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CAPUTO FRACTIONAL APPROXIMATION
BY SUBLINEAR OPERATORS

GEORGE A. ANASTASSIOU*

Abstract. Here we consider the approximation of functions by sublinear posi-
tive operators with applications to a big variety of Max-Product operators under
Caputo fractional differentiability. Our study is based on our general fractional
results about positive sublinear operators. We produce Jackson type inequalities
under simple initial conditions. So our approach is quantitative by producing
inequalities with their right hand sides involving the modulus of continuity of
fractional derivative of the function under approximation.
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1. INTRODUCTION

The main motivation here is the monograph by B. Bede, L. Coroianu and
S. Gal [5l 2016].

Let N € N, the well-known Bernstein polynomials [II] are positive linear
operators, defined by the formula

N
(L) By (f) (@)= ("1 -a)" " (), «€0,1], feC(01).
k=0
T. Popoviciu in [12] (1935), proved for f € C ([0, 1]) that
(12) By (f) (@) = f @) < Gwi (£, ), Yaelo],
where
(1.3) w1 (f,0) = sup |f(x) = f(y)l, >0,
z,y€a,b]:
|z—y|<é
is the first modulus of continuity, here [a, b] = [0, 1].
G.G. Lorentz in [I1 p. 21] (1986), proved for f € C! (]0,1]) that
(14) By (f) (@) = f (@) < Zown (), Yaelo],
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In [5 p. 1], the authors introduced the basic Max-product Bernstein oper-
ators,

N
V o k(@) (%)

(15) BYY () (@) = Hor———, NeN,
pN,k(ff)
k=0
where \/ stands for maximum, and pyj (z) = (]]X)mk (1—2)V" and f :

[0,1] — R4 = [0, 00).

These are nonlinear and piecewise rational operators.

The authors in [5] studied similar such nonlinear operators such as: the
Max-product Favard-Szasz-Mirakjan operators and their truncated version,
the Max-product Baskakov operators and their truncated version, also many
other similar specific operators. The study in [5] is based on presented there
general theory of sublinear operators. These Max-product operators tend to
converge faster to the on hand function.

So we mention from [5, p. 30], that for f : [0,1] — Ry continuous, we have
the estimate

(1.6) ‘B](VM)(f)(m)—f(m)’gmwl (f ), forall NeN, z€[0,1],

Also from [5], p. 36], we mention that for f : [0, 1] — R4 being concave function
we get that

(1.7) ]B](VM) (f) () — f(:z)‘ <2w (f,4), forallzelo,1],

a much faster convergence.

In this article we expand the study in [5] by considering Caputo fractional
smoothness of functions. So our inequalities are with respect to wy (D f,J),
6 > 0, where D*f with « > 0 is the Caputo fractional derivative.

2. MAIN RESULTS
We need

DEFINITION 2.1. Let v > 0, n = [v] ([-] is the ceiling of the number),
f e AC™ ([a,b]) (space of functions f with f~Y e AC ([a,b]), absolutely
continuous functions). We call left Caputo fractional derivative (see [l p. 49],
[10], [13]) the function

21 Dif@ =gy [ @0 O 0 Vo o),

where T is the gamma function T’ (v) = [§° et~ dt, v > 0.
We set DO, f (z) = f (x), V x € [a,}].

LEMMA 2.2. [2] Let v > 0, v ¢ N, n = [v], f € C" 1 ([a,b]) and f(™) €
L ([a,b]). Then D%, f (a) = 0.

We need
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DEFINITION 2.3. (see also [1], [8], [10]) Let f € AC™ ([a,b]), m = [a],
a > 0. The right Caputo fractional derivative of order a > 0 is given by

o [° 1
22 D@ =ty [T (Qdg Yaelad).
We set DY _f (x) = f (z).

LEMMA 2.4. [2] Let f € C™ 1 ([a,b]), f'™ € Ly ([a,b]), m = [a], a > 0,
a ¢ N. Then Di* f(b) =0.

CONVENTION 2.5. We assume that

(2.3) D¢, f(z) =0, for x < o,
and
(2.4) Dz, _f(z) =0, for x > o,

for all x,zq € [a,b].
We mention

PROPOSITION 2.6. [2] Let f € C™([a,b]), n = [v]|, v > 0. Then D%, f (x)
is continuous in x € [a,b].

PROPOSITION 2.7. [2] Let f € C™ ([a,b]), m = [a]|, a > 0. Then Dy _f (x)
is continuous in x € [a,b].

The modulus of continuity w; (f,d) is defined the same way for bounded
functions, see ([L1.3]), and it is finite.
We make

REMARK 2.8. [2] Let f € C" ! ([a,d]), f™ € Ly ([a,b]), n = [v], v > 0,
v ¢ N. Then

5 < 2l

(2.5) wi (Dy, = T(n—vtl)

*ad )

(b—a)"".

Similarly, let f € C™ ' ([a,b]), f™ € Lo ([a,0]), m = [a], @ > 0, a ¢ N,
then

(m)
(2.6 w1 (D5 £,8) < B

~ m (b— a)m_a.

That is wy (D%, f,0), w1 (Dg‘ff, 5) are finite.

Clearly, above DY, f and Dj'_ f are bounded, from

a

v )| 0o n—v
(2.7) DYof @) < fESles (b—a)" ™, Vaeab,
see [2]. O

We need
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DEFINITION 2.9. Let Dy f denote any of Dg _f, D, f, and § > 0. We
set

(2.8) wi (D3, £,8) = max {wr (D%, f,6),, w1 (D2 f,0) oy
where xq € [a,b]. Here the moduli of continuity are considered over [a, zo] and
[x0, b], Tespectively.

We need

THEOREM 2.10. Let « > 0, « ¢ N, m = [a], 9 € [a,b] C R, f €
AC™ ([a,b],Ry) (ie. fm=D € AC ([a,b]), absolutely continuous functions

on [a,b]), and f™) € Ly ([a,b]). Furthermore we assume that ) (z9) = 0,
k=1,....,m—1. Then

29)  1f(@) ~ f (o) < AL (o - gy 4 loml ] 55

T(at1) (at1)o
foralla < x <b.
If 0 < a < 1, then we do not need initial conditions.

Proof. From [7), p. 54|, we get by left Caputo Taylor formula that

T

m—1
210)  f@)= 3 L @ w0+ iy [ @27 DR, f () dz,

k=0 o
for all zg < x <b.
Also from [I], using the right Caputo fractional Taylor formula we get

e1) fa)= S I gt [ e=otos, f ) a

k=0
for all a < x < xg.
By the assumption f*) (xg) =0,k=1,...m— 1, we get

(2.12) F@) = fla) =ty [ (@2 DY, () d,

for all xzg <z <b.
And it holds

(2.13) f(x)— = a)/ z—x)* 1D°‘ _f(2)dz,

for all a < z < xo.

Notice that when 0 < a < 1, then m = 1, and and are valid
without initial conditions.

Since Dy, _ f (zo) = D¢, f (z0) = 0, we get

*TQ

(214) f(@)~f @)= iy [ 0= (D2,0) (2) — Dy f (w0) d

0
o < x <b, and

(215) (@) - f(20) = iy / (2= 2)* (D& _f (2) — D% _ [ (w0)) dz,
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a <z <z
We have that (zg < x <)

@)~ @) <
<oy [ =2 D5, (2) = D S (o) d

* a—1 01]z—xo|
@16 <l [ @2 e (D M) a

< 4( 12(04)1) ol /360 (x—2)*"" (1 + ! 610)) dz

*T, f(s [ _ @ T
_ ( 0 1) [xg.b] | (z—x0) + % (ﬂ? o Z)afl (Z - .’13())271 dZ:|

I'(a) | @ .

(D*Z f(;l) [zg.b] [ (z—20)" ey @
(2.17) = I‘O(a) = _( 2o 4 %Fr((a)i(zz)) (z — o) H}
(D*z f(51) [zg.b] [ (z—20)" a
= 19(a) ] _( O[0) + %(aﬁl)a (z — 20) +1}
w1 (Do f00) 0

el z—10)*T!
(@ —20)" + 5|

I'(a+1)
We have proved that

w1 (D, f,51) r—za)otl
(2.18) |f(z) = [ (z0)| < W [(x —z0)" + ﬁ} ’

01 >0, and 2o < x <b.
Similarly acting, we get (a < z < xg)

|f(z) = f (@o)| <
< F(a) / ’ (z —a)*t |Dg_f(2) — Dy, f (x0)| dz

(2.19) = F(a)/ z—x)"" ( _f 52(:”0 - ) dz

[a,@0]
R ; /;o e (1 3) ]
_ - (Dgor(};;sz)[mm _(aro;x)a +3 :O (z0 — 2)* 1 (z —2)*! dz]
- g [ (e KN 0y
o =T o e

w1 (Dg 7f’52) a,x [ 2y T +1
19(a+1) el _(mo — )%+ ((gwrl))a } :
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We have proved that

“1 (Dgoff’(b) [a,zq]

z T a+1
(221) [ (@)~ f(@0)| £ — g = (20— 2)" + %} ,
d2 > 0, and (a < z < zg). Choosing 6 = §; = J2 > 0, by (2.18)) and (| m, we
get (2.9). O

We need

DEFINITION 2.11. Here C4 ([a,b]) := {f : [a,b] = Ry, f continuous}. Let
Ly : Ci ([a,b])) — C4 ([a,b]), operators, ¥V N € N, such that

()

(2.22) Ly (af) = aLy (f), Ya > 0,Yf € Cy ([a,b]),
(i) if f,g € C1 ([a,b]) : [ < g, then

(2.23) Ly (f)<Ln(g), VNEN,
(iii)

(2.24) Ln(f+9) <Ln(f)+Ln(9), V fig€Ci([ab]).

We call {Ln} yey positive sublinear operators.
We need a Holder’s type inequality, see next:

THEOREM 2.12. (see [3]) Let L : C4 ([a,b]) — Ci([a,b]), be a positive
sublinear operator and f,g € C4 ([a,b]), furthermore let p,q > 1 : % =1
[

Assume that L ((f (-))?) (s«), L((g(-))?) (s«) > 0 for some s, € [a,b]. Then
(2.25) L(f()g()) (s2) < (LS ()P) ()7 (L (g (D)) ()7

We make

REMARK 2.13. By [0, p. 17],we get: let f,g € C4 ([a,b]), then

»Qh—-

(2.26) |Ln (f) () = Ly (9) (2)| < Ly (If = gl) (x), V z € [a,b].
Furthermore, we also have that
(2.27)

ILn (f) () = f (@) < Ly (If () = £ (@)]) (@) + |f (@)] |Ln (e0) (x) — 1],
Yz € [a,b; e (t) = 1.
From now on we assume that Ly (1) = 1. Hence it holds
(2.28) L ( )(96) - ( )! < LN(!f(') — S @) (2), Vzelab].
Using Theorem and (2.9) with (2.28]) we get:
|Ln (f )(930) - ($0)| <

w D% f,6 o L —z a+1 x
229) < PRI (1~ ) (o) + Lzl D@0 s,
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We have proved

THEOREM 2.14. Let @« > 0, o« ¢ N, m = [a], 20 € [a,b] C R, f €
AC™ ([a,b] ,Ry), and f™ € Ly ([a,b]). Furthermore we assume that
f®) (29) =0, k=1,...,m—1. Let Ly : Cy ([a,b]) = C4 ([a,b]), V N €N, be
positive sublinear operators, such that Ly (1) =1,V N € N. Then

(2.30)
Ly (£) (o) — f (a0)] < 205 Ly (|- = o) () + Uzl 20 e0)

0>0,VNeN.
In particular (2.30) is true for a > 1, a ¢ N.

COROLLARY 2.15. Let 0 < a < 1, zg € [a,b] C R, f € AC ([a,b],R}),
and f' € L ([a,b]). Let Ly : Cy ([a,b]) — C4 ([a,b]), V N € N, be positive
sublinear operators, such that Ly (1) =1,V N € N. Then (2.30) is valid.

We give

THEOREM 2.16. Let 0 < a < 1, z9 € [a,b] C R, f € AC ([a,b],Ry), and
" € Lo ([a,b]). Let Ly from C4 ([a,b]) into itself be positive sublinear opera-

tors, such that Ly (1) =1,V N € N. Assume that Ly (] - :L‘o|o‘+1> (o) > 0,
vV N € N. Then

| (f) (x0) = f (20)| <

(a+2)wy | D2 f,(LN(\-—a:oWH)(J;O))%H N e
(231) < (22, D ) (Ln (- = 2ol™™) (o)) 7.
Proof. By Theorem see , we get
(2.32) Ly (|- = w0|") (w0) < (L (|- = 20]*"") (o)) * -
Choose
_1
(2.33) 6= (L (|- = 2ol **") (w0)) ™7 >0,

i.e. 5a+1 = LN (‘ — $0|a+1> (xo) .

By we obtain
|Ln (f) (z0) — f (z0)] <

(= o) ) ik (B (1= 0l )™ =




96 George A. Anastassiou 8

1 (D5, (B (=0l ) 00) 7T )
T'(a+1) ’

(2.34) . (LN <| _ x0|a+1) (xo))"%l [1 + o%&-l]

N

T'(a+1)

a = N
(e+2)wr (Dl-ofv(Lli\f(i|—"——2é)ro| 1) (x0)) “) (LN (] B $0|a+1> (aco))ﬁ ’

proving (2.31)). O
3. APPLICATIONS

I) Case 0 < a < 1.
Here we apply Theorem to well known Max-product operators.
We make

REMARK 3.1. The Max-product Bernstein operators BJ(VM) (f) (x) are de-
fined by (1.5)), see also [5l, p. 10]; here f : [0,1] — R4 is a continuous function.

We have B](VM) (1) =1, and

M
(3.1) By (|-~ al) () < . Ve €01V NEN,
see [0, p. 31].

B](VM) are positive sublinear operators and thus they possess the monotonic-
ity property, also since |- — x| < 1, then |- —z|® <1,V 2 €[0,1], V 8 > 0.
Therefore it holds

M
32)  BYY (I —a2"") (@) < g, Vo e[0,1], Y NEN, V>0

Furthermore, clearly it holds that
(3.3) B](VM) (] — :U]H’B) () >0,V NeN, V3 >0andany z € (0,1).

The operator BJ(VM) maps Cy ([0,1]) into itself. O

We present

THEOREM 3.2. Let 0 < o < 1, any =z € (0,1), f € AC([0,1],R4), and
' € Lo ([0,1]). Then

1

(a+2)wi (D%f,(wﬁ—ﬂ)al) .
()

M
34 BV (N (@) - f(@)] < T o
vV N eN.
As N — 400, we get B](\,M) (f)(z) = f(x), any z € (0,1).
Proof. By Theorem [2.16] U

We continue with
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REMARK 3.3. The truncated Favard-Szasz-Mirakjan operators are given by

N k
V osnr@)f(5)

(35) T (@)= 2e(0,1], NeN, f € Cy (0,1),
\/ s,k ()
k=0
sy (z) = (A;j) see also [5l, p. 11].
By [5} p. 178-179],We get that
(3.6) T](\,M)(]~—x|)(x)§%, Vzel0,1],VNeN.

Clearly it holds
67 ¢ -2"P) @) <K Veel0 ], YVNEN,¥E>0.

VN’
The operators T](VM) are positive sublinear operators mapping C ([0, 1]) into
itself, with U (1) = 1.

Furthermore it holds

(3.8)
\]\} (N )k ﬁ_mA
T(M) ( A __ k=0 K N v N N
d ‘.—m|)(x)— VT >0, Vae (0,1, VA>1, eN.
k=0
O
We give

THEOREM 3.4. Let 0 < a < 1, any x € (0,1], f € AC([0,1],R4), and
f' € Ly ([0,1]). Then

(3.9) 18" (1) (@)~ 1 (@) < e (02 (35)77) (i)ﬁl VN eN.

T(at2) N
As N — +o0, wegetT ()() f(x), for any x € (0,1].
Proof. By Theorem [2.16 U
We make

REMARK 3.5. Next we study the truncated Max-product Baskakov opera-
tors (see [5, p. 11])

N
V oni(@)f (%)

3.10) UM (f)(@) =22 2€0,1], f€CL(0,1]), NEN,
V bwe()
k=0

where

(3.11) by (z) = (VY (1+§;N+k'
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From [5], pp. 217-218], we get (z € [0, 1])

M 2v/3(V2+2
(3.12) (US|~ D) (@) < 2222 N9 NeN.
Let A > 1, clearly then it holds
M 2v/3(V2+2
(3.13) (¥ )<|-—x]/\))(1:)§%, VN>2 NeN.
(M) (M)

Also it holds Uy’ (1) = 1, and Uy’ are positive sublinear operators from
C4 ([0,1]) into itself. Furthermore it holds

(3.14) U0" (|- =21") () >0, Yo (0,1, ¥A>1,¥ NN

We give

THEOREM 3.6. Let 0 < a < 1, any xz € (0,1], f € AC ([0,1],R}), and
' € Lo ([0,1]). Then

(3.15)

1

- (a42)n (Dgf’(zﬂ(;ﬁz))cm)
U () (@) - £ (@)] < I |

VN>2 NeN.
As N — 400, we get U](VM) (f) () = f(x), for any x € (0,1].

2\/3(\/54-2) a1
VvV N+1 ’

Proof. By Theorem [2.16 O
We continue with

REMARK 3.7. Here we study the Max-product Meyer-Koning and Zeller
operators (see [0, p. 11]) defined by

V swk (@) f(55)
616) 20 (=m0

, VNEeN, fec(0,1]),

0\7 snk ()
k=0

sni (@)= (NF) 2k, 2 €10,1].

By [0, p. 253], we get that

8(1+v5) z(1—x
(317) 200 (|~ af) (@) < VU0 g e f0,1], VN 24, NN,

As before we get that (for A > 1)

a1y 200 (el @) < A

Vazel01], N>4, N eN.
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Also it holds Z (M) (1) =1, and Z](\,M) are positive sublinear operators from
Cy ([0,1]) into 1tse1f Also it holds

(3.19) Z3" (|- =al*) (@) >0, Yae(0,1), ¥A>1,VNEN

We give

THEOREM 3.8. Let 0 < o < 1, any =z € (0,1), f € AC([0,1],Ry), and
f' € Loo ([0,1]). Then

o (42w (D3 1p() T ) o
(3.20) 200 () (@)~ f (@) < e (p (x))751
VN2>4, NeN.
As N — 400, we get Z](VM) (f) (x) = f (), for any z € (0,1).
Proof. By Theorem [2.16 O

We continue with

REMARK 3.9. Here we deal with the Max-product truncated sampling op-
erators (see [0, p. 13]) defined by

v e ()

(3.21) W () (@) = =0 — ,

\/ sin(Nz—km)

e Nzx—km
and

N . o
sin®(Nxz—km) km
(M) B k\=/0 (Nz—kn)? f <N>

(3.22) Ky (f)(z) = :

N sin?(Nxz—km)
k=0 (Nz—Fkm)?
Vxe[0,7], f:[0,7] - Ry a continuous function.

sm( )

Following [5, p. 343], and making the convention 1
sy (x) = w we get that st( ”) =1, and sy (]W) =0,if k # j,
furthermore W](VM) (f) (32) = f(ﬁ), for all j € {0,...,N}.

Clearly W](VM) (f) is a well defined function for all = € [0, 7], and it is con-

and denoting

tinuous on [0, 7], also WN M) (1) =1.

By [0, p. 344], Wy’ are positive sublinear operators.
Call I (z) = {k €{0,1,...N};sn(z) >0}, and set ayy == 57k €
{0,1,..., N}.
We see that
\{( )SN,k (@) f (@)
(M) . kel (x
(3:29 W () @) = S

kelf(x)
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By [, p. 346],we have

(3.24) WM (=) (@) < &, YNEN, Vel
Notice also |zn, — 2| <7, V2 € [0,7].
Therefore (A > 1) it holds

)\—lﬂ. A

(3.25) Wi (|- = 2l") (@) < Tpp" = 3y, Yz eo,n],VNeN.

Ifz e (%, U}””), with j € {0,1,..., N}, we obtain nx — jm € (0,7) and thus

s, () = 2EEIT 5 0, see [5, pp. 343-344].

Consequently it holds (A > 1)

\ Szv,lc(ﬂﬂ)|901\r,k*90|A

+ x
(3.26) W](VM) (‘ _ x]’\) () = keI ( >\/ e >0, Vzel0n],
kGI;\L](z) 7
such that © # xy, for any k € {0,1,...,N}. O

We give

THEOREM 3.10. Let 0 < o < 1, any x € [0,7] be such that x %’r,

ke{0,1,...N},V NeN; fe AC([0,7],R4), and f' € L ([0,7]). Then
(3.27)

1
+1) aFT
(0+2)wn D%f,(”;N )“ )

W () @) - £ (@)] < . ()™, VYN EN.
As N — 400, we get W](VM) (f) (z) = f(x).

Proof. By Theorem [2.16 O

We make

REMARK 3.11. Here we continue with the Max-product truncated sampling
operators (see [5], p. 13]) defined by

@ sin?(Nx—km) f(kﬂ')

M oy (Na—km)? VN
(3.28) KD (1) (@) = =05 :
vV sin?(Nz—km)
k=0 (No—km)?
YV x € [0,7], f:]0,7] = Ry a continuous function.
Following [5, p. 350], and making the convention Smo(o) = 1 and denoting

SNk (x) = wir];])?), we get that SNk (%) =1, and SNk % =0,if k # j,

furthermore K](VM) (f) (%) =f (%), for all j € {0,...,N}.
Since sy j (%) = 1 it follows that \/éV:O SNk (%) >1>0, for all j €
{0,1,...,N}. Hence K](VM) (f) is well-defined function for all x € [0, 7], and it
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is continuous on [0, 7], also K](VM) (1) = 1. By [B, p. 350], K](VM) are positive

sublinear operators.

Denote zy j, := %’r, ke {0,1,...N}.

By [5, p. 352], we have
(3.29) KM (| —2)) (@) < &%, YNEN, Vaelon].
Notice also |zn, — x| <7, V 2 € [0,7].

Therefore (A > 1) it holds

(3.30) KM (\. - :c|)‘> (1) < BT = I Vazel0,],VNeN

Ifx e (%, (j;}h), with j € {0,1, ..., N}, we obtain nx — jr € (0,7) and thus

sn,j (z) = w#gzﬂ > 0, see [5, pp. 350].

Consequently it holds (A > 1)

N A
V sni(@)|en k2]
_ k=0

@3 Ky (- al) @) =

>0, Vzel0,n],

N

V snk(@)

k=0

such that « # xy, for any k € {0,1,..., N}. O
We give

THEOREM 3.12. Let 0 < a < 1, o € [0,7] be such that x # T, k €
{0,1,..,N},VNeN; fe AC([0,n],R4), and [’ € L ([0,7]). Then

(3.32)
7.1_044»1 %_»'_1
(a+2wr (foﬁ( o) > o
KO () (@)~ (@] < e (5w)™" ¥NeN
As N — +oo, we get K](VM) (f) (z) = f ().
Proof. By Theorem [2.16] O

When a = % we get:

COROLLARY 3.13. Let f € AC([0,1],Ry), f' € Lo ([0,1]). Then

1 3
10 /6w ( D2 f,5L35
(3.33) ‘B](VM) (f) (x) — f (x)\ < sém VlN“), Vze(0,1),YNeN.

Proof. By Theorem O

Due to lack of space we avoid to give other applications when o = % from
the other Max-product operators.

IT) Case > 1, o ¢ N.

Here we apply Theorem [2.14] to well known Max-product operators.

We present
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THEOREM 3.14. Leta > 1,0 ¢ Nm = [a], z € [0,1], f € AC™([0,1] ,R4),
and " € Lo ([0,1]). Furthermore we assume that f®) (z) = 0, k =
1,....,m—1. Then

(3.34)
1
wr( D2f (7 )"“) «
(M) ( v 6 1 6 \att
‘BN () (@) - f(x)‘ = T(a+1) ' {x/N+1 + i (v } ’
V' N eN.
: (M) —
We get lim BY () (@) = f (@),
Proof. Applying 1} for B](VM) and using 1) we get

6

6 N+1
UNTT T TatD)

(3.35) BUD (£) (2) = £ ()] < 24Bade)

1

Choose § = J\?+1)m’ then 02+ = V%H’ and apply it to (3.35]). Clearly
we derive ((3.34)). O

We continue with

591

THEOREM 3.15. Same assumptions as in Theorem[3.1] Then

1
w1 (Dgf, (%) o

(330) 107 (1) @) - £ @] < 1o [ Fy + ok (35)77)
vV NeN
We get Nl_i)IEOOTJ(VM) (f)(x) = f(2).
Proof. Use of Theorem [2.14] similar to the proof of Theorem [3.14] O
We give

THEOREM 3.16. Same assumptions as in Theorem|3.14 Then

UG () @) = £ (@) <

(e (2ELEA) T .
337) <\ \ VM 2V3(ver2) | g (2V3(ver2))
(3.37) < T(a+1) TN T e VN+1 ’

VNEN, N >2.

lim UM — f(x).
We get lim Uy~ (f)(z) = f (2)
Proof. Use of Theorem [2.14] similar to the proof of Theorem O

We give
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THEOREM 3.17. Same assumptions as in Theorem[3.14 Then
(3.38)

289 e - 0] < TN )+ et

VNEN, N >4
We get Z](VM) (f) () = f(z), where p(x) is as in (3.18)).

Proof. Use of Theorem [2.14] similar to the proof of Theorem O

lim
N—+o0

We continue with

THEOREM 3.18. Let « > 1, « ¢ N, m = [a], z € [0,7] C R, f €
AC™ ([0, 7] ,Ry), and f™ € Lo ([0,7]). Furthermore we assume that f*) (z
=0,k=1,...m—1. Then

(3.39)
oty ST
M w1<Df;f,( 3N ) ) e patl =
W (D) @) - )] £ D [ E ek ()
vV NeN o
We have that NLHEOOWN (f)(x) = f(x).
Proof. Applying 1} for W](VM) and using 1' we get
a+1
M w [ ,(5 o r____
(340) WD (£) (2) = f (@) < 225D [N + w] .
1 _a
Choose § = “;;)QH, ie. 6ot = ”;;[1, and 6% = (”;]:r,l) **1 We use the
last into ([3.40) and we obtain (3.39)). O

We also have

THEOREM 3.19. Let « > 1, a« ¢ N, m = [a], z € [0,7] C R, f €
AC™ ([0,7],Ry), and f'™ € Ly, ([0,7]). Furthermore we assume that
f®(x)=0,k=1,..,m—1. Then

(3.41)
_1_
w1 D%fv(ﬁ> a+1> o
M < 2N T 71.cz-!—l at1
KO () 0) ~§ @) € =2 [+ 2 ()7
vV NeN.

KD (f) (@) = £ (@).
Proof. As in Theorem [3.18 O
We make

We have that

lim
N——+oo
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REMARK 3.20. We mention the interpolation Hermite-Fejer polynomials
on Chebyshev knots of the first kind (see [5, p. 4]): Let f : [-1,1] — R

and based on the knots zy ) = cos (%W) € (-1,1), k € {0,..., N},
-1 <anp < xy1 < ... < znyN < 1, which are the roots of the first kind

Chebyshev polynomial Ty () = cos ((N + 1) arccos x), we define (see Fejér

[0

N
(3.42) Hon1 (f) (2) =D b (2) f (zng)
k=0
where
2
(3.43) e () = (1= o) ()

the fundamental interpolation polynomials.
The Max-product interpolation Hermite-Fejér operators on Chebyshev
knots of the first kind (see [3], p. 12]) are defined by

N

) h k(@) f(znk)
(3.44) Hynyq (f) (@) = =2 ; VNeN,
V k()
k=0
where f:[—1,1] — R, is continuous.
Call
N
o) V hwi(@)|zn e —2|
(3.45)  En (z) := Hyy'y (|- — 2]) (x) = =5 , we[-L1].
\ hni(x)
k=0
Then by [5, p. 287], we obtain that
(3.46) En(z) < %4, Voze[-1,1], NeN.
For m > 1, we get
V ha@fesae]”
hy k()| zNnk—2
M m =
Hy )y (|- = ™) () = =2 -
V hn(z)
k=0
N m—1 N
V hne(@)|zy k2| |y -2 ) V hne(@)|zy,—z|
— k=0 < 2m* k=0
N — N
V hyw(x) V hwk(z)
k=0 k=0
(3.47) < %%, Vee[-1,1], NeN

Hence it holds
(348)  HM) (- —al™) () < 2m Vaee[-1,1], m>1,V N eN.
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Furthermore we have

(3.49) HYN) (1) (@) =1, Yoe[-1,1],

and H. é%}rl maps continuous functions to continuous functions over [—1, 1] and

for any = € R we have /2, hn g (z) > 0.

We also have hy i (xn k) = 1, and hy i (xn,;) = 0, if k& # j, furthermore it
M

holds HéNJ)rl (f)(@nj) = f(xzny), for all j € {0,..., N}, see [3, p. 282].
HéJJ\V/IJ)FI are positive sublinear operators, [0, p. 282]. O
We give

THEOREM 3.21. Let a>1, o ¢ N, m=[«], x € [-1,1], f € AC™ ([-1,1],R4),
and f' € Lo ([-1,1]). Furthermore we assume that f*) (z) = 0, k =
1,....m—1. Then

(3.50)
1
w1 Dgf7(2;‘:>1177)a+1 [e
(M) > atlr) o+t
)H2N+1 (f) (&) = f(a:)‘ = T(a+1) NEsiay (oz—ll—l) <2N+1 ) H] ’
V NeN.

: : (M) _
Furthermore it holds NE)IEOOHZN+1 (f)(x) = f(x).

1
Proof. By Theorem [2.14} choose § := (Q;J:fr) o+ use (2.30), (3.48). 0

We continue with

REMARK 3.22. Here we deal with Lagrange interpolation polynomials on
Chebyshev knots of second kind plus the endpoints £1 (see [5], p. 5]). These
polynomials are linear operators attached to f : [-1,1] — R and to the knots
TN = COS ((%) 7r) € [-1,1], k =1,...,N, N € N, which are the roots of
wy () = sin (N —1)tsint, x = cost. Notice that xy; = —1 and zy n = 1.
Their formula is given by [5], p. 377]

N
(3.51) Ly (f) (x) =Y Ing (@) f (xng)
k=1
where
(3.52) Ing () = (=D*twn ()

(146k,140k, 8 ) (N=1) (z—2 N 1)’

N > 2 k=1,...N, and wy (z) = [[h; (z —2n4) and &;; denotes the
Kronecher’s symbol, that is §; ; = 1,if ¢ = 5, and d; ; = 0, if ¢ # j.



106 George A. Anastassiou 18

The Max-product Lagrange interpolation operators on Chebyshev knots of
second kind, plus the endpoints +1, are defined by [3, p. 12]

N
V ink@) f(znk)
(3.53) LY (f) (2) = = , zel-11],
V v i(z)
k=1
where f :[—1,1] — R continuous.
(M)

First we see that Ly ' (f) (x) is well defined and continuous for any x €
[~1,1]. Following [5, p. 289], because Sp_; Inx (z) = 1, V 2 € R, for any
there exists k € {1,..., N} : Iyx (z) > 0, hence Vh_; Inx (z) > 0. We have
that Iyx (xng) = 1, and Ing (zn;) = 0, if £ # j. Furthermore it holds
LYY (f) (xn,) = f(eny), all j € {1,., N}, and LG (1) = 1.

Call I} (z) = {k € {1,..., N}; Iy (z) > 0}, then I3 (z) # 0.

So for f € C1 ([—1,1]) we get

Vo ivk@)f(zne)

M keIt (z)
(3.54) Ly (f) (2) = == V =Y
kerf (2)

Notice here that |zy — x| <2,V 2z € [-1,1].
By [5, p. 297], we get that

(3.55)
\]7 In k(ff)‘fﬂN k*fﬂ| \_{ ZN'k(m)|xN’kix’
LD (| = a]) (z) = £ : : _ ke <
N N l V  ingk(z) = 6(N-1)”
k\z/l N,k () kGI]J\;(z)

N >3, Vze(-1,1), N is odd.
We get that (m > 1)

Vo ivk@)|one—z|™

(M) _ kel (z) gm—1,2
(356) LN (| - x’m) (.T) - = \/ lN,k(x) S G(N—q)’
kefj\;(;c)
N >3o0dd,Vze(-1,1).
LS\],W) are positive sublinear operators, [, p. 290]. O

We give
THEOREM 3.23. Same assumptions as in Theorem [3.21. Then
(3.57)

1
o 2 a+1
Doy, 277r) a
wl( mf(e(zvﬂ) > ga—1,2 1 2972\ o+l
(6 )) ’

M
‘Lgv ) (f) () = f(x)‘ < T(a+1) 6v—1 T oD \6(v-1
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VNeN:N >3, odd.

It holds NETOOL%W) (f) () = f (z).

1

Proof. By Theorem [2.14] choose § := (6(2:,77121» **1 use of (2.30) and (3.56)).

At £1 the left hand side of (3.57)) is zero, thus (3.57) is trivially true. O
We make

REMARK 3.24. Let f € Cy ([-1,1]), N >4, N € N, N even.
By [5 p. 298], we get

M i us
(358) LRV (- —el) (@) < gty = sty Yee (<10).

Hence (m > 1)

(3.59) LYY (|- = 2™ (@) < Frss, Ve (-1,1).
O
We present
THEOREM 3.25. Same assumptions as in Theorem|3.21] Then
(3.60)
o (D2 £ (2 “11> .
189 (1) (@)1 ()] < { fgf;iif)) |55 + & ) ™|

VNeN, N>4, N is even.

It holds NETOOLW) (f) () = f (z).

1
Proof. By Theorem [2.14} choose ¢ := (g?;i’f)) o+ use of (2.30) and (3.59)).

At +1, (3.60) is trivially true. g

We need

DEFINITION 3.26. ([0, p. 41]). Let I C R be an interval of finite or infinite
length, and f : I — R a bounded or uniformly continuous function. We define
the first modulus of continuity

(3.61) wi (f,0); = sup |f(z)—f(y)l, 6>0.

z,yel
lz—y|<é

Clearly, it holds wy (f,d); < +oo.
We also have

(3.62) wi (f,rd); < (r+1)wi (f,9);, anyr>0.
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CONVENTION 3.27. Let a real number m > 1, from now on we assume
that D3} _f is either bounded or uniformly continuous function on (—oo,xo],
similarly from now on we assume that D} f is either bounded or uniformly
continuous function on [xg,+00).

We need

DEFINITION 3.28. Let D}l f (real number m > 1) denote any of D}}_f,
DI, f and 6 > 0. We set

(3.63) wi (D f,0)p = max {wi (DI_f,0) w1 (DI F0) oo}
where xg € R. Notice that wy (D! f, 5)R < +00.
We will use

THEOREM 3.29. Let the real number m > 0, m ¢ N, A = [m], zy € R,
f e AC* ([a,b] ,Ry) (i.e. fO=D € AC [a,b], absolutely continuous functions
on [a,b]), ¥ [a,b] C R, and fN € Ly (R). Furthermore we assume that
f®) (z0) =0, k=1,..,A—1. The C’onventz’on is imposed here. Then

w1 (DI f,0 m o m4+1
(3.64)  |f (@)= f (wo)| < 2EEa 1o gopm 4 ol 5,
for all x € R.
If 0 <m < 1, then we do not need initial conditions.
Proof. Similar to Theorem [2.10} O

We continue with

REMARK 3.30. Let b : R — R be a centered (it takes a global maximum
at 0) bell-shaped function, with compact support [-7,7], T > 0 (that is
b(z)>0forallz e (~T,T)) and I = [T b(z)dz > 0.

The Cardaliaguet-Euvrard neural network operators are defined by (see [4])

2

(3.65) Cnya (f) (z) = Z I%i)ab (Nl_a (w N %)) ’

0 <a <1, N €N and typically here f : R — R is continuous and bounded or
uniformly continuous on R.
CB (R) denotes the continuous and bounded function on R, and

CB+(R)={f:R—[0,00); f€CB(R)}.

The corresponding max-product Cardaliaguet-Euvrard neural network opera-
tors will be given by

) V)
(3.66) Civ (F) (@) = 2=, ,
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x € R, typically here f € CB4 (R), see also [4].
Next we follow [4].
For any = € R, denoting

Jry (z) = {k €7, —N2<k<N? N'@ (a: - %) e (—T,T)},

we can write

» V()

_ € T,N (%
(3.67) CNa (f) (z) = V(N e(e-LE))
k€JT,N(z)

x € R, N > max {T—l— |x|,T‘§}, where Jpr n (z) # (0. Indeed, we have
Viesrnt b (N7 (2= %)) >0,V z € Rand N > max {7+ |2|, 775 }.

We have that C](VA/Q (I)(z) =1, V2 € Rand N > max {T+ |z ,T‘é}.
O

See in [4, Lemma 2.1, Corollary 2.2 and Remarks].
We need

THEOREM 3.31. [4]. Let b(z) be a centered bell-shaped function, continuous
and with compact support [—T,T], T > 0,0 < o < 1 and C’J(\,AQ be defined as

in (B.60). |
(i) If | f (z)] < ¢ for all x € R then ‘C’](VAQ (f) (1:)’ <e¢, for allz € R and

N > max {T + |z ,T_é} and C](VAQ (f) (z) is continuous at any point x € R,
for all N > max{T+ || ,Tfi};

(i) If f, g € CBy (R) satisfy f (z) < g (z) for allz € R, then Cl(v,a) (f) (z) <
C](V]\Q (9) (z) for all x € R and N > max {T + || ,T_i} ;

(ifi) Ce, (f +9) (@) < O (F) (@) + O (9) (@) for all f,g € CBy (R),
rze€R and N > max{T—i— |:E|,T_é};

(iv) For all f,g € CB4+ (R), x € R and N > max {T+ || ,Tfé}, we have

8 () (2) = 1) (9) ()] < C02 (1f = ) ()
(v) C](VAQ is positive homogeneous, that is C](V]\Q Af) (z) = )\C’](V]\Q (f) (z) for
allA>0, 2 €R, N >max{T+z|,T7% } and f € CBy (R).
We make

REMARK 3.32. We have that

(N7 (2= 7)) [o—#]
k:EJT’N(:c)

Vv )

keJp, N ()

(368)  Ena(z):=CyD (- —al) (x) =
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V:BER,andN>max{T—|—]x\,T_é}. O

We mention from [4] the following:

THEOREM 3.33. [4]. Let b(z) be a centered bell-shaped function, continuous
and with compact support [-T,T], T >0 and 0 < a < 1. In addition, suppose
that the following requirements are fulfilled:

(i) There exist 0 < m; < M; < oo such that mi (T —z) < b(zx) <
M (T —x),V xzel0,T];

(ii) There exist 0 < ma < My < oo such that ma(z+T) < b(z) <
My(x+T), ¥ xze[-T,0].

Then for all f € CB+(R), z € R and for all N € N satisying N >

1

max {T + |x|, (%) E }, we have the estimate

(3.69) 0 (1) (@) = § @)] < e (5,871

where

)

R

c:= 2(max{TM2 TM1}+1>,

2mo ’ 2mg

and
w1 (f,0)g == sup |[f(z)— f(y)l.
z,yEeR:
|z—y|<o
We make

REMARK 3.34. In [4], was proved that

Q=

(3.70) En, (z) < max {TM2 M, } Nl ¥ N > max {T + |z|, (%)

2mso 7 2mq

That is
(3.71)

C](VAQ(|-—$|)($)§IH&X{TM2 TMl}NO‘_l, VN>II1&X{T+|SU‘,(%);‘}.

2mo ’ 2mq

From (3.68]) we have that ‘:c — %‘ < %

Hence (m > 1) (V2 € R and N > max {T+ |z], (%)é})
Vo (e ) fe-w "

M m keJp n(x)
Cha (- —a™) (w) = eTN\/ (Ve (- X))
keJp N (z)

IN

1
T \™ TMs TM; a—1
(Nl—a) max{ oms 2my (VT

(3.72)
Y N > max {T+\xy (3)

Q=
H_/
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Then (m > 1) it holds

M p—
Cj(v,a) (] — ™) (z) < T™ ! max {Enf‘fj gﬂf\fll} o

1
(3.73) ¥ N > max {T+ o, (2)° } .
Call
(3.74) 6 := max {TM2 TMI} > 0.

2mo 7 2mq

Consequently (m > 1) we derive

Q=

375) LD (= 2™ (2) < LLZL ¥ N > max {T+ 2], (2)

b

We need

THEOREM 3.35. All here as in Theorem [3.29, where x = x¢y € R is fized.
Let b be a centered bell-shaped function, continuous and with compact support

[-T.7], T>0,0<a<1and C](VA/‘Q be defined as in (3.66)). Then

w1 (DT f,6 m D (|- —a|™ 1) ()
O (1) () - £ (@)] < 2t [o}vﬂg<|._x| ) (@) + Bali= e |

VNEN:N>maX{T—|—|x|,T_é}.

Proof. By Theorem and (3.64)) we get

(3.76) £ () = f ()] < AL (| — o 4

|._$|m+l
(m+1)d

}, 6> 0,

true over R.

As in Theorem [3.31| and using similar reasoning and C](VAQ (1) =1, we get
R (F) @) = @) < CRD(1F () = F @) (0) <
|' w1 (D™ f.§ M m CU‘Q |_7x|m+1 (m)
(3.77) < alpf i [c](v,a’ (I — ™) () + Dol |
1
VNEN:N>H1&X{T+|JE’,T75}. O

We continue with

THEOREM 3.36. Here all as in Theorem [3.29, where x = xg € R is fized
and m > 1. Also the same assumptions as in Theorem[3.33. Then

80 (1) @)~ £ )] < ke (DI, (el ™)

orm—1 1 orm T
(378) . |:Nm(1—a) + (m+1) (N(m+1)(1—a)) :| ’
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VNEN:N>maX{T+]a:|,(%)i}.
We have that Nlim C’](V]VQ (f)(z) = f(z).

—+00

Proof. We apply Theorem In (3.35)) we choose
1

§ = oT™ +1
T A NMmAD(A-a) ’

thus 5m+1 = %, and

_m

(3.79) ™ = (i)™

[un

Therefore we have
B75)
M
QD (h @) — f@)] <
(13-75) _1
1 oT™ +1 orm™m—1 1 oT™
S Tmrn¥! (D:Tvnfv (N<m+1)(1—a)) )R : [Nm(l—cw + (m+1)6 N(m+1)<1—a>}

1
_ 1 m oT™ m+1 oT™—1 1 m+1
= mwl (Dz fs (N(m#»l)(lfa)) > |:Nm(17a) + (m+1)56 }
R

(3.80)
3~79 1 oT™ # 9Tm71 1 oT™ ml
= TminW1 (D?f» (yeroa=) “)R [Nmu—a) + ooy (Fmroa—) “}
1
VN eN:N >max {T + |z|, (%) ¢ } , proving the inequality (3.78]). U

We finish with (case of a = 1.5)

COROLLARY 3.37. Letx € [0,1], f € AC?([0,1],R) and f® € Ly ([0,1]).
Assume that f'(x) =0. Then

2
dwr (DL £, (8 )3) 3
(M) ( VN+1 5
(381) [BY" () (2) - f (2)] < — [ o= + () ] ,
vV N € N.
Proof. By Theorem apply (3.34)). O

Due to lack of space we do not give other example applications.
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