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CAPUTO FRACTIONAL APPROXIMATION
BY SUBLINEAR OPERATORS

GEORGE A. ANASTASSIOU∗

Abstract. Here we consider the approximation of functions by sublinear posi-
tive operators with applications to a big variety of Max-Product operators under
Caputo fractional differentiability. Our study is based on our general fractional
results about positive sublinear operators. We produce Jackson type inequalities
under simple initial conditions. So our approach is quantitative by producing
inequalities with their right hand sides involving the modulus of continuity of
fractional derivative of the function under approximation.
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1. INTRODUCTION

The main motivation here is the monograph by B. Bede, L. Coroianu and
S. Gal [5, 2016].

Let N ∈ N, the well-known Bernstein polynomials [11] are positive linear
operators, defined by the formula

(1.1) BN (f) (x) =
N∑
k=0

(N
k

)
xk (1− x)N−k f( kN ), x ∈ [0, 1] , f ∈ C ([0, 1]) .

T. Popoviciu in [12] (1935), proved for f ∈ C ([0, 1]) that

(1.2) |BN (f) (x)− f (x)| ≤ 5
4ω1

(
f, 1√

N

)
, ∀ x ∈ [0, 1] ,

where
(1.3) ω1 (f, δ) = sup

x,y∈[a,b]:
|x−y|≤δ

|f (x)− f (y)| , δ > 0,

is the first modulus of continuity, here [a, b] = [0, 1].
G.G. Lorentz in [11, p. 21] (1986), proved for f ∈ C1 ([0, 1]) that

(1.4) |BN (f) (x)− f (x)| ≤ 3
4
√
N
ω1
(
f ′, 1√

N

)
, ∀ x ∈ [0, 1] ,
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In [5, p. 1], the authors introduced the basic Max-product Bernstein oper-
ators,

(1.5) B
(M)
N (f) (x) =

N∨
k=0

pN,k(x)f( k
N

)

N∨
k=0

pN,k(x)
, N ∈ N,

where
∨

stands for maximum, and pN,k (x) =
(N
k

)
xk (1− x)N−k and f :

[0, 1]→ R+ = [0,∞).
These are nonlinear and piecewise rational operators.
The authors in [5] studied similar such nonlinear operators such as: the

Max-product Favard-Szász-Mirakjan operators and their truncated version,
the Max-product Baskakov operators and their truncated version, also many
other similar specific operators. The study in [5] is based on presented there
general theory of sublinear operators. These Max-product operators tend to
converge faster to the on hand function.

So we mention from [5, p. 30], that for f : [0, 1]→ R+ continuous, we have
the estimate
(1.6)

∣∣∣B(M)
N (f) (x)− f (x)

∣∣∣ ≤ 12ω1
(
f, 1√

N+1

)
, for all N ∈ N, x ∈ [0, 1] ,

Also from [5, p. 36], we mention that for f : [0, 1]→ R+ being concave function
we get that

(1.7)
∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ 2ω1

(
f, 1

N

)
, for all x ∈ [0, 1] ,

a much faster convergence.
In this article we expand the study in [5] by considering Caputo fractional

smoothness of functions. So our inequalities are with respect to ω1 (Dαf, δ),
δ > 0, where Dαf with α > 0 is the Caputo fractional derivative.

2. MAIN RESULTS

We need

Definition 2.1. Let ν ≥ 0, n = dνe (d·e is the ceiling of the number),
f ∈ ACn ([a, b]) (space of functions f with f (n−1) ∈ AC ([a, b]), absolutely
continuous functions). We call left Caputo fractional derivative (see [7, p. 49],
[10], [13]) the function

(2.1) Dν
∗af (x) = 1

Γ(n−ν)

∫ x

a
(x− t)n−ν−1 f (n) (t) dt, ∀ x ∈ [a, b] ,

where Γ is the gamma function Γ (v) =
∫∞

0 e−ttv−1dt, v > 0.
We set D0

∗af (x) = f (x), ∀ x ∈ [a, b] .

Lemma 2.2. [2] Let ν > 0, ν /∈ N, n = dνe, f ∈ Cn−1 ([a, b]) and f (n) ∈
L∞ ([a, b]). Then Dν

∗af (a) = 0.

We need
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Definition 2.3. (see also [1], [8], [10]) Let f ∈ ACm ([a, b]) , m = dαe,
α > 0. The right Caputo fractional derivative of order α > 0 is given by

(2.2) Dα
b−f (x) = (−1)m

Γ(m−α)

∫ b

x
(ζ − x)m−α−1 f (m) (ζ) dζ, ∀ x ∈ [a, b] .

We set D0
b−f (x) = f (x).

Lemma 2.4. [2] Let f ∈ Cm−1 ([a, b]) , f (m) ∈ L∞ ([a, b]) , m = dαe, α > 0,
α /∈ N. Then Dα

b−f (b) = 0.

Convention 2.5. We assume that

(2.3) Da
∗x0f (x) = 0, for x < x0,

and

(2.4) Dα
x0−f (x) = 0, for x > x0,

for all x, x0 ∈ [a, b] .

We mention

Proposition 2.6. [2] Let f ∈ Cn ([a, b]), n = dνe, ν > 0. Then Dν
∗af (x)

is continuous in x ∈ [a, b] .

Proposition 2.7. [2] Let f ∈ Cm ([a, b]), m = dαe, α > 0. Then Dα
b−f (x)

is continuous in x ∈ [a, b] .

The modulus of continuity ω1 (f, δ) is defined the same way for bounded
functions, see (1.3), and it is finite.

We make

Remark 2.8. [2] Let f ∈ Cn−1 ([a, b]), f (n) ∈ L∞ ([a, b]), n = dνe, ν > 0,
ν /∈ N. Then

(2.5) ω1 (Dν
∗af, δ) ≤

2‖f (n)‖∞
Γ(n−ν+1) (b− a)n−ν .

Similarly, let f ∈ Cm−1 ([a, b]), f (m) ∈ L∞ ([a, b]), m = dαe, α > 0, α /∈ N,
then

(2.6) ω1
(
Dα
b−f, δ

)
≤ 2‖f (m)‖∞

Γ(m−α+1) (b− a)m−α .

That is ω1 (Dν
∗af, δ), ω1

(
Dα
b−f, δ

)
are finite.

Clearly, above Dν
∗af and Dα

b−f are bounded, from

(2.7) |Dν
∗af (x)| ≤ ‖f (n)‖∞

Γ(n−ν+1) (b− a)n−ν , ∀ x ∈ [a, b] ,

see [2]. �

We need
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Definition 2.9. Let Dα
x0f denote any of Dα

x0−f , Dα
∗x0f , and δ > 0. We

set
(2.8) ω1

(
Dα
x0f, δ

)
:= max

{
ω1
(
Dα
x0−f, δ

)
[a,x0] , ω1

(
Dα
∗x0f, δ

)
[x0,b]

}
,

where x0 ∈ [a, b] . Here the moduli of continuity are considered over [a, x0] and
[x0, b], respectively.

We need
Theorem 2.10. Let α > 0, α /∈ N, m = dαe, x0 ∈ [a, b] ⊂ R, f ∈

ACm ([a, b] ,R+) (i.e. f (m−1) ∈ AC ([a, b]), absolutely continuous functions
on [a, b]), and f (m) ∈ L∞ ([a, b]). Furthermore we assume that f (k) (x0) = 0,
k = 1, ...,m− 1. Then

(2.9) |f (x)− f (x0)| ≤ ω1(Dαx0f,δ)
Γ(α+1)

[
|x− x0|α + |x−x0|α+1

(α+1)δ

]
, δ > 0,

for all a ≤ x ≤ b.
If 0 < α < 1, then we do not need initial conditions.
Proof. From [7, p. 54], we get by left Caputo Taylor formula that

(2.10) f (x) =
m−1∑
k=0

f (k)(x0)
k! (x− x0)k + 1

Γ(α)

∫ x

x0
(x− z)α−1Dα

∗x0f (z) dz,

for all x0 ≤ x ≤ b.
Also from [1], using the right Caputo fractional Taylor formula we get

(2.11) f (x) =
m−1∑
k=0

f (k)(x0)
k! (x− x0)k + 1

Γ(α)

∫ x0

x
(z − x)α−1Dα

x0−f (z) dz,

for all a ≤ x ≤ x0.
By the assumption f (k) (x0) = 0, k = 1, ...,m− 1, we get

(2.12) f (x)− f (x0) = 1
Γ(α)

∫ x

x0
(x− z)α−1Dα

∗x0f (z) dz,

for all x0 ≤ x ≤ b.
And it holds

(2.13) f (x)− f (x0) = 1
Γ(α)

∫ x0

x
(z − x)α−1Dα

x0−f (z) dz,

for all a ≤ x ≤ x0.
Notice that when 0 < α < 1, then m = 1, and (2.12) and (2.13) are valid

without initial conditions.
Since Dα

x0−f (x0) = Dα
∗x0f (x0) = 0, we get

(2.14) f (x)− f (x0) = 1
Γ(α)

∫ x

x0
(x− z)α−1 ((Dα

∗x0f
)

(z)−Dα
∗x0f (x0)

)
dz,

x0 ≤ x ≤ b, and

(2.15) f (x)− f (x0) = 1
Γ(α)

∫ x0

x
(z − x)α−1 (Dα

x0−f (z)−Dα
x0−f (x0)

)
dz,
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a ≤ x ≤ x0.
We have that (x0 ≤ x ≤ b)

|f (x)− f (x0)| ≤

≤ 1
Γ(α)

∫ x

x0
(x− z)α−1 ∣∣(Dα

∗x0f
)

(z)−Dα
∗x0f (x0)

∣∣ dz
≤

(δ1>0)
1

Γ(α)

∫ x

x0
(x− z)α−1 ω1

(
Dα
∗x0f,

δ1|z−x0|
δ1

)
[x0,b]

dz(2.16)

≤
ω1(Dα∗x0f,δ1)[x0,b]

Γ(α)

∫ x

x0
(x− z)α−1

(
1 + (z−x0)

δ1

)
dz

=
ω1(Dα∗x0f,δ1)[x0,b]

Γ(α)

[
(x−x0)α

α + 1
δ1

∫ x

x0
(x− z)α−1 (z − x0)2−1 dz

]
=

ω1(Dα∗x0f,δ1)[x0,b]
Γ(α)

[
(x−x0)α

α + 1
δ1

Γ(α)Γ(2)
Γ(α+2) (x− x0)α+1

]
(2.17)

=
ω1(Dα∗x0f,δ1)[x0,b]

Γ(α)

[
(x−x0)α

α + 1
δ1

1
(α+1)α (x− x0)α+1

]
=

ω1(Dα∗x0f,δ1)[x0,b]
Γ(α+1)

[
(x− x0)α + (x−x0)α+1

(α+1)δ1

]
.

We have proved that

|f (x)− f (x0)| ≤
ω1(Dα∗x0f,δ1)[x0,b]

Γ(α+1)

[
(x− x0)α + (x−x0)α+1

(α+1)δ1

]
,(2.18)

δ1 > 0, and x0 ≤ x ≤ b.
Similarly acting, we get (a ≤ x ≤ x0)

|f (x)− f (x0)| ≤

≤ 1
Γ(α)

∫ x0

x
(z − x)α−1 ∣∣Dα

x0−f (z)−Dα
x0−f (x0)

∣∣ dz
= 1

Γ(α)

∫ x0

x
(z − x)α−1 ω1

(
Dα
x0−f,

δ2(x0−z)
δ2

)
[a,x0]

dz(2.19)

≤
ω1
(
Dαx0−

f,δ2
)

[a,x0]
Γ(α)

[∫ x0

x
(z − x)α−1

(
1 + x0−z

δ2

)
dz

]
=

ω1
(
Dαx0−

f,δ2
)

[a,x0]
Γ(α)

[
(x0−x)α

α + 1
δ2

∫ x0

x
(x0 − z)2−1 (z − x)α−1 dz

]
=

ω1
(
Dαx0−

f,δ2
)

[a,x0]
Γ(α)

[
(x0−x)α

α + 1
δ2

Γ(α)Γ(2)
Γ(α+2) (x0 − x)α+1

]
=

ω1
(
Dαx0−

f,δ2
)

[a,x0]
Γ(α)

[
(x0−x)α

α + 1
δ2

(x0−x)α+1

(α+1)α

]
(2.20)

=
ω1
(
Dαx0−

f,δ2
)

[a,x0]
Γ(α+1)

[
(x0 − x)α + (x0−x)α+1

(α+1)δ2

]
.
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We have proved that

(2.21) |f (x)− f (x0)| ≤
ω1
(
Dαx0−

f,δ2
)

[a,x0]
Γ(α+1)

[
(x0 − x)α + (x0−x)α+1

(α+1)δ2

]
,

δ2 > 0, and (a ≤ x ≤ x0). Choosing δ = δ1 = δ2 > 0, by (2.18) and (2.21), we
get (2.9). �

We need

Definition 2.11. Here C+ ([a, b]) := {f : [a, b]→ R+, f continuous} . Let
LN : C+ ([a, b])→ C+ ([a, b]), operators, ∀ N ∈ N, such that

(i)
(2.22) LN (αf) = αLN (f) , ∀α ≥ 0, ∀f ∈ C+ ([a, b]) ,

(ii) if f, g ∈ C+ ([a, b]) : f ≤ g, then
(2.23) LN (f) ≤ LN (g) , ∀N ∈ N,

(iii)
(2.24) LN (f + g) ≤ LN (f) + LN (g) , ∀ f, g ∈ C+ ([a, b]) .

We call {LN}N∈N positive sublinear operators.

We need a Hölder’s type inequality, see next:

Theorem 2.12. (see [3]) Let L : C+ ([a, b]) → C+ ([a, b]), be a positive
sublinear operator and f, g ∈ C+ ([a, b]), furthermore let p, q > 1 : 1

p + 1
q = 1.

Assume that L ((f (·))p) (s∗) , L ((g (·))q) (s∗) > 0 for some s∗ ∈ [a, b]. Then

(2.25) L (f (·) g (·)) (s∗) ≤ (L ((f (·))p) (s∗))
1
p (L ((g (·))q) (s∗))

1
q .

We make

Remark 2.13. By [5, p. 17],we get: let f, g ∈ C+ ([a, b]), then
(2.26) |LN (f) (x)− LN (g) (x)| ≤ LN (|f − g|) (x) , ∀ x ∈ [a, b] .
Furthermore, we also have that
(2.27)
|LN (f) (x)− f (x)| ≤ LN (|f (·)− f (x)|) (x) + |f (x)| |LN (e0) (x)− 1| ,

∀ x ∈ [a, b]; e0 (t) = 1.
From now on we assume that LN (1) = 1. Hence it holds

(2.28) |LN (f) (x)− f (x)| ≤ LN (|f (·)− f (x)|) (x) , ∀ x ∈ [a, b] .
Using Theorem 2.10 and (2.9) with (2.28) we get:

|LN (f) (x0)− f (x0)| ≤

≤ ω1(Dαx0f,δ)
Γ(α+1)

[
LN (|· − x0|α) (x0) + LN(|·−x0|α+1)(x0)

(α+1)δ

]
, δ > 0.(2.29)

�
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We have proved

Theorem 2.14. Let α > 0, α /∈ N, m = dαe, x0 ∈ [a, b] ⊂ R, f ∈
ACm ([a, b] ,R+), and f (m) ∈ L∞ ([a, b]). Furthermore we assume that
f (k) (x0) = 0, k = 1, ...,m− 1. Let LN : C+ ([a, b])→ C+ ([a, b]), ∀ N ∈ N, be
positive sublinear operators, such that LN (1) = 1, ∀ N ∈ N. Then

|LN (f) (x0)− f (x0)| ≤ ω1(Dαx0f,δ)
Γ(α+1) ·

[
LN (|· − x0|α) (x0) + LN(|·−x0|α+1)(x0)

(α+1)δ

](2.30)

δ > 0, ∀ N ∈ N.
In particular (2.30) is true for α > 1, α /∈ N.

Corollary 2.15. Let 0 < α < 1, x0 ∈ [a, b] ⊂ R, f ∈ AC ([a, b] ,R+),
and f ′ ∈ L∞ ([a, b]). Let LN : C+ ([a, b]) → C+ ([a, b]), ∀ N ∈ N, be positive
sublinear operators, such that LN (1) = 1, ∀ N ∈ N. Then (2.30) is valid.

We give

Theorem 2.16. Let 0 < α < 1, x0 ∈ [a, b] ⊂ R, f ∈ AC ([a, b] ,R+), and
f ′ ∈ L∞ ([a, b]). Let LN from C+ ([a, b]) into itself be positive sublinear opera-
tors, such that LN (1) = 1, ∀ N ∈ N. Assume that LN

(
|· − x0|α+1

)
(x0) > 0,

∀ N ∈ N. Then

|LN (f) (x0)− f (x0)| ≤

≤
(α+2)ω1

(
Dαx0f,(LN(|·−x0|α+1)(x0))

1
α+1
)

Γ(α+2)

(
LN

(
|· − x0|α+1

)
(x0)

) α
α+1 .(2.31)

Proof. By Theorem 2.12, see (2.25), we get

(2.32) LN (|· − x0|α) (x0) ≤
(
LN

(
|· − x0|α+1

)
(x0)

) α
α+1 .

Choose

(2.33) δ :=
(
LN

(
|· − x0|α+1

)
(x0)

) 1
α+1 > 0,

i.e. δα+1 = LN
(
|· − x0|α+1

)
(x0) .

By (2.30) we obtain

|LN (f) (x0)− f (x0)| ≤

≤ 1
Γ(α+1)ω1

(
Dα
x0f,

(
LN

(
|· − x0|α+1

)
(x0)

) 1
α+1
)
·

·
[(
LN

(
|· − x0|α+1

)
(x0)

) α
α+1 + 1

(α+1)

(
LN

(
|· − x0|α+1

)
(x0)

) α
α+1
]

=
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=
ω1

(
Dαx0f,(LN(|·−x0|α+1)(x0))

1
α+1
)

Γ(α+1) ·

·
(
LN

(
|· − x0|α+1

)
(x0)

) α
α+1

[
1 + 1

α+1

]
(2.34)

=
ω1

(
Dαx0f,(LN(|·−x0|α+1)(x0))

1
α+1
)

Γ(α+1)

(
LN

(
|· − x0|α+1

)
(x0)

) α
α+1

(
α+2
α+1

)
=

(α+2)ω1

(
Dαx0f,(LN(|·−x0|α+1)(x0))

1
α+1
)

Γ(α+2)

(
LN

(
|· − x0|α+1

)
(x0)

) α
α+1 ,

proving (2.31). �

3. APPLICATIONS

I) Case 0 < α < 1.
Here we apply Theorem 2.16 to well known Max-product operators.
We make

Remark 3.1. The Max-product Bernstein operators B(M)
N (f) (x) are de-

fined by (1.5), see also [5, p. 10]; here f : [0, 1]→ R+ is a continuous function.
We have B(M)

N (1) = 1, and

(3.1) B
(M)
N (|· − x|) (x) ≤ 6√

N+1 , ∀ x ∈ [0, 1] , ∀ N ∈ N,

see [5, p. 31].
B

(M)
N are positive sublinear operators and thus they possess the monotonic-

ity property, also since |· − x| ≤ 1, then |· − x|β ≤ 1, ∀ x ∈ [0, 1], ∀ β > 0.
Therefore it holds

(3.2) B
(M)
N

(
|· − x|1+β

)
(x) ≤ 6√

N+1 , ∀ x ∈ [0, 1] , ∀ N ∈ N, ∀ β > 0.

Furthermore, clearly it holds that

(3.3) B
(M)
N

(
|· − x|1+β

)
(x) > 0, ∀ N ∈ N, ∀ β ≥ 0 and any x ∈ (0, 1) .

The operator B(M)
N maps C+ ([0, 1]) into itself. �

We present

Theorem 3.2. Let 0 < α < 1, any x ∈ (0, 1), f ∈ AC ([0, 1] ,R+), and
f ′ ∈ L∞ ([0, 1]). Then

(3.4)
∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ (α+2)ω1

(
Dαx f,

(
6√
N+1

) 1
α+1
)

Γ(α+2)

(
6√
N+1

) α
α+1 ,

∀ N ∈ N.
As N → +∞, we get B(M)

N (f) (x)→ f (x), any x ∈ (0, 1) .

Proof. By Theorem 2.16 �

We continue with
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Remark 3.3. The truncated Favard-Szász-Mirakjan operators are given by

(3.5) T
(M)
N (f) (x) =

N∨
k=0

sN,k(x)f
(
k
N

)
N∨
k=0

sN,k(x)
, x ∈ [0, 1] , N ∈ N, f ∈ C+ ([0, 1]) ,

sN,k (x) = (Nx)k
k! , see also [5, p. 11].

By [5, p. 178-179],we get that

(3.6) T
(M)
N (|· − x|) (x) ≤ 3√

N
, ∀ x ∈ [0, 1] , ∀ N ∈ N.

Clearly it holds

(3.7) T
(M)
N

(
|· − x|1+β

)
(x) ≤ 3√

N
, ∀ x ∈ [0, 1] , ∀ N ∈ N, ∀ β > 0.

The operators T (M)
N are positive sublinear operators mapping C+ ([0, 1]) into

itself, with T
(M)
N (1) = 1.

Furthermore it holds
(3.8)

T
(M)
N

(
|· − x|λ

)
(x) =

N∨
k=0

(Nx)k
k!

∣∣∣ kN −x∣∣∣λ
N∨
k=0

(Nx)k
k!

> 0, ∀ x ∈ (0, 1], ∀ λ ≥ 1, ∀ N ∈ N.

�

We give

Theorem 3.4. Let 0 < α < 1, any x ∈ (0, 1], f ∈ AC ([0, 1] ,R+), and
f ′ ∈ L∞ ([0, 1]). Then

(3.9)
∣∣∣T (M)
N (f) (x)− f (x)

∣∣∣ ≤ (α+2)ω1

(
Dαx f,

(
3√
N

) 1
α+1
)

Γ(α+2)

(
3√
N

) α
α+1 , ∀ N ∈ N.

As N → +∞, we get T (M)
N (f) (x)→ f (x), for any x ∈ (0, 1].

Proof. By Theorem 2.16. �

We make

Remark 3.5. Next we study the truncated Max-product Baskakov opera-
tors (see [5, p. 11])

(3.10) U
(M)
N (f) (x) =

N∨
k=0

bN,k(x)f( kN )
N∨
k=0

bN,k(x)
, x ∈ [0, 1] , f ∈ C+ ([0, 1]) , N ∈ N,

where
(3.11) bN,k (x) =

(N+k−1
k

) xk

(1+x)N+k .
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From [5, pp. 217-218], we get (x ∈ [0, 1])

(3.12)
(
U

(M)
N (|· − x|)

)
(x) ≤ 2

√
3(√2+2)√
N+1 , N ≥ 2, N ∈ N.

Let λ ≥ 1, clearly then it holds

(3.13)
(
U

(M)
N

(
|· − x|λ

))
(x) ≤ 2

√
3(√2+2)√
N+1 , ∀ N ≥ 2, N ∈ N.

Also it holds U (M)
N (1) = 1, and U

(M)
N are positive sublinear operators from

C+ ([0, 1]) into itself. Furthermore it holds

(3.14) U
(M)
N

(
|· − x|λ

)
(x) > 0, ∀ x ∈ (0, 1], ∀ λ ≥ 1, ∀ N ∈ N.

�

We give

Theorem 3.6. Let 0 < α < 1, any x ∈ (0, 1], f ∈ AC ([0, 1] ,R+), and
f ′ ∈ L∞ ([0, 1]). Then

∣∣∣U (M)
N (f) (x)− f (x)

∣∣∣ ≤ (α+2)ω1

(
Dαx f,

(
2
√

3(
√

2+2)√
N+1

) 1
α+1
)

Γ(α+2) ·
(

2
√

3(√2+2)√
N+1

) α
α+1

,

(3.15)

∀ N ≥ 2, N ∈ N.
As N → +∞, we get U (M)

N (f) (x)→ f (x), for any x ∈ (0, 1].

Proof. By Theorem 2.16. �

We continue with

Remark 3.7. Here we study the Max-product Meyer-Köning and Zeller
operators (see [5, p. 11]) defined by

(3.16) Z
(M)
N (f) (x) =

∞∨
k=0

sN,k (x) f
(

k
N+k

)
∞∨
k=0

sN,k (x)
, ∀N ∈ N, f ∈ C+ ([0, 1]) ,

sN,k (x) =
(N+k

k

)
xk, x ∈ [0, 1].

By [5, p. 253], we get that

(3.17) Z
(M)
N (|· − x|) (x) ≤ 8(1+

√
5)

3

√
x(1−x)√
N

, ∀ x ∈ [0, 1] , ∀ N ≥ 4, N ∈ N.

As before we get that (for λ ≥ 1)

(3.18) Z
(M)
N

(
|· − x|λ

)
(x) ≤ 8(1+

√
5)

3

√
x(1−x)√
N

:= ρ (x) ,

∀ x ∈ [0, 1], N ≥ 4, N ∈ N.



11 Caputo fractional approximation by sublinear operators 99

Also it holds Z(M)
N (1) = 1, and Z

(M)
N are positive sublinear operators from

C+ ([0, 1]) into itself. Also it holds

(3.19) Z
(M)
N

(
|· − x|λ

)
(x) > 0, ∀ x ∈ (0, 1), ∀ λ ≥ 1, ∀ N ∈ N.

We give
Theorem 3.8. Let 0 < α < 1, any x ∈ (0, 1), f ∈ AC ([0, 1] ,R+), and

f ′ ∈ L∞ ([0, 1]). Then

(3.20)
∣∣∣Z(M)
N (f) (x)− f (x)

∣∣∣ ≤ (α+2)ω1

(
Dαx f,(ρ(x))

1
α+1
)

Γ(α+2) (ρ (x))
α
α+1

∀ N ≥ 4, N ∈ N.
As N → +∞, we get Z(M)

N (f) (x)→ f (x), for any x ∈ (0, 1).
Proof. By Theorem 2.16. �

We continue with
Remark 3.9. Here we deal with the Max-product truncated sampling op-

erators (see [5, p. 13]) defined by

(3.21) W
(M)
N (f) (x) =

N∨
k=0

sin(Nx−kπ)
Nx−kπ f

(
kπ
N

)
N∨
k=0

sin(Nx−kπ)
Nx−kπ

,

and

(3.22) K
(M)
N (f) (x) =

N∨
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(
kπ
N

)
N∨
k=0

sin2(Nx−kπ)
(Nx−kπ)2

,

∀ x ∈ [0, π], f : [0, π]→ R+ a continuous function.
Following [5, p. 343], and making the convention sin(0)

0 = 1 and denoting
sN,k (x) = sin(Nx−kπ)

Nx−kπ , we get that sN,k
(
kπ
N

)
= 1, and sN,k

(
jπ
N

)
= 0, if k 6= j,

furthermore W (M)
N (f) ( jπN ) = f( jπN ), for all j ∈ {0, ..., N} .

Clearly W (M)
N (f) is a well-defined function for all x ∈ [0, π], and it is con-

tinuous on [0, π], also W (M)
N (1) = 1.

By [5, p. 344], W (M)
N are positive sublinear operators.

Call I+
N (x) = {k ∈ {0, 1, ..., N} ; sN,k (x) > 0}, and set xN,k := kπ

N , k ∈
{0, 1, ..., N}.

We see that

(3.23) W
(M)
N (f) (x) =

∨
k∈I+

N (x)
sN,k (x) f (xN,k)∨

k∈I+
N (x)

sN,k (x) .
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By [5, p. 346],we have

(3.24) W
(M)
N (|· − x|) (x) ≤ π

2N , ∀ N ∈ N, ∀ x ∈ [0, π] .
Notice also |xN,k − x| ≤ π, ∀ x ∈ [0, π] .

Therefore (λ ≥ 1) it holds

(3.25) W
(M)
N

(
|· − x|λ

)
(x) ≤ πλ−1π

2N = πλ

2N , ∀ x ∈ [0, π] , ∀ N ∈ N.

If x ∈
(
jπ
N ,

(j+1)π
N

)
, with j ∈ {0, 1, ..., N}, we obtain nx− jπ ∈ (0, π) and thus

sN,j (x) = sin(Nx−jπ)
Nx−jπ > 0, see [5, pp. 343-344].

Consequently it holds (λ ≥ 1)

(3.26) W
(M)
N

(
|· − x|λ

)
(x) =

∨
k∈I+

N
(x)

sN,k(x)|xN,k−x|λ∨
k∈I+

N
(x)

sN,k(x) > 0, ∀ x ∈ [0, π] ,

such that x 6= xN,k, for any k ∈ {0, 1, ..., N} . �

We give

Theorem 3.10. Let 0 < α < 1, any x ∈ [0, π] be such that x 6= kπ
N ,

k ∈ {0, 1, ..., N}, ∀ N ∈ N; f ∈ AC ([0, π] ,R+), and f ′ ∈ L∞ ([0, π]). Then
(3.27)

∣∣∣W (M)
N (f) (x)− f (x)

∣∣∣ ≤ (α+2)ω1

(
Dαx f,

(
πα+1

2N

) 1
α+1
)

Γ(α+2)

(
πα+1

2N

) α
α+1 , ∀ N ∈ N.

As N → +∞, we get W (M)
N (f) (x)→ f (x).

Proof. By Theorem 2.16. �

We make

Remark 3.11. Here we continue with the Max-product truncated sampling
operators (see [5, p. 13]) defined by

(3.28) K
(M)
N (f) (x) =

N∨
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(
kπ
N

)
N∨
k=0

sin2(Nx−kπ)
(Nx−kπ)2

,

∀ x ∈ [0, π], f : [0, π]→ R+ a continuous function.
Following [5, p. 350], and making the convention sin(0)

0 = 1 and denoting
sN,k (x) = sin2(Nx−kπ)

(Nx−kπ)2 , we get that sN,k
(
kπ
N

)
= 1, and sN,k

(
jπ
N

)
= 0, if k 6= j,

furthermore K(M)
N (f)

(
jπ
N

)
= f

(
jπ
N

)
, for all j ∈ {0, ..., N} .

Since sN,j
(
jπ
N

)
= 1 it follows that

∨N
k=0 sN,k

(
jπ
N

)
≥ 1 > 0, for all j ∈

{0, 1, ..., N}. Hence K(M)
N (f) is well-defined function for all x ∈ [0, π], and it
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is continuous on [0, π], also K
(M)
N (1) = 1. By [5, p. 350], K(M)

N are positive
sublinear operators.

Denote xN,k := kπ
N , k ∈ {0, 1, ..., N}.

By [5, p. 352], we have

(3.29) K
(M)
N (|· − x|) (x) ≤ π

2N , ∀ N ∈ N, ∀ x ∈ [0, π] .
Notice also |xN,k − x| ≤ π, ∀ x ∈ [0, π] .

Therefore (λ ≥ 1) it holds

(3.30) K
(M)
N

(
|· − x|λ

)
(x) ≤ πλ−1π

2N = πλ

2N , ∀ x ∈ [0, π] , ∀ N ∈ N.

If x ∈
(
jπ
N ,

(j+1)π
N

)
, with j ∈ {0, 1, ..., N}, we obtain nx− jπ ∈ (0, π) and thus

sN,j (x) = sin2(Nx−jπ)
(Nx−jπ)2 > 0, see [5, pp. 350].

Consequently it holds (λ ≥ 1)

(3.31) K
(M)
N

(
|· − x|λ

)
(x) =

N∨
k=0

sN,k(x)|xN,k−x|λ

N∨
k=0

sN,k(x)
> 0, ∀ x ∈ [0, π] ,

such that x 6= xN,k, for any k ∈ {0, 1, ..., N} . �

We give

Theorem 3.12. Let 0 < α < 1, x ∈ [0, π] be such that x 6= kπ
N , k ∈

{0, 1, ..., N}, ∀ N ∈ N; f ∈ AC ([0, π] ,R+), and f ′ ∈ L∞ ([0, π]). Then
(3.32)

∣∣∣K(M)
N (f) (x)− f (x)

∣∣∣ ≤ (α+2)ω1

(
Dαx f,

(
πα+1

2N

) 1
α+1
)

Γ(α+2)

(
πα+1

2N

) α
α+1 , ∀ N ∈ N.

As N → +∞, we get K(M)
N (f) (x)→ f (x).

Proof. By Theorem 2.16. �

When α = 1
2 we get:

Corollary 3.13. Let f ∈ AC ([0, 1] ,R+), f ′ ∈ L∞ ([0, 1]). Then

(3.33)
∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ 10 3√6ω1

(
D

1
2
x f,

3√36
3√N+1

)
3
√
π 6√N+1 , ∀ x ∈ (0, 1) , ∀ N ∈ N.

Proof. By Theorem 3.2. �

Due to lack of space we avoid to give other applications when α = 1
2 from

the other Max-product operators.
II) Case α > 1, α /∈ N.
Here we apply Theorem 2.14 to well known Max-product operators.
We present
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Theorem 3.14. Let α > 1, α /∈ Nm = dαe, x ∈ [0, 1], f ∈ ACm ([0, 1] ,R+),
and f (m) ∈ L∞ ([0, 1]). Furthermore we assume that f (k) (x) = 0, k =
1, ...,m− 1. Then

∣∣∣B(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
Dαx f,

(
6√
N+1

) 1
α+1
)

Γ(α+1) ·
[

6√
N+1 + 1

(α+1)

(
6√
N+1

) α
α+1
]
,

(3.34)

∀ N ∈ N.

We get lim
N→+∞

B
(M)
N (f) (x) = f (x) .

Proof. Applying (2.30) for B(M)
N and using (3.2), we get

(3.35)
∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ ω1(Dαx f,δ)

Γ(α+1)

[
6√
N+1 +

6√
N+1

(α+1)δ

]
.

Choose δ =
(

6√
N+1

) 1
α+1 , then δα+1 = 6√

N+1 , and apply it to (3.35). Clearly
we derive (3.34). �

We continue with

Theorem 3.15. Same assumptions as in Theorem 3.14. Then

∣∣∣T (M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
Dαx f,

(
3√
N

) 1
α+1
)

Γ(α+1)

[
3√
N

+ 1
(α+1)

(
3√
N

) α
α+1
]
,(3.36)

∀ N ∈ N.
We get lim

N→+∞
T

(M)
N (f) (x) = f (x) .

Proof. Use of Theorem 2.14, similar to the proof of Theorem 3.14. �

We give

Theorem 3.16. Same assumptions as in Theorem 3.14. Then∣∣∣U (M)
N (f) (x)− f (x)

∣∣∣ ≤
≤

ω1

(
Dαx f,

(
2
√

3(
√

2+2)√
N+1

) 1
α+1
)

Γ(α+1) ·
[

2
√

3(√2+2)√
N+1 + 1

(α+1)

(
2
√

3(√2+2)√
N+1

) α
α+1
]
,(3.37)

∀ N ∈ N, N ≥ 2.
We get lim

N→+∞
U

(M)
N (f) (x) = f (x) .

Proof. Use of Theorem 2.14, similar to the proof of Theorem 3.14. �

We give
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Theorem 3.17. Same assumptions as in Theorem 3.14. Then

∣∣∣Z(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
Dαx f,(ρ(x))

1
α+1
)

Γ(α+1) ·
[
ρ (x) + 1

(α+1) (ρ (x))
α
α+1
]
,

(3.38)

∀ N ∈ N, N ≥ 4.
We get lim

N→+∞
Z

(M)
N (f) (x) = f (x) , where ρ (x) is as in (3.18).

Proof. Use of Theorem 2.14, similar to the proof of Theorem 3.14. �

We continue with

Theorem 3.18. Let α > 1, α /∈ N, m = dαe, x ∈ [0, π] ⊂ R, f ∈
ACm ([0, π] ,R+), and f (m) ∈ L∞ ([0, π]). Furthermore we assume that f (k) (x)
= 0, k = 1, ...,m− 1. Then

∣∣∣W (M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
Dαx f,

(
πα+1

2N

) 1
α+1
)

Γ(α+1) ·
[
πα

2N + 1
(α+1)

(
πα+1

2N

) α
α+1
]
,

(3.39)

∀ N ∈ N.
We have that lim

N→+∞
W

(M)
N (f) (x) = f (x) .

Proof. Applying (2.30) for W (M)
N and using (3.25), we get

(3.40)
∣∣∣W (M)

N (f) (x)− f (x)
∣∣∣ ≤ ω1(Dαx f,δ)

Γ(α+1)

[
πα

2N +
πα+1

2N
(α+1)δ

]
.

Choose δ =
(
πα+1

2N

) 1
α+1 , i.e. δα+1 = πα+1

2N , and δα =
(
πα+1

2N

) α
α+1 . We use the

last into (3.40) and we obtain (3.39). �

We also have

Theorem 3.19. Let α > 1, α /∈ N, m = dαe, x ∈ [0, π] ⊂ R, f ∈
ACm ([0, π] ,R+), and f (m) ∈ L∞ ([0, π]). Furthermore we assume that
f (k) (x) = 0, k = 1, ...,m− 1. Then

∣∣∣K(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
Dαx f,

(
πα+1

2N

) 1
α+1
)

Γ(α+1) ·
[
πα

2N + 1
(α+1)

(
πα+1

2N

) α
α+1
]
,

(3.41)

∀ N ∈ N.
We have that lim

N→+∞
K

(M)
N (f) (x) = f (x) .

Proof. As in Theorem 3.18. �

We make
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Remark 3.20. We mention the interpolation Hermite-Fejer polynomials
on Chebyshev knots of the first kind (see [5, p. 4]): Let f : [−1, 1] → R
and based on the knots xN,k = cos

(
(2(N−k)+1)

2(N+1) π
)
∈ (−1, 1), k ∈ {0, ..., N},

−1 < xN,0 < xN,1 < ... < xN,N < 1, which are the roots of the first kind
Chebyshev polynomial TN+1 (x) = cos ((N + 1) arccosx), we define (see Fejér
[9])

(3.42) H2N+1 (f) (x) =
N∑
k=0

hN,k (x) f (xN,k) ,

where

(3.43) hN,k (x) = (1− x · xN,k)
(

TN+1(x)
(N+1)(x−xN,k)

)2
,

the fundamental interpolation polynomials.
The Max-product interpolation Hermite-Fejér operators on Chebyshev

knots of the first kind (see [5, p. 12]) are defined by

(3.44) H
(M)
2N+1 (f) (x) =

N∨
k=0

hN,k(x)f(xN,k)
N∨
k=0

hN,k(x)
, ∀ N ∈ N,

where f : [−1, 1]→ R+ is continuous.
Call

(3.45) EN (x) := H
(M)
2N+1 (|· − x|) (x) =

N∨
k=0

hN,k(x)|xN,k−x|
N∨
k=0

hN,k(x)
, x ∈ [−1, 1] .

Then by [5, p. 287], we obtain that

(3.46) EN (x) ≤ 2π
N+1 , ∀ x ∈ [−1, 1] , N ∈ N.

For m > 1, we get

H
(M)
2N+1 (|· − x|m) (x) =

N∨
k=0

hN,k(x)|xN,k−x|m

N∨
k=0

hN,k(x)
=

=

N∨
k=0

hN,k(x)|xN,k−x||xN,k−x|m−1

N∨
k=0

hN,k(x)
≤ 2m−1

N∨
k=0

hN,k(x)|xN,k−x|
N∨
k=0

hN,k(x)

≤ 2mπ
N+1 , ∀x ∈ [−1, 1] , N ∈ N.(3.47)

Hence it holds
(3.48) H

(M)
2N+1 (|· − x|m) (x) ≤ 2mπ

N+1 , ∀x ∈ [−1, 1] , m > 1, ∀ N ∈ N.
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Furthermore we have

(3.49) H
(M)
2N+1 (1) (x) = 1, ∀ x ∈ [−1, 1] ,

and H(M)
2N+1 maps continuous functions to continuous functions over [−1, 1] and

for any x ∈ R we have
∨N
k=0 hN,k (x) > 0.

We also have hN,k (xN,k) = 1, and hN,k (xN,j) = 0, if k 6= j, furthermore it
holds H(M)

2N+1 (f) (xN,j) = f (xN,j), for all j ∈ {0, ..., N}, see [5, p. 282].
H

(M)
2N+1 are positive sublinear operators, [5, p. 282]. �

We give

Theorem 3.21. Let α>1, α /∈ N, m=dαe, x ∈ [−1, 1], f ∈ ACm ([−1, 1] ,R+),
and f (m) ∈ L∞ ([−1, 1]). Furthermore we assume that f (k) (x) = 0, k =
1, ...,m− 1. Then

∣∣∣H(M)
2N+1 (f) (x)− f (x)

∣∣∣ ≤ ω1

(
Dαx f,

(
2α+1π
N+1

) 1
α+1
)

Γ(α+1) ·
[

2απ
N+1 + 1

(α+1)

(
2α+1π
N+1

) α
α+1
]
,

(3.50)

∀ N ∈ N.
Furthermore it holds lim

N→+∞
H

(M)
2N+1 (f) (x) = f (x) .

Proof. By Theorem 2.14, choose δ :=
(

2α+1π
N+1

) 1
α+1 , use (2.30), (3.48). �

We continue with

Remark 3.22. Here we deal with Lagrange interpolation polynomials on
Chebyshev knots of second kind plus the endpoints ±1 (see [5, p. 5]). These
polynomials are linear operators attached to f : [−1, 1]→ R and to the knots
xN,k = cos

((
N−k
N−1

)
π
)
∈ [−1, 1], k = 1, ..., N, N ∈ N, which are the roots of

ωN (x) = sin (N − 1) t sin t, x = cos t. Notice that xN,1 = −1 and xN,N = 1.
Their formula is given by [5, p. 377]

(3.51) LN (f) (x) =
N∑
k=1

lN,k (x) f (xN,k) ,

where

(3.52) lN,k (x) = (−1)k−1ωN (x)
(1+δk,1+δk,N)(N−1)(x−xN,k) ,

N ≥ 2, k = 1, ..., N , and ωN (x) =
∏N
k=1 (x− xN,k) and δi,j denotes the

Kronecher’s symbol, that is δi,j = 1, if i = j, and δi,j = 0, if i 6= j.
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The Max-product Lagrange interpolation operators on Chebyshev knots of
second kind, plus the endpoints ±1, are defined by [5, p. 12]

(3.53) L
(M)
N (f) (x) =

N∨
k=1

lN,k(x)f(xN,k)
N∨
k=1

lN,k(x)
, x ∈ [−1, 1] ,

where f : [−1, 1]→ R+ continuous.
First we see that L(M)

N (f) (x) is well defined and continuous for any x ∈
[−1, 1]. Following [5, p. 289], because

∑N
k=1 lN,k (x) = 1, ∀ x ∈ R, for any x

there exists k ∈ {1, ..., N} : lN,k (x) > 0, hence
∨N
k=1 lN,k (x) > 0. We have

that lN,k (xN,k) = 1, and lN,k (xN,j) = 0, if k 6= j. Furthermore it holds
L

(M)
N (f) (xN,j) = f (xN,j), all j ∈ {1, ..., N} , and L

(M)
N (1) = 1.

Call I+
N (x) = {k ∈ {1, ..., N} ; lN,k (x) > 0}, then I+

N (x) 6= ∅.
So for f ∈ C+ ([−1, 1]) we get

(3.54) L
(M)
N (f) (x) =

∨
k∈I+

N
(x)

lN,k(x)f(xN,k)∨
k∈I+

N
(x)

lN,k(x) ≥ 0.

Notice here that |xN,k − x| ≤ 2, ∀ x ∈ [−1, 1] .
By [5, p. 297], we get that

L
(M)
N (|· − x|) (x) =

N∨
k=1

lN,k(x)|xN,k−x|
N∨
k=1

lN,k(x)
=

∨
k∈I+

N
(x)

lN,k(x)|xN,k−x|∨
k∈I+

N
(x)

lN,k(x) ≤ π2

6(N−1) ,

(3.55)

N ≥ 3, ∀ x ∈ (−1, 1), N is odd.
We get that (m > 1)

(3.56) L
(M)
N (|· − x|m) (x) =

∨
k∈I+

N
(x)

lN,k(x)|xN,k−x|m∨
k∈I+

N
(x)

lN,k(x) ≤ 2m−1π2

6(N−1) ,

N ≥ 3 odd, ∀ x ∈ (−1, 1) .
L

(M)
N are positive sublinear operators, [5, p. 290]. �

We give

Theorem 3.23. Same assumptions as in Theorem 3.21. Then

∣∣∣L(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
Dαx f,

(
2απ2

6(N−1)

) 1
α+1
)

Γ(α+1)

[
2α−1π2

6(N−1) + 1
(α+1)

(
2απ2

6(N−1)

) α
α+1
]
,

(3.57)
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∀ N ∈ N : N ≥ 3, odd.
It holds lim

N→+∞
L

(M)
N (f) (x) = f (x) .

Proof. By Theorem 2.14, choose δ :=
(

2απ2

6(N−1)

) 1
α+1 , use of (2.30) and (3.56).

At ±1 the left hand side of (3.57) is zero, thus (3.57) is trivially true. �

We make

Remark 3.24. Let f ∈ C+ ([−1, 1]), N ≥ 4, N ∈ N, N even.
By [5, p. 298], we get

(3.58) L
(M)
N (|· − x|) (x) ≤ 4π2

3(N−1) = 22π2

3(N−1) , ∀x ∈ (−1, 1) .

Hence (m > 1)

(3.59) L
(M)
N (|· − x|m) (x) ≤ 2m+1π2

3(N−1) , ∀ x ∈ (−1, 1) .

�

We present

Theorem 3.25. Same assumptions as in Theorem 3.21. Then

∣∣∣L(M)
N (f) (x)−f (x)

∣∣∣ ≤ ω1

(
Dαx f,

(
2α+2π2
3(N−1)

) 1
α+1
)

Γ(α+1)

[
2α+1π2

3(N−1) + 1
(α+1)

(
2α+2π2

3(N−1)

) α
α+1
]
,

(3.60)

∀ N ∈ N, N ≥ 4, N is even.
It holds lim

N→+∞
L

(M)
N (f) (x) = f (x) .

Proof. By Theorem 2.14, choose δ :=
(

2α+2π2

3(N−1)

) 1
α+1 , use of (2.30) and (3.59).

At ±1, (3.60) is trivially true. �

We need

Definition 3.26. ([6, p. 41]). Let I ⊂ R be an interval of finite or infinite
length, and f : I → R a bounded or uniformly continuous function. We define
the first modulus of continuity

(3.61) ω1 (f, δ)I = sup
x,y∈I
|x−y|≤δ

|f (x)− f (y)| , δ > 0.

Clearly, it holds ω1 (f, δ)I < +∞.
We also have

(3.62) ω1 (f, rδ)I ≤ (r + 1)ω1 (f, δ)I , any r ≥ 0.
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Convention 3.27. Let a real number m > 1, from now on we assume
that Dm

x0−f is either bounded or uniformly continuous function on (−∞, x0],
similarly from now on we assume that Dm

∗x0f is either bounded or uniformly
continuous function on [x0,+∞).

We need

Definition 3.28. Let Dm
x0f (real number m > 1) denote any of Dm

x0−f ,
Dm
∗x0f and δ > 0. We set

(3.63) ω1
(
Dm
x0f, δ

)
R := max

{
ω1
(
Dm
x0−f, δ

)
(−∞,x0] , ω1

(
Dm
∗x0f, δ

)
[x0,+∞)

}
,

where x0 ∈ R. Notice that ω1
(
Dm
x0f, δ

)
R < +∞.

We will use

Theorem 3.29. Let the real number m > 0, m /∈ N, λ = dme, x0 ∈ R,
f ∈ ACλ ([a, b] ,R+) (i.e. f (λ−1) ∈ AC [a, b] , absolutely continuous functions
on [a, b]), ∀ [a, b] ⊂ R, and f (λ) ∈ L∞ (R). Furthermore we assume that
f (k) (x0) = 0, k = 1, ..., λ− 1. The Convention 3.27 is imposed here. Then

(3.64) |f (x)− f (x0)| ≤
ω1(Dmx0f,δ)R

Γ(m+1)

[
|x− x0|m + |x−x0|m+1

(m+1)δ

]
, δ > 0,

for all x ∈ R.
If 0 < m < 1, then we do not need initial conditions.

Proof. Similar to Theorem 2.10. �

We continue with

Remark 3.30. Let b : R → R+ be a centered (it takes a global maximum
at 0) bell-shaped function, with compact support [−T, T ], T > 0 (that is
b (x) > 0 for all x ∈ (−T, T )) and I =

∫ T
−T b (x) dx > 0.

The Cardaliaguet-Euvrard neural network operators are defined by (see [4])

(3.65) CN,α (f) (x) =
N2∑

k=−N2

f( kn)
IN1−α b

(
N1−α

(
x− k

N

))
,

0 < α < 1, N ∈ N and typically here f : R→ R is continuous and bounded or
uniformly continuous on R.
CB (R) denotes the continuous and bounded function on R, and

CB+ (R) = {f : R→ [0,∞); f ∈ CB (R)} .
The corresponding max-product Cardaliaguet-Euvrard neural network opera-
tors will be given by

(3.66) C
(M)
N,α (f) (x) =

N2∨
k=−N2

b(N1−α(x− k
N ))f( kN )

N2∨
k=−N2

b(N1−α(x− k
N ))

,
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x ∈ R, typically here f ∈ CB+ (R), see also [4].
Next we follow [4].
For any x ∈ R, denoting

JT,N (x) =
{
k ∈ Z; −N2 ≤ k ≤ N2, N1−α

(
x− k

N

)
∈ (−T, T )

}
,

we can write

(3.67) C
(M)
N,α (f) (x) =

∨
k∈JT,N (x)

b(N1−α(x− k
N ))f( kN )∨

k∈JT,N (x)
b(N1−α(x− k

N )) ,

x ∈ R, N > max
{
T + |x| , T−

1
α

}
, where JT,N (x) 6= ∅. Indeed, we have∨

k∈JT,N (x) b
(
N1−α

(
x− k

N

))
> 0, ∀ x ∈ R and N > max

{
T + |x| , T−

1
α

}
.

We have that C(M)
N,α (1) (x) = 1, ∀ x ∈ R and N > max

{
T + |x| , T−

1
α

}
.
�

See in [4, Lemma 2.1, Corollary 2.2 and Remarks].
We need

Theorem 3.31. [4]. Let b (x) be a centered bell-shaped function, continuous
and with compact support [−T, T ], T > 0, 0 < α < 1 and C

(M)
N,α be defined as

in (3.66).
(i) If |f (x)| ≤ c for all x ∈ R then

∣∣∣C(M)
N,α (f) (x)

∣∣∣ ≤ c, for all x ∈ R and

N > max
{
T + |x| , T−

1
α

}
and C(M)

N,α (f) (x) is continuous at any point x ∈ R,

for all N > max
{
T + |x| , T−

1
α

}
;

(ii) If f, g ∈ CB+ (R) satisfy f (x) ≤ g (x) for all x ∈ R, then C(M)
N,α (f) (x) ≤

C
(M)
N,α (g) (x) for all x ∈ R and N > max

{
T + |x| , T−

1
α

}
;

(iii) C(M)
N,α (f + g) (x) ≤ C

(M)
N,α (f) (x) + C

(M)
N,α (g) (x) for all f, g ∈ CB+ (R),

x ∈ R and N > max
{
T + |x| , T−

1
α

}
;

(iv) For all f, g ∈ CB+ (R), x ∈ R and N > max
{
T + |x| , T−

1
α

}
, we have∣∣∣C(M)

N,α (f) (x)− C(M)
N,α (g) (x)

∣∣∣ ≤ C(M)
N,α (|f − g|) (x) ;

(v) C(M)
N,α is positive homogeneous, that is C(M)

N,α (λf) (x) = λC
(M)
N,α (f) (x) for

all λ ≥ 0, x ∈ R, N > max
{
T + |x| , T−

1
α

}
and f ∈ CB+ (R) .

We make

Remark 3.32. We have that

(3.68) EN,α (x) := C
(M)
N,α (|· − x|) (x) =

∨
k∈JT,N (x)

b(N1−α(x− k
N ))|x− k

N |∨
k∈JT,N (x)

b(N1−α(x− k
N )) ,
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∀ x ∈ R, and N > max
{
T + |x| , T−

1
α

}
. �

We mention from [4] the following:

Theorem 3.33. [4]. Let b (x) be a centered bell-shaped function, continuous
and with compact support [−T, T ], T > 0 and 0 < α < 1. In addition, suppose
that the following requirements are fulfilled:

(i) There exist 0 < m1 ≤ M1 < ∞ such that m1 (T − x) ≤ b (x) ≤
M1 (T − x), ∀ x ∈ [0, T ] ;

(ii) There exist 0 < m2 ≤ M2 < ∞ such that m2 (x+ T ) ≤ b (x) ≤
M2 (x+ T ), ∀ x ∈ [−T, 0].

Then for all f ∈ CB+ (R), x ∈ R and for all N ∈ N satisying N >

max
{
T + |x| ,

(
2
T

) 1
α

}
, we have the estimate

(3.69)
∣∣∣C(M)

N,α (f) (x)− f (x)
∣∣∣ ≤ c ω1

(
f,Nα−1

)
R
,

where
c := 2

(
max

{
TM2
2m2

, TM1
2m1

}
+ 1

)
,

and
ω1 (f, δ)R := sup

x,y∈R:
|x−y|≤δ

|f (x)− f (y)| .

We make

Remark 3.34. In [4], was proved that

(3.70) EN,α (x) ≤ max
{
TM2
2m2

, TM1
2m1

}
Nα−1, ∀ N > max

{
T + |x| ,

( 2
T

) 1
α

}
.

That is
(3.71)
C

(M)
N,α (|· − x|) (x) ≤ max

{
TM2
2m2

, TM1
2m1

}
Nα−1, ∀ N > max

{
T + |x| ,

( 2
T

) 1
α

}
.

From (3.68) we have that
∣∣∣x− k

N

∣∣∣ ≤ T
N1−α .

Hence (m > 1) (∀ x ∈ R and N > max
{
T + |x| ,

( 2
T

) 1
α

}
)

C
(M)
N,α (|· − x|m) (x) =

∨
k∈JT,N (x)

b(N1−α(x− k
N ))|x− k

N |
m

∨
k∈JT,N (x)

b(N1−α(x− k
N ))

≤
(

T
N1−α

)m−1
max

{
TM2
2m2

, TM1
2m1

}
Nα−1,

∀ N > max
{
T+|x| ,

(
2
T

) 1
α

}
.

(3.72)
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Then (m > 1) it holds

C
(M)
N,α (|· − x|m) (x) ≤ Tm−1 max

{
TM2
2m2

, TM1
2m1

}
1

Nm(1−α) ,

∀ N > max
{
T + |x| ,

(
2
T

) 1
α

}
.(3.73)

Call
(3.74) θ := max

{
TM2
2m2

, TM1
2m1

}
> 0.

Consequently (m > 1) we derive

(3.75) C
(M)
N,α (|· − x|m) (x) ≤ θTm−1

Nm(1−α) , ∀ N > max
{
T + |x| ,

(
2
T

) 1
α

}
.

�

We need

Theorem 3.35. All here as in Theorem 3.29, where x = x0 ∈ R is fixed.
Let b be a centered bell-shaped function, continuous and with compact support
[−T, T ], T > 0, 0 < α < 1 and C(M)

N,α be defined as in (3.66). Then∣∣∣C(M)
N,α (f) (x)− f (x)

∣∣∣ ≤ ω1(Dmx f,δ)R
Γ(m+1)

[
C

(M)
N,α (|· − x|m) (x) + C

(M)
N,α (|·−x|m+1)(x)

(m+1)δ

]
,

∀ N ∈ N : N > max
{
T + |x| , T−

1
α

}
.

Proof. By Theorem 3.29 and (3.64) we get

(3.76) |f (·)− f (x)| ≤ ω1(Dmx f,δ)R
Γ(m+1)

[
|· − x|m + |·−x|m+1

(m+1)δ

]
, δ > 0,

true over R.
As in Theorem 3.31 and using similar reasoning and C

(M)
N,α (1) = 1, we get∣∣∣C(M)

N,α (f) (x)− f (x)
∣∣∣ ≤ C(M)

N,α (|f (·)− f (x)|) (x)
(3.76)
≤

(3.76)
≤ ω1(Dmx f,δ)R

Γ(m+1)

[
C

(M)
N,α (|· − x|m) (x) + C

(M)
N,α (|·−x|m+1)(x)

(m+1)δ

]
,(3.77)

∀ N ∈ N : N > max
{
T + |x| , T−

1
α

}
. �

We continue with

Theorem 3.36. Here all as in Theorem 3.29, where x = x0 ∈ R is fixed
and m > 1. Also the same assumptions as in Theorem 3.33. Then∣∣∣C(M)

N,α (f) (x)− f (x)
∣∣∣ ≤ 1

Γ(m+1)ω1

(
Dm
x f,

(
θTm

N(m+1)(1−α)

) 1
m+1

)
R
·

·
[
θTm−1

Nm(1−α) + 1
(m+1)

(
θTm

N(m+1)(1−α)

) m
m+1

]
,(3.78)
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∀ N ∈ N : N > max
{
T + |x| ,

( 2
T

) 1
α

}
.

We have that lim
N→+∞

C
(M)
N,α (f) (x) = f (x) .

Proof. We apply Theorem 3.35. In (3.35) we choose

δ :=
(

θTm

N(m+1)(1−α)

) 1
m+1 ,

thus δm+1 = θTm

N(m+1)(1−α) , and

(3.79) δm =
(

θTm

N(m+1)(1−α)

) m
m+1 .

Therefore we have∣∣∣C(M)
N,α (f) (x)− f (x)

∣∣∣ (3.75)
≤

(3.75)
≤ 1

Γ(m+1)ω1

(
Dm
x f,

(
θTm

N(m+1)(1−α)

) 1
m+1

)
R
·
[
θTm−1

Nm(1−α) + 1
(m+1)δ

θTm

N(m+1)(1−α)

]
= 1

Γ(m+1)ω1

(
Dm
x f,

(
θTm

N(m+1)(1−α)

) 1
m+1

)
R

[
θTm−1

Nm(1−α) + 1
(m+1)δ δ

m+1
]

(3.79)= 1
Γ(m+1)ω1

(
Dm
x f,

(
θTm

N(m+1)(1−α)

) 1
m+1

)
R

[
θTm−1

Nm(1−α) + 1
(m+1)

(
θTm

N(m+1)(1−α)

) m
m+1

](3.80)

∀ N ∈ N : N > max
{
T + |x| ,

(
2
T

) 1
α

}
, proving the inequality (3.78). �

We finish with (case of α = 1.5)

Corollary 3.37. Let x ∈ [0, 1], f ∈ AC2 ([0, 1] ,R+) and f (2) ∈ L∞ ([0, 1]).
Assume that f ′ (x) = 0. Then

∣∣∣B(M)
N (f) (x)− f (x)

∣∣∣ ≤ 4ω1

(
D1.5
x f,

(
6√
N+1

) 2
5
)

3
√
π

[
6√
N+1 + 2

5

(
6√
N+1

) 3
5

]
,(3.81)

∀ N ∈ N.

Proof. By Theorem 3.14, apply (3.34). �

Due to lack of space we do not give other example applications.
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