the following semi-local convergence analysis of method
(1.12) using the (S’) conditions and the preceding notation.

PROPOSITION 3.1. Suppose that the conditions (S") are satisfied. Then,
sequence {x,} generated by method starting at xg € Q is well defined
in U (xg,s), remains in U (xg,s) for each n = 0,1,2,... and converges to a
unique solution z* € U (o, s) of equation F (z) = 0.

Proof. We follow the proof of Theorem but use instead the analogous
estimate

|1 F (zi)|| = 1 F (zx) = F (x-1) — A (-1, 25-1) (2 — 28-1) |
< |EF (zx) = F (z5-1) — A (zp, 25-1) (@8 — p-1) |
+ (A (@g, 2p—1) — A (zp—1, 26-1)) (T — Tp—1) |
< [Wo (lzx — zp—1ll s lzk—1 — 2ol , 2 — ol])
+ Y2 (llzk — 2p—1ll s lzk—1 — zoll s |z — 2ol)] lzk — 21|

= (|ox — zp—1ll, lze—1 — 2ol ; |2 — 2ol|) |2 — TR—1] -
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The rest of the proof is identical to the one in Theorem [2.IJuntil the uniqueness
part for which we have the corresponding estimate

27 = | = (|27 =+ ATF (ax) = AF (27 |
< [JASHIF () = F (xx) — Ag (™ — )|

< 87180 (2™ — al, lzn—1 — ol , lex — oll)

k+1 Hl‘**

< qlla™ -kl < q — ol -

0

REMARK 3.2. Comments similar to the ones given in Section 2 can follows

but for method (|1.13)) and method (|1.14)) instead of method ((1.5)) and method
(1.6)), respectively. O

4. APPLICATIONS TO FRACTIONAL CALCULUS

Here we deal with Banach space (X, ||-||) valued functions f of real domain
[a,b]. All integrals here are of Bochner-type, see [14]. The derivatives of f are
defined similarly to numerical ones, see [17, pp. 83-86 and p. 93].

In this section we apply the earlier numerical methods to X-valued frac-
tional calculus for solving f (x) = 0.

Here we would like to establish for [a,b] C R, a < b, f € CP([a,b],X),
p € N, that

z—y|Pt!
(4.1) If W) = f (@) — Aw,y) (y — )| < o M
Y z,y € [a,b], where ¢; > 0, and
(4.2) 1A (z,2) = A(y,)| < 2|z —

with ¢a > 0, V 2,y € [a, b].

Above A stands for a X-valued differential operator to be defined and pre-
sented per case in the next, it will be denoted as A4 (f), A— (f) in the X-valued
fractional cases, and Ag (f) in the X-valued ordinary case.

We examine the following cases:

I) Here see [4], [5].

Let z,y € [a,b] such that x > y, v > 0, v ¢ N, such that p = [v], || the
integral part, a =v —p (0 < a < 1).

Let f € C? ([a,b],X) and define

48 D@ =y [ @0 f@d y<e<h

the X -valued left generalized Riemann-Liouville fractional integral.

Here I' stands for the gamma function.

Clearly here it holds (JYf) (y) = 0. We define (JYf) (x) =0 for z < y. By
[4] (JYf) (z) is a continuous function in z, for a fixed y.
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We define the subspace Cy, ([a,b], X) of C? ([a,b], X) :
(44)  Cyy (la,b], X) = {f € C7([a, 6], X) : S, fP € CT (ly,b], X) } .

So let f € Cy, ([a,b],X), we define the X-valued generalized v-fractional
derivative of f over [y,b] as

(4.5) Dyf = (H_.f®),
that is,
(4.6) (031) @) = e s [ =075 W

which exists for f € Cy, ([a,b], X), fora <y <z <b.

Here we consider f € C? ([a,b],X) such that f € C}, ([a,b], X), for every
y € [a,b], which means also that f € CY, ([a,b],X), for every = € [a,b] (i.e.
exchange roles of x and y), we write that as f € C¥ ([a,b] , X).

That is

v A ~a £(p)
(4.7) (D7) W) = ra=ayay | (W —0) " f7 (@) dt
exists for f € C7, ([a,b],X), fora <x <y <b.
We mention the following left generalized X-valued fractional Taylor for-

mula (f € Cy, ([a,b],X), v > 1), see [3].
It holds

(4.8) f () E:f““y k*-pixéxtr—tY“l(DZf)G)du

all z,y € [a,b] with x > y.
Similarly for f € C%_ ([a,b], X) we have

(19) £y Z P =2+ oy [ =0 D2 ) a

all z,y € [a,b] with y > x.
So here we work with f € C? ([a,b],X), such that f € C¥ ([a,b],X).
We define the X-valued left linear fractional operator

(4.10)
kzl 2w -yt + (Dyf) (@) S 2>,
A z, = P=1 (k) . _ y _gyvl
(A4 () (2, y) kﬂfﬁ)@—xf1+U%ﬂ(ﬂﬂﬁn’y>%
(@), 2=y
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Notice that (see [12} p. 3])

(4.11) [[(A4 (F)) (z,2) — (A4 () )l = [ fP7D (@) — £V () |
<||fP||_ |z —yl, ¥ z,y € [ab],

so that condition is fulfilled.

Next we will prove condition (4.1). It is trivially true if x = y. So we
examine the case of x # y.

We distinguish the subcases:

1) > y : We observe that

1f () = f (@) = Ay (f) (2,9) (y — )| =

— Hf(l')—f(y) _AJr(f)(l‘,y)(:L‘—y)H (bY)
(4.12)

p—l z
= Z % (z—y)* + F(ly) /y (x—t)"! (Dgf) (t) dt—

Z 100 (& ) — (Dy1) () &2

_— /j (e~ 0" (Dyf) (1) dt — s /yx (e~ 0" (Dyf) (@) dtH _
by [1, p. 426, Th. 11.43],

’/ya: (@t ((Dyf) (1) = (Dyf) (@) dt”

i | @0 (25r) 0 = (y5) () e <

(4.13)

(by [8])

- 1
- I()

(we assume that

(4.14) |[(Dyr) () = (Dyf) @) <2 @) e =2,
for all z,y,t € [a,b] with x >t > y, with A\; (y) > 0 and sup A1 (y) =: A1 <
y€[a,b]

oo,alsoitis0<p+1—y<1)

(4.15) < AT (x—t)" (@ =tV dt

/ @ — P dt = A @’
y

(V) (p+1)
We have proved condition

(4.16) ||f(y)—f(:v)—A+(f)(l‘,y)(y—:ﬂ)||SFA;) Lot ™ for x>y,
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2) x < y: We observe that

1 () = f (2) — (Ar () (2, ) (y — )| @ B BID)

p—1

@11 =X L -0+ oy [ -0 (D) (@ de-
k=1 z
p—1 f(k)(m) k ( _m)y
- Y S y-)" - (D) () #55
k=1
o [ w07 DL 0t~ (D) () 2
@) =| ok [[w-o @i war- oy [ -0 0L W et

[ =07 (@i @ - 02 @) dtH
<y [ =07 DL ()~ (D2) ) e <

(We assume here that

(4.19) I(DES) (#) = (DLF) W) < Ax () [¢ =y H,
for all z,y,t € [a,b] with y > ¢ >z, XAy () > 0 and sup A2 (x) =: A2 < oo)
z€la,b]
y
(4.20) < F*(g)/ (v — 17 (g — P i

Yy p+1
A A —x
= r@)/z (y— &) dt = 15 G
We have proved that

(4.21) 1 () = (2) = (Ax () (2.9) (y — 2)]| < 2 U,

for all x,y € [a,b] such that y > x.
Call A := max (A1, \2) .
Conclusion. We have proved condition , in detail that
(4.22)
‘p+1

1f () = f (&) = (A () (2,) (v — @) < 7o 28— ¥ 2,y € [a,8].
IT) Here see [3] and [5].
Let x,y € [a,b] such that z <y, v > 0, v ¢ N, such that p=[v], a =v —p
0<a<l).
Let f € C?([a,b],X) and define

(4.23) (72.5) (@) = 5 /Zy (z—2)" ' f(2)dz, a<z<y,
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the X -valued right generalized Riemann-Liouville fractional integral.
Define the subspace of functions

(424)  Cy_(la,b], X) :={f € C"([a, ], X) : Jy="f®) € C" ([a,9], X) } .

y—

Define the X -valued right generalized v-fractional derivative of f over [a,y] as

(4.25) Dy_f = (-1 (i@
Notice that
Y
(4.26) T (@) = 1t / (z— )7 f® (2) dz,

exists for f € Cy_ ([a,b], X), and

(4.27) (D f) (@) = G2 4 / V(s — ) S0 () d,
i.e.,
(4.28) (Dy_f) (@) = % 4 /: (2 — 2)P™ F®) (2) dz.

Here we consider f € C? ([a,b], X) such that f € C;_ ([a,b], X), for every
y € [a,b], which means also that f € C¥_ ([a,b],X), for every = € [a,b] (i.e.
exchange roles of z and y), we write that as f € C¥ ([a,b], X).

That is,

(4.29) (DL f) () = 2 & / Sy O (2) dz

exists for f € C¥_ ([a,b],X), fora <y <z <b.
We mention the following X-valued right generalized fractional Taylor for-
mula (f € C;_ ([a,b], X), v > 1), see [3].

It holds
= £ () ko1 (Y v—1
(@30) @)~ F ) = 3 P50 @y [ -2 (D) () d
k=1 z

all z,y € [a,b] with x < y.
Similarly for f € C¥%_ ([a,b],X) we have

p—1

@81 f) @)= X - ol [ -0 (D) () e

k=1

all z,y € [a,b] with x > y.
So here we work with f € C? ([a,b], X), such that f € C” ([a,b],X).
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We define the X-valued right linear fractional operator
(4.32)

v—1

P 0@ - y -
d k!( ) (y — x)k t- (Dx—f) (y) (p(ﬁ’il) y T>Y,

k=1
A y) =4 2=l - v o)

f(pil) (I‘) y L =Y.

Condition (4.2)) is fulfilled, the same as in (4.11)), now for A_ (f) (z,x).
We would like to prove that

(4.33) If (@) = f (@) = (A () (@,9) (= = y)l| < e EH—,

for any x,y € [a, b], where ¢ > 0.
When x = y the last condition is trivial. We assume x # y.
We distinguish the subcases:
1) > y : We observe that

(4.34) |[(f (=) = f (v)) = (A~ () (z,9) (z —y)|| =
= I(f (v) = f(2)) = (A~ () (z,9) (y = 2)|

p—1
(ot [ o]

p—1 k v—1
(435) - (Z B8 (y = ) = (D2 f) () S ) (y— )

v—1

o | = (D) @) e+ (D) ) Sy - )

(z=y)" " (DY_f) () d= = (DY_f) () 25

xT

Yy

[0 () ) - (D) ) iz
<oy [ =0 DL ) () - (02 1) )] = <

(we assume that
(4.37) < |(DL_f) (z) = (DL_f) W) < M|z =yt

A1 >0, for all z, z,y € [a,b] with z > z > y)

Y

(=) DN @ dz— [ =) (DL ) Wz
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xz _ . \p+1 p+1
=1 /y (= = y) dz = gty 30— = m O,
where p; := F/Ellf) > 0.
We have proved, when = > y, that

(439)  |f @) = f @) — (A= (D) (@,y) (2 — p)| < pr @2
2) y > x : We observe that
If (@ A () (@) (2 — p)ll =

l| Zf(k +F(y)/ Z—LL“)V 1<D1/ f)( )dZ)

(4.40)
p—! k v—1
_ <Z f(]j!(y) (.I' _ y)k—l _ (DZ_f) (m) (%?jil) > (.I' — y)
k=1
- I@mnéy(z—ﬁwu—l(zgf)(z)dz-(D;f)(x)g;ig
(4.41)
b [ o Dy f) @z - oy [T =27 (D) @)
(4.42

/x z—1) D;’_f) (z) — (DZ_f) (:17)) dz
< m/ N (0ps) @) - (0 ) @]

(we assume that

(4.43) |(Dy_1) () = (Dy_f) (= H<Aﬂz—mm4V
Ao >0, for all y, z, z € [a, D] 1thy>z>:v)
(4.44) / (z —x)"” — )Pz =
A —x p+1
(1) :r(i)/x (z =)’ dz = J5 .
We have proved, for y > x, that
_g)ptl
(4.45) I/ (@) = f (9) = (A= () (@,9) (@ = )| < p2 52—,
p

where po := % > 0.
Set A := max (A1, A2) and p := ) > 0.
Conclusion. We have proved (4.1)) that
|lz—y[PF

(4.46) 1f (@) = f(y) = (A= (/) (z,9) (z = y)l| < p=57—




15 Semi-local convergence of iterative methods 17

for any x,y € [a,b].

III) Let again f € CP?([a,b],X), p €N, x,y € [a,b].

By vector X-valued Taylor’s formula we have, see [3], [4], [17],
(4.47)

f@=f ) =3 552 @ -9+ ol / S0 (500 - £ )

Vax,y€la,bl.
We define the X-valued function

NN GO IR s B
(4.48) (Ao (f)) (z,y) == k; K ( Y) , TFY,
fWJW@,x:y

Then it holds, by [12, p. 3],
(4.49) (Ao (£)) (z,2) = (Ao () (w, )| = 1LFP D () = fP~D () |
<P oo |z =yl

Y z,y € [a,b], so that condition (4.2)) is fulfilled.
Next we observe that

1f (z) — f(y) — (Ao (f)) (z,9) (z — y)|| =
Zp: % (z — y)k + (p,11)1 /x (z — t)pil (f(p) (t) — f(p) (Z/)) dt
k=1 Yy

(4.50) =

p
(k)
> ey’

k=1
@) =gy | [ =0 (1 0 -1 w) | = (o).
Here we assume that
(4.52) |1r? @) = 1P @) <elt—yl, ¥tyelab], e>o.
1) Subcase of x >y : We have that (by [8])

(€) < (p_ll)! /x (z — )P Hf(p) (t) — f (y)H dt

Yy
(453) é (pfl)! / (,CL' — t)p_l (t _ y)2—1 dt
Yy
I'(p)L(2 1 Y X
_ C(‘r_y)p+1
- (t+D)!
Hence
R !
(4.54) (6 <l sy
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2) Subcase of y > x.
We have that

Yy
(4.55) © =gm||| =" (1P ) - 1Y) dtH
< ot [ =2 O @) - 1P ()] e
<% (t—z)Pt (y —t)dt
(4.56) = -z tat
1 c —1)! 1
= G rW)) (v - x>p+ = Gl G (v — @)
_ (==
T
That is
_ )Pt
(4.57) (&) <, y>a.
Therefore it holds
(4.58) (&) < cll‘( yl’” ), , all 7,y € [a,b] such that = # y.
We have found that
p—qy|PH1
(4.59) If (@) = £ () = (Ao () (&,9) (& — )| < ¥, e >0,

for all x # y.
When z = y inequality (4.59)) holds trivially, so (4.1) is true for any z,y €
[a, b] .
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