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APPROXIMATION OF CONTINUOUS FUNCTIONS
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Abstract. Some approximation properties of hexagonal Fourier series are in-
vestigated. The order of approximation by Nörlund means of hexagonal Fourier
series is estimated in terms of modulus of continuity.
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1. INTRODUCTION

Let C2π be the Banach space of 2π-periodic continuous functions on the
real line, equipped with the norm

‖f‖C2π
:= sup

0≤x≤2π
|f (x)| .

The modulus of continuity of a function f ∈ C2π is defined by

ω (f, δ) := sup
0<|h|≤δ

‖f − Th (f)‖C2π
, (δ > 0) ,

where Th (f) (x) := f (x+ h) . For 0 < α ≤ 1, we denote by Hα
2π the Hölder

class of functions f ∈ C2π such that ω (f, δ) � δα, where A � B means that
there exists a constant K > 0 such that A ≤ KB holds.

Approximation of functions belonging the space C2π by trigonometric poly-
nomials is one of the most important topics in approximation theory and it has
a very rich history. Especially, the order of approximation of functions in Hα

2π
classes was studied by several mathematicians. Linear summation methods of
Fourier series are mostly used tools in these studies.

Let f ∈ C2π has the Fourier series

(1) f (x) ∼
∞∑

k=−∞
f̂ke

ikx,
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with partial sums

Sn (f) (x) :=
n∑

k=−n
f̂ke

ikx, (n = 0, 1, ...) .

We denote by (σn (f)) the sequence of Fejér means of (1) , i.e.,

σn (f) (x) = 1
n+1

n∑
k=0

Sk (f) (x) .

In 1912, S.N. Bernstein obtained the following estimate for the approxima-
tion order by Fejér means.

Theorem A. [2]. Let f ∈ Hα
2π (0 < α ≤ 1) . Then the estimate

(2) ‖f − σn (f)‖C2π
�


1
nα , α < 1

logn
n , α = 1

holds for n ≥ 2.
S.B. Stechkin extended Bernstein’s result as follows.
Theorem B. [14]. Let f ∈ C2π. Then the estimate

(3) ‖f − σn (f)‖C2π
� 1

n+1

n∑
k=0

ω
(
f, 1

k+1
)

holds for every natural number n.
Let p = (pn)∞n=0 be a sequence of positive real numbers and let Pn =

n∑
k=0

pk.

Nörlund means of the series (1) with respect to the sequence p are defined by

Nn (p; f) (x) = 1
Pn

n∑
k=0

pn−kSk (f) (x) .

It is known that Nörlund summability method is regular if and only if
pn/Pn → 0 as n→∞ [8, p. 64]. It is clear that Nn (p; f) coincides with σn (f)
in the special case pn = 1 (n = 0, 1, ...).

In 1976, A.S.B. Holland, B. Sahney and J. Tzimbalario obtained a more
general result than Theorem B.

Theorem C. [9]. Let p = (pn)∞n=0 be a sequence of positive real numbers
such that npn � Pn. Then for every f ∈ C2π, the inequality

(4) ‖f −Nn (p; f)‖C2π
� 1

Pn

n∑
k=1

1
kPkω

(
f, 1

k

)
holds.

It is clear that in the case pn = 1 (n = 1, 2, ...) (4) reduces to (3). Theorem
C also extends a result of B. Sahney and D.S. Goel [13] which states that

(5) ‖f −Nn (p; f)‖C2π
� 1

Pn

n∑
k=1

Pk
k1+α
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for f ∈ Hα
2π, where (pn) is a non-increasing sequence of positive real numbers.

These theorems can be found in the survey [10]. Also, we refer to the
monographs [1], [3], [4], [16] and [18] for more information and results about
trigonometric approximation theory.

Approximation problems on cubes of the d−dimensional Euclidean space
Rd are studied by assuming that the functions are 2π-periodic in each of their
variables (see, for example [16, Sections 5.3 and 6.3] and [18, vol. II, ch. XVII]).
But, in the case of non-tensor product domain, for example for hexagonal
domains in the Euclidean plane R2, another definition of periodicity is needed.
For such domains the most useful periodicity is the periodicity with respect
to the lattices.

Let A be a non-singular d× d matrix. The discrete subgroup AZd =
{
Ak :

k ∈ Zd
}

of the Euclidean space Rd is called the lattice generated by A, and
the matrix A is called the generator matrix of this lattice. The lattice A−trZd,
where A−tr is the transpose of the inverse matrix A−1, is called the dual lattice
of AZd. A bounded set Ω ⊂ Rd is said to tile Rd with the lattice AZd if∑

α∈AZd
χΩ (x+ α) = 1

holds almost everwhere, that is, for almost every x ∈ Rd there exists exactly
one α ∈ AZd such that x + α ∈ Ω. In this case the set Ω is called a spectral
set for the lattice AZd. One suppose that the spectral set Ω contains 0 as
an interior point and tiles Rd with the lattice AZd without overlapping and
without gap, i.e., ∑

k∈Zd
χΩ (x+Ak) = 1

for all x ∈ Rd and Ω + Ak and Ω + Aj are disjoint if k 6= j. For example we
can take Ω =

[
− 1

2 ,
1
2
)d for the standard lattice Zd (the lattice generated by

the identity matrix).
Let Ω be the spectral set of the lattice AZd. L2 (Ω) becomes a Hilbert space

with respect to the inner product

〈f, g〉Ω := 1
|Ω|

∫
Ω

f (x) g (x)dx,

where |Ω| is the d−dimensional Lebesgue measure of Ω. A theorem of Fuglede
states that the set

{
e2πi〈α,x〉 : α ∈ A−trZd

}
is an orthonormal basis of the

Hilbert space L2 (Ω), where 〈α, x〉 is the usual Euclidean inner product of α
and x [5]. According to this theorem, Fourier series and approximation on
the spectral set of the lattice AZd can be studied by using the exponentials
e2πi〈α,x〉 (α ∈ A−trZd).

A function f is said to be periodic with respect to the lattice AZd if

f (x+Ak) = f (x)
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for all k ∈ Zd.
If we consider the standard lattice Zd and its spectral set

[
− 1

2 ,
1
2
)d
, Fourier

series with respect to this lattice coincide with usual multiple Fourier series of
functions of d−variables.

We refer to [11] for more detailed information about Fourier analysis on
lattices.

2. HEXAGONAL FOURIER SERIES

In the Euclidean plane R2, besides the standard lattice Z2 and the rect-
angular domain

[
− 1

2 ,
1
2
)2
, the simplest lattice is the hexagon lattice and the

simplest spectral set is the regular hexagon.
The generator matrix and the spectral set of the hexagonal lattice HZ2 are

given by

H =
[ √

3 0
−1 2

]
and

ΩH =
{

(x1, x2) ∈ R2 : −1 ≤ x2,
√

3
2 x1 ± 1

2x2 < 1
}
.

It is more convenient to use the homogeneous coordinates (t1, t2, t3) that satisfy
t1 + t2 + t3 = 0. If we define

(6) t1 := −x2
2 +

√
3x1
2 , t2 := x2, t3 := −x2

2 −
√

3x1
2 ,

the hexagon ΩH becomes

Ω =
{

(t1, t2, t3) ∈ R3 : −1 ≤ t1, t2,−t3 < 1, t1 + t2 + t3 = 0
}
.

We use bold letters t for homogeneous coordinates and we denote by R3
H

the plane t1 + t2 + t3 = 0, that is

R3
H =

{
t = (t1, t2, t3) ∈ R3 : t1 + t2 + t3 = 0

}
.

Also we use the notation Z3
H for the set of points in R3

H with integer compo-
nents, that is Z3

H = Z3 ∩ R3
H .

It follows from (6) that the Jacobian determinant of the change of variables
x = (x1, x2)→ t = (t1, t2, t3) is dx1dx2 = 2

√
3

3 dt1dt2.

In the homogeneous coordinates, the inner product on L2 (Ω) becomes

〈f, g〉H = 1
|Ω|

∫
Ω

f (t) g (t)dt,

where |Ω| denotes the area of Ω, and the orthonormal basis of L2 (Ω) becomes{
φj (t) = e

2πi
3 〈j,t〉 : j ∈ Z3

H , t ∈ R3
H

}
.
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Also, a function f is periodic with respect to the hexagonal lattice (or H-
periodic) if and only if f (t) = f (t + s) whenever s ≡ 0 (mod 3) , where t ≡ s
(mod 3) defined as

t1 − s1 ≡ t2 − s2 ≡ t3 − s3 (mod 3) .
It is clear that the functions φj (t) are H−periodic. If the function f is
H−periodic then ∫

Ω

f (t + s) dt =
∫
Ω

f (t) dt,
(
s ∈ R3

H

)
.

For every natural number n, we define a subset of Z3
H by

Hn :=
{

j = (j1, j2, j3) ∈ Z3
H : −n ≤ j1, j2, j3 ≤ n

}
.

Note that, Hn consists of all points with integer components inside the hexagon
nΩ. Members of the set

Hn := span
{
φj : j ∈ Hn

}
, (n ∈ N)

are called hexagonal trigonometric polynomials. It is clear that the dimension
of Hn is #Hn = 3n2 + 3n+ 1.

The hexagonal Fourier series of an H−periodic function f ∈ L1 (Ω) is

(7) f (t) ∼
∑

j∈Z3
H

f̂jφj (t) ,

where
f̂j = 1

|Ω|

∫
Ω

f (t) e−
2πi

3 〈j,t〉dt,
(
j ∈ Z3

H

)
.

The nth partial sum of the series (7) is defined by

Sn (f) (t) :=
∑

j∈Hn
f̂jφj (t) , (n ∈ N) .

The partial sums have the integral representation

(8) Sn (f) (t) = 1
|Ω|

∫
Ω

f (t− s)Dn (s) ds,

where
Dn (t) :=

∑
j∈Hn

φj (t)

is the Dirichlet kernel of order n.
It is known that ([15], [11]) the Dirichlet kernel can be expressed as

(9) Dn (t) = Θn (t)−Θn−1 (t) , (n ∈ N) ,
where

(10) Θn (t) := sin (n+1)(t1−t2)π
3 sin (n+1)(t2−t3)π

3 sin (n+1)(t3−t1)π
3

sin (t1−t2)π
3 sin (t2−t3)π

3 sin (t3−t1)π
3
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for t = (t1, t2, t3) ∈ R3
H .

More general information about hexagonal Fourier series can be found in
[11] and [17].

3. MAIN RESULT

We denote by CH
(
Ω
)

the set of complex valued H−periodic continuous
functions defined on R3

H . CH
(
Ω
)

becomes a Banach space with respect to the
uniform norm

‖f‖
CH
(
Ω
) = sup

{
|f (t)| : t ∈ Ω

}
.

The modulus of continuity of the function f ∈ CH
(
Ω
)

is defined by

ωH (f, δ) := sup
0<‖h‖≤δ

‖f − Th (f)‖
CH
(
Ω
) ,

where Th (f) (t) = f (t + h) and
‖h‖ := max {|h1| , |h2| , |h3|}

for h = (h1, h2, h3) ∈ R3
H . It is known that [17] the modulus of continuity is a

non-decreasing function and satisfies
(11) ωH (f, λδ) ≤ (1 + λ)ωH (f, δ)
for λ > 0.

For 0 < α ≤ 1, we define the Hölder class Hα(Ω) of H−periodic continuous
functions as

Hα(Ω) :=
{
f ∈ CH(Ω) : ωH (f, δ)� δα, δ > 0

}
.

The Fejér means of the series (7) are defined by

σn (f) (t) = 1
n+1

n∑
k=0

Sk (f) (t) .

The following analogue of Theorem A for hexagonal Fourier series was
proved in [6].

Theorem D. Let f ∈ Hα
(
Ω
)

(0 < α ≤ 1) . Then the estimate

(12) ‖f − σn (f)‖CH(Ω) �


1
nα , α < 1

(logn)2

n , α = 1
holds for n ≥ 2.

Let p = (pn)∞n=0 be a sequence of positive real numbers and (Nn (p; f)) be
the sequence of Nörlund means of the series (7) with respect to the sequence
p, that is

(13) Nn (p; f) (t) = 1
Pn

n∑
k=0

pn−kSk (f) (t) , (n ∈ N) .
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By considering (8) , we get

(14) Nn (p; f) (t) = 1
|Ω|

∫
Ω

f (t− s)Fn (p; s) ds,

where

Fn (p; t) := 1
Pn

n∑
k=0

pn−kDk (t) .

The aim of this work is to prove an analogue of Theorem C for hexagonal
Fourier series. The main result is the following.

Theorem 1. Let p = (pn) be a non-increasing sequence of positive real
numbers. Then the estimate

(15) ‖f −Nn (p; f)‖CH(Ω) �
1
Pn

log
(
Pn
pn

) n∑
k=1

1
kPkωH

(
f, 1

k

)
holds for every f ∈ CH

(
Ω
)

and for every natural number n.

Proof. By (14), definition of ωH (f, ·) , (13) and (10) we have
(16)

|f (t)−Nn (p; f) (t)| � 1
Pn

∫
Ω
ωH (f, ‖s‖)

∣∣∣∣∣pn+
n∑
k=1

pn−k (Θk (s)−Θk−1 (s))
∣∣∣∣∣ ds.

Since the function

t→ ωH (f, ‖t‖)
∣∣∣∣∣pn +

n∑
k=1

pn−k (Θk (t)−Θk−1 (t))
∣∣∣∣∣

is symmetric with respect to variables t1, t2 and t3, where t = (t1, t2, t3) ∈ Ω,
it is sufficient to estimate the integral

In :=
∫

∆
ωH (f, ‖t‖)

∣∣∣∣∣pn +
n∑
k=1

pn−k (Θk (t)−Θk−1 (t))
∣∣∣∣∣ dt,

where

∆ :=
{

t = (t1, t2, t3) ∈ R3
H : 0 ≤ t1, t2,−t3 ≤ 1

}
= {(t1, t2) : t1 ≥ 0, t2 ≥ 0, t1 + t2 ≤ 1} ,

which is one of the six equilateral triangles in Ω. By considering the formula
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(10), we obtain

In =
∫
∆

ωH (f, ‖t‖)
∣∣∣∣∣pn +

n∑
k=1

pn−k (Θk (t)−Θk−1 (t))
∣∣∣∣∣ dt

=
∫
∆

ωH (f, t1 + t2)
∣∣∣∣pn +

n∑
k=1

pn−k
( sin (k+1)(t1−t2)π

3 sin (k+1)(t2−t3)π
3 sin (k+1)(t3−t1)π

3
sin (t1−t2)π

3 sin (t2−t3)π
3 sin (t3−t1)π

3

− sin k(t1−t2)π
3 sin k(t2−t3)π

3 sin k(t3−t1)π
3

sin (t1−t2)π
3 sin (t2−t3)π

3 sin (t3−t1)π
3

)∣∣∣∣dt.

If we use the change of variables

s1 := t1−t3
3 = 2t1+t2

3 , s2 := t2−t3
3 = t1+2t2

3

as in [17], we get

In =3
∫
∆̃

ωH (f, s1+s2)
∣∣∣∣pn+ n∑

k=1
pn−k

(
sin((k+1)(s1−s2)π) sin((k+1)s2π) sin((k+1)(−s1π))

sin((s1−s2)π) sin(s2π) sin(−s1π)

− sin(k(s1−s2)π) sin(ks2π) sin(k(−s1π))
sin((s1−s2)π) sin(s2π) sin(−s1π)

)∣∣∣∣ds1ds2,

where ∆̃ is the image of ∆ in the plane, that is

∆̃ := {(s1, s2) : 0 ≤ s1 ≤ 2s2, 0 ≤ s2 ≤ 2s1, s1 + s2 ≤ 1} .

Since the integrated function is symmetric with respect to s1 and s2, we have

In = 6
∫
∆∗

(s1 + s2)α
∣∣∣∣pn +

n∑
k=1

pn−k
(

sin((k+1)(s1−s2)π) sin((k+1)s2π) sin((k+1)(−s1π))
sin((s1−s2)π) sin(s2π) sin(−s1π)

− sin(k(s1−s2)π) sin(ks2π) sin(k(−s1π))
sin((s1−s2)π) sin(s2π) sin(−s1π)

)∣∣∣∣ds1ds2,

where ∆∗ is the half of ∆̃ :

∆∗ :=
{

(s1, s2) ∈ ∆̃ : s1 ≤ s2
}

= {(s1, s2) : s1 ≤ s2 ≤ 2s1, s1 + s2 ≤ 1} .

The change of variables

s1 := u1−u2
2 , s2 := u1+u2

2

transforms the triangle ∆∗ to the triangle

Γ :=
{
(u1, u2) : 0 ≤ u2 ≤ u1

3 , 0 ≤ u1 ≤ 1
}
,

hence we have

In = 3
∫
Γ

ωH (f, u1)
∣∣∣∣∣pn +

n∑
k=1

pn−kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2,
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where

D∗k (u1, u2) := sin((k+1)u2π) sin
(
(k+1)u1+u2

2 π
)

sin
(
(k+1)

(
u1−u2

2 π
))

sin(u2π) sin
(
u1+u2

2 π
)

sin
(
u1−u2

2 π
)

− sin(ku2π) sin
(
k
u1+u2

2 π
)

sin
(
k
(
u1−u2

2 π
))

sin(u2π) sin
(
u1+u2

2 π
)

sin
(
u1−u2

2 π
) .

By elementary trigonometric identities, we obtain

(17) D∗k (u1, u2) = D∗k,1 (u1, u2) +D∗k,2 (u1, u2) +D∗k,3 (u1, u2) ,

where

D∗k,1 (u1, u2) := 2 cos
((
k + 1

2
)
u2π

) sin( 1
2u2π) sin

(
(k+1)u1+u2

2 π
)

sin
(
(k+1)u1−u2

2 π
)

sin(u2π) sin
(
u1+u2

2 π
)

sin
(
u1−u2

2 π
) ,

D∗k,2 (u1, u2) := 2 cos
((
k + 1

2
)u1+u2

2 π
) sin(ku2π) sin

(
1
2
u1+u2

2 π
)

sin
(
(k+1)u1−u2

2 π
)

sin(u2π) sin
(
u1+u2

2 π
)

sin
(
u1−u2

2 π
) ,

and

D∗k,3 (u1, u2) := 2 cos
((
k + 1

2
)u1−u2

2 π
) sin(ku2π) sin

(
k
u1+u2

2 π
)

sin
(

1
2
u1−u2

2 π
)

sin(u2π) sin
(
u1+u2

2 π
)

sin
(
u1−u2

2 π
) .

Since
sin 2x+ sin 2y + sin 2z = −4 sin x sin y sin z

for x+ y + z = 0, we also get the expression

(18) D∗k (u1, u2) = Hk,1 (u1, u2) +Hk,2 (u1, u2) +Hk,3 (u1, u2) ,

where

Hk,1 (u1, u2) := 1
2

cos((2k+1)u2π)
sin
(
u1+u2

2 π
)

sin
(
u1−u2

2 π
) ,

Hk,2 (u1, u2) := −1
2

cos
(
(2k+1)u1+u2

2 π
)

sin(u2π) sin
(
u1−u2

2 π
) ,

Hk,3 (u1, u2) := 1
2

cos
(
(2k+1)u1−u2

2 π
)

sin(u2π) sin
(
u1+u2

2 π
) .

By considering the fact (n+ 1) pn � Pn and by (11) we get∫
Γ

pnωH (f, u1) du1du2 ≤ pnωH (f, 1)� Pn
n ωH (f, 1)

= Pn
n ωH

(
f, n 1

n

)
� Pn

n nωH
(
f, 1

n

)
=

n∑
k=1

1
nPnωH

(
f, 1

n

)
≤

n∑
k=1

1
kPkωH

(
f, 1

k

)
,

since the sequence (Pn/n) non-increasing and ωH (f, ·) is non-decreasing. Hence,

(19) In � I∗n +
n∑
k=1

1
kPkωH

(
f, 1

k

)
,
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where

I∗n :=
∫
Γ

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2.

If we partition the triangle Γ as Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 :=
{

(u1, u2) ∈ Γ : u1 ≤ 1
n+1

}
,

Γ2 :=
{

(u1, u2) ∈ Γ : u1 ≥ 1
n+1 , u2 ≤ 1

3(n+1)

}
,

Γ3 :=
{

(u1, u2) ∈ Γ : u1 ≥ 1
n+1 , u2 ≥ 1

3(n+1)

}
,

we have
I∗n = I∗n,1 + I∗n,2 + I∗n,3,

where

I∗n,j :=
∫
Γj

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2, (j = 1, 2, 3) .

We shall need the well known inequalities

(20)
∣∣∣ sinntsin t

∣∣∣ ≤ n, (n ∈ N) ,

and
(21) sin t ≥ 2

π t,
(
0 ≤ t ≤ π

2
)

to estimate integrals I∗n,1, I∗n,2 and I∗n,3.
By (17) and (20) we obtain

I∗n,1 =
∫
Γ1

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2

≤
∫
Γ1

ωH (f, u1)
(

n∑
k=1

(k + 1)2 pn−k

)
du1du2

≤ (n+ 1)2 Pn

∫
Γ1

ωH (f, u1) du1du2

= (n+ 1)2 Pn

1/(3(n+1))∫
0

1/(n+1)∫
3u2

ωH (f, u1) du1du2

≤ (n+ 1)2 PnωH
(
f, 1

n+1

) 1/(3(n+1))∫
0

1/(n+1)∫
3u2

du1du2

≤ PnωH
(
f, 1

n

)
=

n∑
k=1

1
nPnωH

(
f, 1

n

)
.
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Since the sequence (Pn/n) is non-increasing we get

(22) I∗n,1 ≤
n∑
k=1

1
kPkωH

(
f, 1

k

)
.

We write the rectangle Γ2 as Γ2 = Γ′2 ∪ Γ′′2, where

Γ′2 :=
{

(u1, u2) ∈ Γ2 : u2 ≤ pn
3(n+1)Pn

}
and

Γ′′2 :=
{

(u1, u2) ∈ Γ2 : u2 ≥ pn
3(n+1)Pn

}
to estimate I∗n,2.

By (21) we obtain∫
Γ′2

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kD
∗
k,1 (u1, u2)

∣∣∣∣∣ du1du2 ≤

≤

pn
3(n+1)Pn∫

0

1∫
1

n+1

ωH (f, u1)
(

n∑
k=1

pn−k
∣∣∣D∗k,1 (u1, u2)

∣∣∣) du1du2

� Pn

pn
3(n+1)Pn∫

0

1∫
1

n+1

ωH(f,u1)
u2

1
du1du2 = pn

3(n+1)

1∫
1

n+1

ωH(f,u1)
u2

1
du1

= pn
3(n+1)

n+1∫
1

ωH
(
f, 1

t

)
dt = pn

3(n+1)

n∑
k=1

k+1∫
k

ωH
(
f, 1

t

)
dt


≤ pn

n+1

n∑
k=1

ωH
(
f, 1

k

)
≤

n∑
k=1

1
kPkωH

(
f, 1

k

)
.

For j = 2, 3, by (20) and (21),∫
Γ′2

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kD
∗
k,j (u1, u2)

∣∣∣∣∣ du1du2 ≤

≤
1∫
1

n+1

pn
3(n+1)Pn∫

0

ωH (f, u1)
(

n∑
k=1

pn−k
∣∣∣D∗k,j (u1, u2)

∣∣∣) du2du1

�
1∫
1

n+1

pn
3(n+1)Pn∫

0

ωH(f,u1)
u1

(
n∑
k=1

kpn−k

)
du2du1 ≤
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≤ nPn

1∫
1

n+1

pn
3(n+1)Pn∫

0

ωH(f,u1)
u1

du2du1 ≤ pn
1∫
1

n+1

ωH(f,u1)
u1

du1

= pn

n+1∫
1

ωH(f,1/t)
t dt =

n∑
k=1

k+1∫
k

ωH(f,1/t)
t dt


≤ pn

n∑
k=1

1
kωH

(
f, 1

k

)
=

n∑
k=1

1
kpnωH

(
f, 1

k

)
≤

n∑
k=1

1
kPkωH

(
f, 1

k

)
.

Hence we get

(23)
∫
Γ′2

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2 �
n∑
k=1

1
kPkωH

(
f, 1

k

)
.

To estimate the integrals I∗n,3 and∫
Γ′′2

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2

we shall use the expression (18) of D∗k (u1, u2) .
Lemma 5. 11 of [12] yields∣∣∣∣∣

n∑
k=1

pn−k cos ((2k + 1)u2π)
∣∣∣∣∣� P

( 1
2πu2

)
and ∣∣∣∣∣

n∑
k=1

pn−k cos
(
(2k + 1) u1−u2

2 π
)∣∣∣∣∣� P

(
1

(u1−u2)π

)
for (u1, u2) ∈ Γ′′2 ∪ Γ3, where P (t) := P[t]. By Lemmas 5. 11 and 5. 10 of [12],
the fact

sin u1π
2 ≤

2√
3 sin

(u1+u2
2 π

)
,

and (21), we get ∣∣∣∣∣
n∑
k=1

pn−k cos
(
(2k + 1) u1+u2

2 π
)∣∣∣∣∣� P

( 1
u1π

)
for (u1, u2) ∈ Γ′′2 ∪ Γ3. Hence by considering these inequalities and (21) we
obtain

(24)
∣∣∣∣∣
n∑
k=1

pn−kHk,1 (u1, u2)
∣∣∣∣∣� 1

u2
1
P
( 1

2πu2

)
and

(25)
∣∣∣∣∣
n∑
k=1

pn−kHk,j (u1, u2)
∣∣∣∣∣� 1

u1u2
P
( 3

2πu1

)
(j = 2, 3)
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for (u1, u2) ∈ Γ′′2 ∪ Γ3.
By (21) we obtain

∫
Γ′′2

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kHk,1 (u1, u2)
∣∣∣∣∣ du1du2 ≤

≤
1∫
1

n+1

1
3(n+1)∫
pn

3(n+1)Pn

ωH (f, u1)
(

n∑
k=1

pn−k |Hk,1 (u1, u2)|
)
du2du1

≤ Pn

1∫
1

n+1

1
3(n+1)∫
pn

3(n+1)Pn

ωH(f,u1)
u2

1
du2du1 ≤ Pn

n+1

1∫
1

n+1

ωH(f,u1)
u2

1
du1

= Pn
n+1

n+1∫
1

ωH
(
f, 1

t

)
dt ≤ Pn

n+1

n∑
k=1

ωH
(
f, 1

k

)
≤

n∑
k=1

1
kPkωH

(
f, 1

k

)
.

For j = 2, 3 by (25) we get

∫
Γ′′2

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kHk,j (u1, u2)
∣∣∣∣∣ du1du2 �

�
1∫
1

n+1

1
3(n+1)∫
pn

3(n+1)Pn

ωH(f,u1)
u1u2

P
(

3
2πu1

)
du2du1

= log
(
Pn
pn

) 1∫
1

n+1

ωH(f,u1)
u1

P
(

3
2πu1

)
du1

= log
(
Pn
pn

) 3
2π (n+1)∫

3
2π

ωH
(
f, 3

2πt

)
P (t)
t dt

= log
(
Pn
pn

) n∑
k=1


3

2π (k+1)∫
3

2π k

ωH
(
f, 3

2πt

)
P (t)
t dt

 ≤
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≤ log
(
Pn
pn

) n∑
k=1

ωH(f, 1
k )

k P
(

3
2π (k + 1)

)
� log

(
Pn
pn

) n∑
k=1

1
kPkωH

(
f, 1

k

)
.

Thus, (23) and this inequality give∫
Γ′′2

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2 � log
(
Pn
pn

) n∑
k=1

1
kPkωH

(
f, 1

k

)
,

and hence

(26) I∗n,2 � log
(
Pn
pn

) n∑
k=1

PkωH(f,1/k)
k .

By (24) and by the inequality
ωH(f,δ2)

δ2
≤ 2ωH(f,δ1)

δ1
(δ1 < δ2)

which is easily obtained from (11),∫
Γ3

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kHk,1 (u1, u2)
∣∣∣∣∣ du1du2 �

�

1
3∫
1

3(n+1)

1∫
3u2

ωH(f,u1)
u2

1
P
( 1

2πu2

)
du1du2

�

1
3∫
1

3(n+1)

1∫
3u2

ωH(f,3u2)
u1u2

P
( 1

2πu2

)
du1du2

=

1
3∫
1

3(n+1)

ωH(f,3u2)
u2

P
( 1

2πu2

)
log

( 1
3u2

)
du2

≤ log (n+ 1)

1
3∫
1

3(n+1)

ωH(f,3u2)
u2

P
( 1

2πu2

)
du2

= log (n+ 1)

3
2π (n+1)∫

3
2π

ωH
(
f, 3

2πt
)P (t)

t dt

� log
(
Pn
pn

) n∑
k=1

1
kPkωH

(
f, 1

k

)
.
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By (25), for j = 2, 3,∫
Γ3

ωH (f, u1)
∣∣∣∣∣
n∑
k=1

pn−kHk,j (u1, u2)
∣∣∣∣∣ du1du2 ≤

≤
1∫
1

n+1

u1
3∫
1

3(n+1)

ωH(f,u1)
u1u2

P
( 3

2πu1

)
du2du1

=
1∫
1

n+1

ωH(f,u1)
u1

P
( 3

2πu1

)
log ((n+ 1)u1) du1

≤ log (n+ 1)
1∫
1

n+1

ωH(f,u1)
u1

P
( 3

2πu1

)
du1

� log
(
Pn
pn

) n∑
k=1

1
kPkωH

(
f, 1

k

)
.

Thus,

(27) I∗n,3 � log
(
Pn
pn

) n∑
k=1

1
kPkωH

(
f, 1

k

)
.

Combining (16), (19), (22), (26) and (27) give (15). �

4. CONCLUSIONS

Conclusion 1. For f ∈ Hα
(
Ω
)

(0 < α ≤ 1) , Theorem 1 yields the follow-
ing analogue of (5):

‖f −Nn (p; f)‖CH(Ω) �
1
Pn

log
(
Pn
pn

) n∑
k=1

Pk
k1+α .

Note that this estimate was obtained directly in [7].
Conclusion 2. In the case pn = 1, (n = 0, 1, ...) , (15) reduces to

‖f − σn (f)‖CH(Ω) �
logn
n+1

n∑
k=1

ωH
(
f, 1

k

)
,

which is the analogue of (3) for hexagonal Fourier series.
Conclusion 3. In the case pn = 1, (n = 0, 1, ...) and f ∈ Hα

(
Ω
)

(0 < α ≤ 1) ,
(15) gives

‖f − σn (f)‖CH(Ω) �


logn
nα , 0 < α < 1

(logn)2

n , α = 1.
This estimate yields the same approximation order with (12) in the case α = 1.
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