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ON CONVERGENCE OF CHLODOVSKY TYPE DURRMEYER
POLYNOMIALS IN VARIATION SEMINORM
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Abstract. This paper deals with the variation detracting property and rate of
approximation of the Chlodovsky type Durrmeyer polynomials in the space of
functions of bounded variation with respect to the variation seminorm.
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1. INTRODUCTION

Let Xj,.[0,00) be the class of all complex-valued functions locally bounded
on [0,00). For z € Xj,.[0,00), the Chlodovsky polynomials C), f are defined
as:

O CH@=3rE) 0 () (1-2)"" 0o <b)
k=0

where n € N and (b,,) is an increasing sequence of positive numbers satisfying
lim b, = co and lim b —
n—00 n—oo M

These polynomials were introduced by I. Chlodovsky [I] in 1937 in gener-
alization of the Bernstein polynomials, the case b, = 1, n € N, which ap-
proximate the function f on the interval [0,1]. Some other generalizations
of the Bernstein polynomials defined on unbounded sets can be found in [2],
[3]. Works on Chlodovsky polynomials are fewer, since they are defined on an
unbounded interval [0, co).

This generalizes Chlodovsky polynomials by incorporating Durrmeyer op-
erators [4], hence the name Chlodovsky-Durrmeyer operators
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2 Chlodovsky type Durrmeyer polynomials 73

where (by,) is a positive increasing sequence with the properties nlLHgO b, = oo,
nh_}rgo%” =0and pug(z) = (})2* (1 — )" * is the Bernstein basis. We may
also mention that some articles related to Chlodovsky-Durrmeyer operators
and their different generalizations are given in [5]-[6].

The main motivation for this paper is to study the variation detracting prop-
erty and rate of approximation of the Chlodovsky type Durrmeyer polynomials
in the space of functions of bounded variation with respect to the variation
seminorm. The first research devoted to the variation detracting property and
the convergence in variation of a sequence of linear positive operators was due
to Lorentz [7]. Later in [§], authors have introduced, developed in details and
studied the deep interconnections between variation detracting property and
the convergence in variation for Bernstein-type polynomials and singular con-
volution integrals. After this fundamental study, the convergence in variation
seminorm has become a new research field in the theory of approximation. For
further reading on different operators, we refer to readers to [9]—[15].

2. NOTATION AND AUXILIARY RESULTS

For the notation; let I C R be a bounded or unbounded interval. We denote
by Vi1 [f] the total Jordan variation of the function f : I — R. We deal with
the class BV (I) of all the functions of bounded variation on I C R, endowed
with norm ||.|| gy(p), where

Iy = Vinlf1+1f (@), fe BV(),

a being any fixed point belonging to the interval I. If we remove the term
|f ()], Vipy [f] turns into a seminorm, say [.[gy(;) on the same space. So we
shall say, TV (I) of all the functions of bounded variation on I C R, endowed
with seminorm

1l gy =V Lf]-

Some interesting properties of the space TV (I) are presented in [§].

In order to obtain a convergence result in the variation seminorm, it is
necessary and important to state the variation detracting property. Let L be
a linear operator acting on a given space S of real-valued functions defined
on I such that BV (I) C S. The operator L possesses the variation detracting
property if

Vin[Lf1 < Viglf] , f € BV(),

holds, i.e. positive linear operators from the space of functions of bounded
variation into itself do not increase the total variation of functions.

AC (I) stands for the space of all absolutely continuous real-valued functions
defined on I is a closed subspace of TV (I) with respect to the convergence
induced by the seminorm || f{|7y ). Moreover, if Jim V7 [gn — f] = 0 for a
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sequence (gn),>1, gn € AC (I), n € N, then also f € AC[0,1] and
~ [l - 1 0l dt = g, - .
T

where
WA= 11

So, convergence in variation of (¢g,),,~; C AC (I) to f, represents the conver-
gence of the derivatives (g/,), ~; to ' in the norm L; (1), the Banach space of
all real-valued Lebesgue integrable functions defined on I.

Let us define the sum moments as in [I1]:

(3) Tom (z) = Z [kby, — nx)™ p.k (%)
k=0
where m € Ny (the set of non-negative integers). Then there hold the following
identities (see, e.g., [11])
1
0
(4) Thm(z) =< nx (b, —x)
nx (by, — x) (by, — 2x)
nx (b, — x) (b2 + 3 (n — 2) xb, — 3 (n — 2) 2?)

Let us define for the central moments of order m € Ny,

T (@)= 3 (M )" b (2)

33333
Il
BN O

and for any fixed x € [0, 00)

n

6) [T @) < An(@)282 (8 e N, ),

where A,,(z) denotes a polynomial in z, of degree [m/2] —1, with non-negative
coefficients independent of n, and [a] denotes the integral part of a. For the
proof see Butzer-Karsli [16].

Since
feon (82) = St o (5)

we can write the following representations for the first derivative of (D, f) (z);

(6) (Dnf) (z) = % (kb, — nx) pnk /f pnk dt,
k=0

and
bn

D) Ou @) = 5 s (£) 5[ 10 s (1) = s ()]
k=0

0
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3. VARIATION DETRACTING PROPERTY OF CHLODOVSKY-DURRMEYER
OPERATORS

In this section, we prove the variation detracting properties of the Chlodov-
sky-Durrmeyer Operators.

THEOREM 1. If f € TV [0,b,], then

(8) ‘/[Ovb"] [an] S ‘/[Ovbn] [f]
and

9) HanHBV [0,bn] = HfHBV[O b
hold true.

Proof. For convenience we write the Chlodovsky-Durrmeyer operators as:

ank( )Fkn

where

= n+1 /f pnk dt

As in , differentiating ([2) and puttlng AFyn = Frpin — Frn

(an)’ ($) = ipln,k (%) Fk;,n — é i (Z)k; (%)k_l (1 B %)n—k Fk’n

= an lk;( )F]H.lnbznilpn—l,k (%) Fk,n
k=0
= bn an 1k;( ) Fk+1n Fk,n]

(10) = bnzpn lk( )AFkn

Considering the representation of (D, f), one has

bn
1Dufleviosy = Viow) [Daf) = [|(Daf) (@) do
0

IN

n—1 bn,
23 18Fal [ pose (i
k=0 0
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bn,
Since bﬁ/ Dn—1,k (%) dxr =1, we get
n O n

n—1

(11) HanHTV[o,bn} < Z ’AFkn| :
k=0

Now,

by,
AFk,n = an;1 /f(t) [pn,k—i—l (bin) — Pn.k (
0
by,
_ nn /f (t) App e () dt

0

Since Apy, ; = —nb—ﬁpgﬂ’kﬂ,

P (1) =~ - (37).
and so we get

bp

(12) ARl = |52 [ 70 [~ (&)
0
From and , we obtain
n—1 n—1 by
VoulDuf] = Y I8Feal =Y |- [ @0
k=0 k=0|
n—1| bn
= /f/ (t) Prt1,k41 (ﬁ) dt
k=0 |}
br

i
L

Ptk (55) 1 (1)) dt
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bn
= /(ﬁﬂ——) (t)| dt = /If )| dt
0
< Vo Lf]-
The desired estimate is now obvious.
Since
bn
(Duf) 0 =52 [ (1= )" 0t
0
and

1l vy = Vin [+ 1£ )],
relation @ is a result of . Indeed,

1Duflpvion) = View [Daf] +1(Dnf) (0)
bn,
< Vou A+ 52 [ (1) F @) |-
0

Since f € TV [0, b,] and

e t\"
w2 [T (1= )" r 0t =17 0] 11 (a)
where a is any fixed point of [0, b,], we get
1P fll Bvi0,6n) < 11l Bv(0,6) -
Thus, the proof of the theorem is complete. O

4. RATE OF APPROXIMATION IN 7T'V-NORM

This section deals with the rates of approximation D, g to g in the variation
seminorm.
In order to obtain a convergence result in variation seminorm, we assume

that hm bn = oo and hm n =0
THEOREM 2. Let g" € AC'[0,b,], then

Viopn] [Png — g] < %;" {V[o ba] 9]+ V[0,6] [9“]}

holds true, where § is sufficiently small positive real constant and a constant
B> 1.
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Proof. By Taylor’s formula with integral remainder term, one has

(13) g (&) =g (@) + (5by—2) g ()
Kb
T (kb —2) 0 4 /

From we obtain

(Dng)/ (x) =
n br,
:% (kby, — nx) ppk (ﬁ) /g (%bn) Dnk (é) dt
k=0 5
n by,
:%g ()Y (kby — nx) po i (%) /pn,k (z%) dt
k=0 5
by
+ bn;?l;:lzx) "(x) Z (kby, — nz) pp i (%) / (%bn _ x) Pk (é) dt
k=0 s
n bn, )
k=0 5

+ (Rng) (2) .
where
(14)
(Rng) (‘73) =

b | Ebn
- 2
— sty > =) pue () [ | [ (Bba=v) s @ dv| pus (i) .
k=0 0 T

Calculating and , we obtain
(15) (Dng) (2) = ¢’ (z) + 22522¢" (z) + (Rpg) (x) .

As in the proof of [I5], we choose § a sufficiently small positive real number,
let’s divide (R,g) (z) in to two parts as follows;

(16) (Rng) (33) = (Rn,lg) (I) + (Rn,QQ) (CC) 5
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where
(17)
(Rn19) (z) =
_ n+1 .
 2bpx(bn—x)
by | wbn
2
Z (kbn_nx)pn,k (%)/ / (%bn_’l)) /”( )d?) pnk( )dt
E—m|§§ 0 T
and
(18)
(Rn29) (z) =
_ n+1 .
 2bpz(bn—x)
by | Ebn
2
Z (kby, — nx) pp bl / / ) g" (v)dv pnk(é)dt.
a0 E

In order to estimate the integration domain of the double integral in the re-
mainder term , we divide the summation into different sums as following;

(Rn,lg) (.I') = A2,ng + A5,ng and (Rng) (.I') = Al,ng + A3,ng + A4,ng + A6,ng-

Here A; g fori=1,...,6,

Al,ng =

_ n+1 .
— 2bpa(bn—z)

> (kb —na)pug (&)

5<x—%bn§x

k
nb"

/(%bn—vf g" (v)dv pnk( )dt,

o\:g:

A2,ng =

n+1
2bnx(bn—x)

Z (kbn, — nx) pp i (%) / (%bn _ v)zg”’ () dv | pa <F) dt,
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AS,ng =
— n+1 .
 2bpx(bp—1x)
by | Ebn
Z (kbn — nx) Pk (%) / / (%bn _ ’U>2 //l( )d’U Prk ( ) dt,
6<x7%bn§x x T
A4,ng =
— n+1 .
— 2bpx(bp—1)
[ b
6<kbz<1 (kby, — nzx) pnk 0/ /(%%—v) ¢" (v) dv pnk( )dt,
A5,ng =
n+1
2bnx(bn x)
Ebn | £by,
Z (kbn, — nx) Pk (bl) / / (%bn — ) g" (v)dv| ppk (bi) dt,
0<Zby—x<6 x T
and
Apng =
_ n+1
" 2pa(by, — )
by | w00
Z (kb — nx) pp (%)/ /(%bn_v)Q " (v) dv |ppg < )dt.
6<Ep,—a<i-z k, | @

It is easy to see that, Ay ,9 + A2,9 = —Aspg and As 9 + Asng = —Aszng.
So one has

|A1ng + A2ng| = |=Aangl < [A1ng] + [A2,ng]
and
|A5.n9 + A6 ngl = [—A3ngl < [A5ngl + |Asngl -
So, we get
|(Rng) (2)] < 2(|A1ng| + [A2n9| + |A5.n9] + |A6n9l)
or

[(Bng) (2)] < 2(|=A3ngl + |- Aangl) -
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Now we only estimate A; ,g for i = 1,2,5, and 6 respectively. Firstly, let us
estimate A; ,,g as follows;

‘Al,ng| <

n+1 .
< 2bpx(bn—1)

k k
n bn n bn

Z |kby, — nx| py g (%)/ /(%bn _ v>2 " (v) dv| P (lT) dt

6<z—§bn§$

o
8

n+1 .
= 2bpx(bn—2a)

Ebn| £by
Z |kby, — nx| pk (&) / / (%bn _ 1))2 19" ()| dv| P (bi) dt
0 |

5<z—%bn§x

_ n+1 .
 2bpx(bn—x)

s,
Z (nx — kbn) pp i (%) / / (%bn _ v)2 16" (v)| dv| pu (bi) dt
0

6<x—%bn

n+1 X
2bnx(bn—2)

Z (nx—kbn)pnyk(%> 7( b, —;(; /‘g”’ |dv pnk( )dt
0

5<$—%bn

IN

n+1 .
2bnx(bp—x)

k.
Z (nx — kby) pn (%) z? / / lg" (v)| dv | pni ( ) dt
0

6<$*%bn

IA

n+1 .
2bnx(bn—1)

won b,
> (nz = kba) pa () 22 / l/ lg" (v >|dv} Pk (L) dt
0

6<x—%bn

A g Y (na— Kby) pa (&) /pn,k (&)t
0

s<z—Lb,

= Qm(lfjfx) Hg”/H Z (TLCL‘ — kb )pnk (bl)

S<z—Lb,

n

IN

IN
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Since
6<$—%bn %bn—x<—5
we get,
(19) gl < sl >0 (kby = na) pu (i) -

%bn—x<—§

Analogously, Az g can be estimated by

‘A2,ng‘ S
< Wﬁ—x)
T %b"
Z ’kbn _ nw‘pn,k (%) / / (%bn — 1))2 g//’ (U) dv Pk (é) dt
0<z—£b,<6 Ebn | T
< s a)
T %b”
S Wt nelone (i) [ | [ (500 =0) 1o @lde]pu (i) o
0<z—£b,<5 kp, | ®
< Sibe—a)”
x x
> =)o (&) [ ] [ (Bba=0) 19" @) dv] o (i) de
a—Eb, <6 k. |Eb,
< St =a)
T T
Z (TLIB — kbn)pn,k (ﬁ) / (%bn — x)2 / ’g/// (1))| dv Pn.k (ﬁ) dt
z—£b,<5 kp, Eb,,
< by ey
xT X
> (nw = kba)pag () (Eba - x)2 / / 9" ()| dv| pug (i) dt
z—Ep, <5 Eby |Eby
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n+1
< 2bnx(bp—x)

T bn
= et (&) () ] [t (2)
m—%bngz? %bn 0

an;(—l:—z) g

///|| .

Z (nz — kbp) pn.k (ﬁ) (%bn _ x)Q / Pak <é) dt
mfﬁbngé %bn

///”

llg
2n2z(by—x)

Z kb, — nm[pi{,f (ﬁ) (kbn — M)Zpi{g (%) :

k
x—;bngé

IN

In view of Holder inequality, and , we get
|A2,ng| <

1 1
< g - kb, — nx)? 2))” kb, — nz)t =)\
> 2nZz(bn—2) Z (kb — nx) Pnk (bn) Z (kb — nx) Pnk (bn>

k=0
< Vbn ///H
— n

g
which implies that
(20) 1A2,ngll < 2= g™

As to the term As g, noting and , we have

|A5,ng| <
+1
< an:(bn—ac).
Ebn Ebn
n n 2
S thbe = nalpue () [ | [ (oo 0) 9" @) do|pu (i) at
0<%bn*$§5 T T
+1
< Smtbn=a)”
Ebn Ebn

> (kb =) pug () / / (Ebu—0) 19" ()] dv| pu (i) de

%bn—xgci T T
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< Tl+1

= 2bpa(bn—2)
Eb, [ Eby
St noymna () (Stn =) [ ] [l @le] s ()
%bn—xﬁis T T
S%Z‘kb = naf’ e ()

k=0
As in the proof of A ,g, one has

[Asngl < 22 [lg"].
which yields

(21) | Asgll < 42 19"
Finally to the next term Ag g, we have
’Aﬁ,ng’ <
< Sraos o)
bn %bn
2
Z |kby, — nx| py g (bl)/ (%bn — v) " (v) dv| pai (IT) dt
5<%bn—x§1 T kp | @
n+1 X
—= 2bpx(bn—1)
by [1bn
2
Z |]€bn - nx’pn,k (i) / / (%bn - U) |gm (’U)| dv Pk (F) dt
6<%bn71§17:)3 kp |z
< ooy —a)”
by bn ]
2
Z (kbn - nl‘) pn,k (%) / (%bn - x) / }gm (U)| dv pn k (%) dt
6<%bn—x k. T

n+1 .
< 2bnz(bn—2)

bn, bn,
Z (kbn - nx) Pk (%) (bn - .1‘)2 / |:/ ’g”/ (’U)| dU] Dnk (i) dt
6<%bn71 k.
(22)
2
< g lgl - > (kb — na) pa ()

6<Eby,—x




14 Chlodovsky type Durrmeyer polynomials 85

Collecting and , we obtain

Avngl +Aongl < SEE= G| S (Bbe —na)pus ()
| Eb—a|>s
2 a2 kg, — 2
< e g S (E—a) Wl (2)
|&brz|>5
2 _ 3
(23) = Sl X (Bba—x) e ()
|£b,—a|>6
(24) < Zalg”|.
In view of , one obtains
3
(25) 1ALngll + [ Asngll < 22 |19 -

Thus, altogether with the results in @ and , we have for
3
| Rugll < 2 (M2 + Lo 4 L ) ||| <

Finally we obtain by using
| (Dnoy b g + S 119"

According to Stein’s inequality (see, e.g., [I7, Th. A10.1]) one has

///H

lg” @01y < CYIY @iy 9”00

C (19"l 2101y + 19" N 2 01))

where C > 1 is a constant. So, we have

3
(26) |(Dagy = o] < B (/)1 + 19”1
where B > 1 is a constant. This finally establishes the theorem. ]

IN
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