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ON THE NUMERICAL PICARD ITERATIONS WITH
COLLOCATIONS FOR THE INITIAL VALUE PROBLEM

ERNEST SCHEIBER∗

Abstract. Some variants of the numerical Picard iterations method are pre-
sented to solve an IVP for an ordinary differential system. The term numerical
emphasizes that a numerical solution is computed. The method consists in re-
placing the right hand side of the differential system by Lagrange interpolation
polynomials followed by successive approximations. In the case when the number
of interpolation point is fixed a convergence result is given. For stiff problems,
starting from a stabilization principle, it is given a variant of the Picard iteration
method.

Finally, some numerical experiments are reported.
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1. INTRODUCTION

This paper presents variants of the Picard iterations to solve an initial
value problem (IVP) for ordinary differential equations. On subintervals the
right hand side of the differential system is replaced by Lagrange interpolation
polynomials and then successive approximations are used. The interpolation
nodes are the images of a set of reference points. The number of these reference
points can be fixed or variable, i.e. increasing in number [8].

When the number of reference nodes is fixed the approximations of the
solution of the IVP are computed by collocations. A convergence result is
given. This case appears in [7, p. 211]. In [3] the spectral deferred correction
is defined adding a term to the iteration formula and the convergence of that
method is proved.

If the number of reference points increases then the values of the unknown
function are determined iteratively [8].

The idea to replace the right hand side of a differential equation with an
interpolation polynomial occurs in the multi-step methods, but instead of using
the points of the main mesh a reference set of points is used. The usage of an
iterative process to obtain some convergence is present in predictor-corrector
methods.
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We use the terminology numerical Picard iterations to emphasize that the
method builds a numerical solution. For an IVP the usual Picard iterations
are exemplified with Computer Algebra code in [12].

For stiff problems, starting from a stabilization principle, [4], [2], we derived
a variant of the Picard iteration method.

There is another approach to the numerical Picard iterations for an IVP,
where the approximations are a linear form of Chebyshev polynomials [6], [1],
[3].

Sometimes to verify a numerical computation, it is a practical rule to use
two different tools or methods. The presented methods offer an alternative to
solve an IVP.

The paper is organized as follows. After introducing the numerical Picard
iterations method in Section 2, two cases are presented in the next sections.
In Section 3 the Picard iteration method is studied when the reference set
contains a fixed number of points, while in Section 4 the Picard iteration
method is considered with an increasing in number of points of the reference
set. In Section 5 the case of a stiff problem is treated. In the last section some
results of our computational experiments are presented.

2. NUMERICAL PICARD ITERATIONS

Let the IVP be given by
ẏ(x) = f(x, y(x)), x ∈ [x0, xf ],(2.1)
y(x0) = y0,(2.2)

where the function f : [x0, xf ]×RN → RN has the components f = (f1, . . . , fN ).
In RN for y = (y1, . . . , yN ) we shall use the norm ‖y‖ = max1≤j≤N |yj |.
We assume that f is Lipschitz continuous, i.e. there exists L > 0 such that

|fµ(x, y1)− fµ(x, y2)| ≤ L
N∑
j=1
|yj1 − y

j
2| ∀ y1, y2 ∈ RN , µ ∈ {1, 2, . . . , N}

and consequently
‖f(x, y1)− f(x, y2)‖ ≤ L̃‖y1 − y2‖,

where L̃ = NL.
The IVP (2.1)-(2.2) may be reformulated as the integral equation

(2.3) y(x) = y0 +
∫ x

x0
f(s, y(s))ds.

Within these hypotheses the problem (2.1)-(2.2) or (2.3) has a unique solu-
tion. This solution may be obtained with the Picard iterations

y(n+1)(x) = y0 +
∫ x

x0
f(s, y(n)(s))ds, n ∈ N,

y(0)(x) = y0,
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for x ∈ [x0, xf ]. The sequence (y(n)(x))k∈N converges uniformly in [x0, xf ] to
the solution of IVP.

Let M be a positive integer, h = xf−x0
M and the mesh be defined as xi =

x0 + ih, i ∈ {0, 1, . . . ,M}. The numerical solution is given by the sequence
uh = (u0, u1, . . . , uM ), where each ui = u(xi) is an approximation of y(xi).

If ui was computed, on the interval [xi, xi+1] the function f(s, y(s)) under
the integral in

(2.4) y(x) = y(xi) +
∫ x

xi

f(s, y(s))ds

will be replaced by a Lagrange interpolation polynomial
(2.5)
u(x) = u(xi) +

∫ x

xi

L(Pm−1;xi,1, xi,2, . . . , xi,m; f(·, u(·)))(s)ds, x ∈ [xi, xi+1].

The interpolation nodes xi ≤ xi,1 < xi,2 < . . . < xi,m ≤ xi+1 are fixed by a
certain rule. The used notation states the interpolation constraints

L(Pm−1;xi,1, xi,2, . . . , xi,m; f(·, u(·)))(xi,j) = f(xi,j , u(xi,j)), j ∈ {1, 2, . . . ,m}.

From (2.5) we deduce

(2.6) u(x) = u(xi) +
m∑
j=1

(∫ x

xi

lj(s)ds
)
f(xi,j , u(xi,j)),

where (lj)1≤j≤m are the Lagrange fundamental polynomials

(2.7) lj(x) = (x−xi,1)...(x−xi,j−1)(x−xi,j+1)...(x−xi,m)
(xi,j−xi,1)...(xi,j−xi,j−1)(xi,j−xi,j+1)...(xi,j−xi,m) .

3. PICARD ITERATIONS WITH A FIXED REFERENCE SET

In (2.6) the values
u(xi,1), u(xi,2), . . . , u(xi,m)

are unknown. To compute these vectors the collocation method will be used.
Choosing x := xi,k in (2.6) we get

(3.1)

u(xi,k) = u(xi) +
m∑
j=1

(∫ xi,k

xi

lj(s)ds
)
f(xi,j , u(xi,j)), k ∈ {1, 2, . . . ,m}.

The relations (3.1) form a nonlinear system with the unknowns u(xi,1), . . . , u(xi,m) ∈
RN × . . .× RN︸ ︷︷ ︸

m

' RmN .

In order to simplify and provides a unitary approach to the computation of
the integrals from (3.1) we fix the nodes ξ1 < ξ2 < . . . < ξm within an interval
[a, b]. We call these nodes the reference interpolation nodes. The function

ϕi(ξ) = xi + h
b−a(ξ − a)
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maps the interval [a, b] into [xi, xi+1]. For any i ∈ {0, 1, . . . ,M − 1} the nodes
xi,j will be defined as

xi,j = ϕi(ξj), ∀ j ∈ {1, 2, . . . ,m}.
If s = ϕi(ξ) then

lj(s) = (ξ−ξ1)...(ξ−ξj−1)(ξ−ξj+1)...(ξ−ξm)
(ξj−ξ1)...(ξj−ξj−1)(ξj−ξj+1)...(ξj−ξm) = l̃j(ξ)

and ∫ xi,k

xi

lj(s)ds = h
b−a

∫ ξk

a
l̃j(ξ)dξ.

Denoting

wj,k = 1
b−a

∫ ξk

a
l̃j(ξ)dξ

the nonlinear system (3.1) becomes

(3.2) u(xi,k) = u(xi) + h
m∑
j=1

wj,kf(xi,j , u(xi,j)), k ∈ {1, 2, . . . ,m}.

In order to prove the existence of a solution of the nonlinear system we shall
use a simplified notation u(xi,k) = uk, k ∈ {1, 2, . . . ,m}. Then the system (3.2)
is written as

(3.3) uk = u(xi) + h
m∑
j=1

wj,kf(xi,j , uj), k ∈ {1, 2, . . . ,m}.

The operator
Φ = (Φk)1≤k≤m, where Φk : RN × . . .× RN︸ ︷︷ ︸

m

→ RN

is defined by

Φk(u) = u(xi) + h
m∑
j=1

wj,kf(xi,j , uj), u = (u1, . . . , um).

The used norm in RN × . . .× RN︸ ︷︷ ︸
m

will be

|||u||| = |||(u1, . . . , um)||| =
m∑
j=1
‖uj‖.

If u = (u1, . . . , um) and v = (v1, . . . , vm) then following equality is valid

Φk(u)− Φk(v) = h
m∑
j=1

wj,k (f(xi,j , uj)− f(xi,j , vj)) , k ∈ {1, 2, . . . ,m}.

Then
‖Φk(u)− Φk(v)‖ ≤ hL̃

m∑
j=1
|wj,k|‖uj − vj‖
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and
m∑
k=1
‖Φk(u)− Φk(v)‖ ≤ hL̃

m∑
k,j=1

|wj,k|‖uj − vj‖.

If ω = max1≤j≤m
∑m
k=1 |wj,k| the above inequality gives

(3.4) |||Φ(u)− Φ(v)||| ≤ hωL̃|||u− v|||.
Thus, if hωL̃ < 1 then Φ is a contraction. Following theorem is a consequence
of the above:

Theorem 3.1. For h small enough (h < 1
ωL) the nonlinear system (3.2)

has a unique solution.

In the hypothesis of the above theorem, the nonlinear system (3.2) may be
solved using the successive approximation method

u(n+1)(xi,k) = u(xi) + h
m∑
j=1

wj,kf(xi,j , u(n)(xi,j)), n ∈ N(3.5)

u(0)(xi,k) = u(xi)(3.6)
for k ∈ {1, 2, . . . ,m}. Because Φ is contraction, (3.4), the sequences

u
(n)
i,j

def= u(n)(xi,j), n ∈ N, j ∈ {1, 2, . . . ,m}
will converge to the solution of the system (3.2).

The iterative relations (3.5) can be written in matrix form
(3.7)

[u(n+1)
i,1 u

(n+1)
i,2 . . . u

(n+1)
i,m ] = [ui ui . . . ui]︸ ︷︷ ︸

m

+h[fi,1 fi,2 . . . fi,m]

 w1,1 ... w1,m
w2,1 ... w2,m

...
...

wm,1 ... wm,m

 ,
where fi,j = f(xi,j , u(n)

i,j ), j ∈ {1, . . . ,m}. Denoting u
(n)
i = (u(n)

i,j )1≤j≤m the
iterations stop when the following condition is fulfilled ‖u(n)

i − u(n−1)
i ‖ < ε,

where ε > 0 is a tolerance. The initial approximations are chosen as u(0)
i,j =

u(xi) for any j ∈ {1, 2, . . . ,m}.
This method to solve the nonlinear system (3.2) leads to an approximation

to the solution of the IVP in the most right node which may differ from xi+1.
We point out two variants of the computations:

• We change the initial mesh such that xi+1 will be the most right
node (xi+1 = ϕi(ξm)) and the computation continue in the interval
[xi+1, xi+1 + h]. In this case we have

ui+1
def= u(xi+1) = u

(n)
i,m.

• In (2.5) we set x := xi+1 = ϕi(b) and

ui+1
def= u(xi+1) = u(xi) + h

b−a

m∑
j=1

(∫ b

a
l̃j(ξ)dξ

)
f(xi,j , u(n)

i,j ).
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In this way m new integrals must be computed additionally.

With the new notations we have u0
def= u(x0) = y0.

The coefficients wj,k do not depend on the computation interval. We high-
light some cases when these coefficients may be easily computed.

Some particular cases.

(1) Equidistant nodes. If ξj = j−1
m−1 , j ∈ {1, 2, . . . ,m}, then

wj,k =
∫ ξk

0
l̃j(ξ)dξ = (−1)m−j

(j−1)!(m−j)!

∫ k−1
m−1

0

m−1∏
µ=0

µ6=j−1

((m− 1)ξ − µ) dξ.

The following Mathematica code computes these coefficients:

Wcoeff[j , k ,m ]:=Wcoeff[j , k ,m ]:=Wcoeff[j , k ,m ]:=

Module[{x,w},Module[{x,w},Module[{x,w},

w = Integrate[Product[If[i 6= j − 1, (m− 1)x− i, 1], {i, 0,m− 1}],w = Integrate[Product[If[i 6= j − 1, (m− 1)x− i, 1], {i, 0,m− 1}],w = Integrate[Product[If[i 6= j − 1, (m− 1)x− i, 1], {i, 0,m− 1}],

{x, 0, (k − 1)/(m− 1)}]; (−1)∧(m− j)w/((j − 1)!(m− j)!)]{x, 0, (k − 1)/(m− 1)}]; (−1)∧(m− j)w/((j − 1)!(m− j)!)]{x, 0, (k − 1)/(m− 1)}]; (−1)∧(m− j)w/((j − 1)!(m− j)!)]

The results obtained for m = 2 are

MatrixForm[Table[Wcoeff[j, k, 2], {k, 1, 2}, {j, 1, 2}]]MatrixForm[Table[Wcoeff[j, k, 2], {k, 1, 2}, {j, 1, 2}]]MatrixForm[Table[Wcoeff[j, k, 2], {k, 1, 2}, {j, 1, 2}]]( 0 0
1
2

1
2

)
Because xi,1 = xi şi xi,2 = xi+1 the recurrence formula (3.5)-(3.6)

becomes

u
(n+1)
i+1 = ui + h

2

(
f(xi, ui) + f(xi+1, u

(n)
i+1)

)
;(3.8)

u
(0)
i+1 = ui.

For m = 3 the results are

MatrixForm[Table[Wcoeff[j, k, 3], {k, 1, 3}, {j, 1, 3}]]MatrixForm[Table[Wcoeff[j, k, 3], {k, 1, 3}, {j, 1, 3}]]MatrixForm[Table[Wcoeff[j, k, 3], {k, 1, 3}, {j, 1, 3}]]( 0 0 0
5

24
1
3 −

1
24

1
6

2
3

1
6

)
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In this case xi,1 = xi, xi,2 = 1
2(xi + xi+1) def= xi+ 1

2
, xi,3 = xi+1 and

the recurrence formulas (3.5)-(3.6) become

u
(n+1)
i+ 1

2
=ui + h

(
5
24f(xi, ui) + 1

3f(xi+ 1
2
, u

(n)
i+ 1

2
))− 1

24f(xi+1, u
(n)
i+1)

)
;

u
(n+1)
i+1 =ui + h

6

(
f(xi, ui) + 4f(xi+ 1

2
, u

(n)
i+ 1

2
) + f(xi+1, u

(n)
i+1)

)
;(3.9)

u
(0)
i+ 1

2
=ui;

u
(0)
i+1 =ui.

In matrix form the above relations are
ui

u
(n+1)
i+ 1

2

u
(n+1)
i+1

 =

 ui
ui
ui

+ h

 0 0 0
5
24

1
3 − 1

241
6

2
3

1
6



f(xi, ui)
f(xi+ 1

2
, u

(n)
i+ 1

2
)

f(xi+1, u
(n)
i+1)

 .
Transposing the above equality we get the form corresponding to (3.7).

To compute ui+1 we observe that for m = 2 the trapezoidal rule
(3.8), while for m = 3 the Simpson integration formula (3.9) are used.

(2) Chebyshev points of second kind ξj = cos (j−1)π
m−1 , j ∈ {1, . . . ,m}. Then

wj,k = 1
2

∫ ξk

−1
l̃j(ξ)dξ = (−1)j−12m−3γj

m−1

∫ ξk

−1

m∏
k=1,k 6=j

(ξ − ξk)dξ

with γj =
{

0.5 if j ∈ {1,m}
1 if j ∈ {2, . . . ,m− 1} .

(3) The nodes are the roots of an orthogonal polynomial. Now we suppose
that the polynomial pm(ξ) =

∏m
j=1(ξ − ξj) is orthogonal to Pm−1, the

set of polynomials of degree at most m−1, with the weight ρ(ξ) on the
interval I = [a, b]. In this case the Lagrange fundamental polynomials
l̃j(ξ), j ∈ {1, . . . ,m} are orthogonal.
• If ρ(ξ) = 1, I = [a, b] then pm(ξ) = m!

(2m)!
dm
dmξ (ξ − a)m(ξ − b)m is

the Laguerre polynomial. For a = 0, b = 1 and m = 1 following
results are obtained

p1(ξ) = ξ − 1
2 ⇒ ξ1 = 1

2

w1,1 =
∫ 1

2

0
dξ = 1

2

u
(n+1)
i+ 1

2
= ui + h

2f(xi+ 1
2
, u

(n)
i+ 1

2
)

Again we observe that u(xi+ 1
2
) is computed using the rectangle

rule in the right hand side of (2.5).
• The Chebyshev polynomials pm(ξ) = 1

2m−1 cos(m arccos ξ), m ∈
N, are orthogonal with the weight ρ(ξ) = 1√

1−ξ2
in I = [−1, 1].
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The nodes will be
ξj = cos (2j−1)π

2m ⇒ xi,j = xi + h
2 (ξj + 1), j ∈ {1, 2, . . . ,m}.

The biggest node is xi,1. The Lagrange fundamental polynomials
are

l̃j(ξ) = 2m−1

m (−1)j−1 sin (2j−1)π
2m

m∏
µ=1
µ6=j

(
ξ − cos (2µ−1)π

2m

)

and

wj,k = 2m−2

m (−1)j−1 sin (2j−1)π
2m

∫ cos (2k−1)π
2m

−1

m∏
µ=1
µ 6=j

(
ξ − cos (2µ−1)π

2m

)
dξ

The integral can be analytically computed but it involves rounding
errors.

3.1. The convergence of the method. When h, the distance between two
mesh points xi and xi+1 = xi + h, is small enough the convergence of Picard
iterations is provided by the contraction condition. We recall that m, the
number of the reference set is fixed. The convergence problem refers to the
behavior of the numerical solution (u0, u1, . . . , uM ) to the analytical solution
(y(x0), y(x1), . . . , y(xM )).

We suppose that:
A1 The function f(x, y(x)) is continuous and then there exists a constant

K1 > 0 such that
max

1≤µ≤N
max

x∈[x0,xf ]
|fµ(x, y(x))| ≤ K1.

A2 The function f(x, y) have continuous partial derivatives of order m for
any x ∈ [x0, xf ], y ∈ RN . There exists Km > 0 such that

max
1≤µ≤N

max
x∈[x0,xf ]

∣∣∣dmfµ(x,y(x))|
dxm

∣∣∣ ≤ Km.

In any interval [xi, xi+1] the following equality is valid, [10, Th. 2.1.4.1],
fµ(x, y(x))− L(Pm−1;xi,1, xi,2, . . . , xi,m; fµ(·, y(·)))(x) =

= 1
m!

m∏
j=1

(x− xi,j) dmfµ(x,y(x))
dxm

∣∣∣
x=ηµ

where ηµ ∈ [xi, xi+1].
We denote by Rµ(x) the right hand side of the above equality and then
maxx∈[xi,xi+1] |Rµ(x)| ≤ Km

m! h
m. If R(x) = (R1(x), . . . , RN (x)) then (2.4) im-

plies the vectorial relation
(3.10)
y(x) = y(xi) +

∫ x

xi

L(Pm−1;xi,1, xi,2, . . . , xi,m; f(·, y(·)))(s)ds+
∫ x

xi

R(s)ds
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and ‖
∫ x
xi
R(s)ds‖ ≤ Km

m! h
m+1.

We make the following notations
ei = ‖y(xi)− ui‖, i ∈ {0, 1, . . . ,M};
r

(n)
i,j = ‖y(xi,j)− u(n)

i,j ‖, j ∈ {1, 2, . . . ,m};
r

(n)
i = max1≤j≤m r

(n)
i,j .

and additionally

w = max
{

max
1≤j,k≤m

|wj,k|, max
1≤j≤m

1
b−a

∣∣∣∣ ∫ b

a
l̃j(ξ)dξ

∣∣∣∣}, w̃ = mw.

We emphasize that n represents the number of iterations on an interval [xi, xi+1].
This number differs from one interval to another. For simplicity we omitted
the index i when n is written.

Several times the following theorem will be used

Theorem 3.2. If (zk)k∈N is a sequence of nonnegative numbers such that

zk+1 ≤ azk + b ∀ k ∈ N şi a, b > 0, a 6= 1,

then
zk ≤ akz0 + ba

k−1
a−1 , ∀ k ∈ N.

The above inequality implies: if a > 1 then zk ≤ ak
(
z0 + b

a−1

)
and if a < 1

then zk ≤ akz0 + b
1−a .

The following result of convergence occurs:

Theorem 3.3. If the above assumptions take place then

lim
h↘0

max
i∈{0,1,...,M}

‖y(xi)− ui‖ = 0,

that is, the convergence of the method.

Proof. In the beginning we determine an evaluation for r(n)
i .

For n = 0 the equalities hold:

y(xi,j)− u(0)
i,j =y(xi,j)− ui = (y(xi,j)− y(xi)) + (y(xi)− ui)

=
∫ xi,j

xi

f(s, y(s))ds+ (y(xi)− ui)

and then we deduce

r
(0)
i,j ≤ K1h+ ei, ∀ j ∈ {1, 2, . . . ,m} ⇒ r

(0)
i ≤ K1h+ ei.

If n > 0, for x = xi,k the equality (3.10) may be written as

(3.11) y(xi,k) = y(xi) + h
m∑
j=1

wj,kf(xi, j, y(xi,j)) +
∫ xi,k

xi

R(s)ds.
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Subtracting (3.5) from (3.11)we obtain

y(xi,k)− u
(n+1)
i,k =

= y(xi)− ui + h
m∑
j=1

wj,k
(
f(xi,j , y(xi,j))− f(xi,j , u(n)

i,j )
)

+
∫ xi,k

xi

R(s)ds.

It follows that
r

(n+1)
i,k ≤ ei + hL̃w̃r

(n)
i +Km

m! h
m+1 ⇒ r

(n+1)
i ≤ ei + hL̃w̃r

(n)
i +Km

m! h
m+1

If h is small enough (hL̃w̃ < 1) then

r
(n)
i ≤ (hL̃w̃)nr(0)

i + 1
1−hL̃w̃

(
ei + Km

m! h
m+1

)
≤ (hL̃w̃)n(K1h+ ei) + 1

1−hL̃w̃

(
ei + Km

m! h
m+1

)
=
(
(hL̃w̃)n + 1

1−hL̃w̃

)
ei + hn+1(L̃w̃)nK1 + Kmhm+1

m!(1−hL̃w̃) .(3.12)

Evaluating ei we distinguish two cases depending on the definition of ui+1:

ui+1 = u
(n)
i,m = ui + h

m∑
j=1

wj,mf(xi,j , u(n−1)
i,j ), (xi+1 = ϕi(ξm))

or

ui+1 = ui + h
b−a

m∑
j=1

(∫ b

a
l̃j(ξ)dξ

)
f(xi,j , u(n)

i,j ), (xi+1 = ϕi(b)).

Corresponding to the two cases, from (3.10) we obtain the equalities

y(xi+1) = y(xi) + h
m∑
j=1

wj,mf(xi,j , y(xi,j)) +
∫ xi,m

xi

R(s)ds

and respectively

y(xi+1) = y(xi) + h
b−a

m∑
j=1

(∫ b

a
l̃j(ξ)dξ

)
f(xi,j , y(xi,j)) +

∫ xi+1

xi

R(s)ds.

Computing y(xi+1)− ui+1 it results

y(xi+1)−ui+1 =y(xi)−ui + h
m∑
j=1

wj,m
(
f(xi,j , y(xi,j))−u(n−1)

i,j

)
+
∫ xi,m

xi

R(s)ds,

respectively

y(xi+1)−ui+1 =y(xi)−ui+ h
b−a

m∑
j=1

(∫ b

a
l̃j(ξ)dξ

)(
f(xi,j , y(xi,j))−u(n)

i,j

)
+

+
∫ xi+1

xi

R(s)ds.

It follows that
ei+1 ≤ ei + hL̃w̃r

(n−1)
i + Km

m! h
m+1
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and
ei+1 ≤ ei + hL̃w̃r

(n)
i + Km

m! h
m+1.

We remark that between the two estimates only the upper index of ri differs.
This justifies that in the second case m additional integrals must be computed.

From hereon it is sufficient to consider only the first case. Using (3.12) we
obtain

ei+1 ≤

≤ ei+hL̃w̃
((

(hL̃w̃)n−1+ 1
1−hL̃w̃

)
ei+hn(L̃w̃)n−1K1+ Kmhm+1

m!(1−hL̃w̃)

)
+Km

m! h
m+1

= ei
(
1 + (hL̃w̃)n + hL̃w̃

1−hL̃w̃

)
+ hn+1(L̃w̃)nK1 + Kmhm+1

m!(1−hL̃w̃) .

Because hL̃w̃ < 1 ⇒ (hL̃w̃)n ≤ hL̃w̃ the above inequality becames

ei+1 ≤ ei
(
1 + hL̃w̃ + hL̃w̃

1−hL̃w̃

)
+ h2L̃w̃K1 + Kmhm+1

m!(1−hL̃w̃) .

Consequently

ei ≤
(
1 + hL̃w̃ + hL̃w̃

1−hL̃w̃

)i(
e0 +

h2L̃w̃K1+ Kmh
m+1

m!(1−hL̃w̃)

hL̃w̃+ hL̃w̃
1−hL̃w̃

)

≤ e
i

(
hL̃w̃+ hL̃w̃

1−hL̃w̃

)(
e0 +

hL̃w̃K1+ Kmh
m

m!(1−hL̃w̃)

L̃w̃+ L̃w̃
1−hL̃w̃

)
.

Because e0 = 0, from the above inequality it results that:

max
1≤i≤M

ei ≤ e
(xf−x0)L̃w̃

(
1+ 1

1−hL̃w̃

)(
hL̃w̃K1+ Kmh

m

m!(1−hL̃w̃)

L̃w̃+ L̃w̃
1−hL̃w̃

)
→ 0,

for h↘ 0 ⇔ M →∞. �

4. PICARD ITERATIONS WITH A VARIABLE REFERENCE SET

We shall keep some of the above introduced notations and we shall define
those that differ.

Let a ≤ ξm1 < ξm2 < . . . < ξmm ≤ b be the roots of the polynomial pm(x),
where (pm)m∈N is a sequence of orthogonal polynomials with the weight ρ ∈
L2[a, b] on the interval [a, b]. It is assumed that 1

ρ ∈ L2[a, b], too. These are
requirements of the convergence theorem [8].

If ϕi is the affine function transforming [a, b] onto [xi, xi+1] then the nodes
are introduced

xmi,j = ϕi(ξmj ), j ∈ {1, 2, . . . ,m}, m ∈ N∗.
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For x ∈ [xi, xi+1], we define

um+1(x) = ui +
∫ x

xi

L(Pm−1;xmi,1, xmi,2, . . . , xmi,m; f(·, um(·)))(s)ds =

= ui +
m∑
j=1

(∫ x

xi

lmj (s)ds
)
f(xmi,j , u(xmi,j))

= ui + h
b−a

m∑
j=1

(∫ ζ

a
l̃mj (ξ)dξ

)
f(xmi,j , u(xmi,j)),

where ζ = ϕ−1
i (x) and

l̃mj (ξ) = (ξ−ξm1 )...(ξ−ξmj−1)(ξ−ξmj+1)...(ξ−ξmm)
(ξmj −ξ

m
1 )...(ξmj −ξ

m
j−1)(ξmj −ξ

m
j+1)...(ξmj −ξmm) .

The vectors umi,j are defined iteratively

u1
i,1 =ui,

u2
i,1 =ui + h

b−a

(∫ ξ2
1

a
l̃11(ξ)dξ

)
f(x1

i,1, u
1
i,1)

=ui + h
b−a(ξ2

1 − a)f(x1
i,1, u

1
i,1);

u2
i,2 =ui + h

b−a

(∫ ξ2
2

a
l̃11(ξ)dξ

)
f(x1

i,1, u
1
i,1)

=ui + h
b−a(ξ2

2 − a)f(x1
i,1, u

1
i,1).

It was taken into account that l̃1(ξ) = 1. As a rule

um+1
i,k = um+1(xm+1

i,k ) = ui + h
b−a

m∑
j=1

(∫ xm+1
i,k

a
l̃mj (ξ)dξ

)
f(xmi,j , u(xmi,j)),

for k ∈ {1, 2, . . . ,m+ 1} şi m ∈ N∗.
We must compute

um+1
i+1 = um+1(xi+1) = ui + h

b−a

m∑
j=1

(∫ b

a
l̃mj (ξ)dξ

)
f(xmi,j , u(xmi,j)),

too.
The computation of the vectors um+1

i,k , k ∈ {1, 2, . . . ,m + 1}, um+1
i+1 can be

written in matrix form. For simplicity we denote

wj,k =
∫ xm+1

i,k

a
l̃mj (ξ)dξ, j ∈ {1, . . . ,m}, k ∈ {1, . . . ,m+ 1},

wj =
∫ b

a
l̃mj (ξ)dξ, j ∈ {1, . . . ,m}
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and the matrix

W = h
b−a


w1,1 w2,1 . . . wm,1
w1,2 w2,2 . . . wm,2

...
...

w1,k+1 w2,k+1 . . . wm,k+1
w1 w2 . . . wm

 ∈Mm+2,m(R)

F = [f(xmi,1, umi,1), f(xi,2, umi,2), . . . , f(xmi,m, umi,m)] ∈MN,m(R)
The following equality holds

[um+1
i,1 , um+1

i,2 , . . . , um+1
i,m+1, u

m+1
i+1 ]T = [ui, . . . , ui]︸ ︷︷ ︸

m+2

T +W · F T .

For an imposed tolerance ε > 0, the iterations occurs until the condition
‖um+1

i+1 − umi ‖ < ε is fulfilled. The initial approximation is u1
i+1 = ui. If the

above condition is fulfilled then we set ui+1 = um+1
i+1 .

A convergence result is given in [8].

5. STIFF PROBLEMS

From (2.3), if s = x0 + hσ then

y(x) = y(x0) + h

∫ x−x0
h

0
f(x0 + hσ, y(x0 + hσ))dσ,

with x ∈ [x0, x0 + h] ⇔ σ ∈ [0, 1].
Setting

y(x0 + hσ) = y0 + hv(σ)
we derive that v(0) = 0 and

dv(σ)
dσ = f(x0 + hσ, y0 + hv(σ)) ⇔ v(s) =

∫ s

0
f(x0 + hσ, y0 + hv(σ))dσ.

Following [4], [2], by the stabilization principle, the solution of the partial
differential system

(5.1) ∂w(ζ,t)
∂t = −w(ζ, t) +

∫ ζ

0
f(x0 + hσ, y0 + hw(σ, t))dσ

has the property, cf. [4], [2],
(5.2) lim

t→∞
‖w(ζ, t)− v(ζ)‖ = 0, for ζ ∈ [0, 1].

We give a numerical solution to find an approximation of the solution of
(5.1).

Let be τ > 0 and the sequence tn = nτ, n ∈ N. The equation (5.1) may be
rewritten as

∂etw(ζ,t)
∂t = et

∫ ζ

0
f(x0 + hσ, y0 + hw(σ, t))dσ
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and integrating from nτ to (n+1)τ it results
(5.3)

w(ζ, tn+1)=e−τw(ζ, tn)+e−(n+1)τ
∫ (n+1)τ

nτ
eη
(∫ ζ

0
f(x0+hσ, y0+hw(σ, η))dσ

)
dη.

Without changing the notation for w, we substitute in (5.3) f(x0 +hσ, y0 +
hw(σ, η)) by a Lagrange interpolation polynomial

w(ζ, tn+1) =

(5.4)

=e−τw(ζ, tn)+

+e−(n+1)τ
∫ (n+1)τ

nτ
eη
(∫ ζ

0
L(Pm−1; ξ1, . . . , ξm; f(x0+h ·, y0+hw(·, η))dσ

)
dη

=e−τw(ζ, tn)+e−(n+1)τ
m∑
j=1

∫ (n+1)τ

nτ
eη
(∫ ζ

0
f(x0+hξj , y0+hw(ξj , η))lj(σ)dσ

)
dη,

where 0 = ξ1 < ξ2 < . . . < ξm = 1.
We denote wn(ζ) = w(ζ, tn) and in the right hand side of (5.4) we take

w(ξj , η) = wn(ξj), for any j ∈ {1, 2, . . . ,m} and η ∈ [nτ, (n+ 1)τ ]. Then

wn+1(ζ) = e−τwn(ζ) + (1− e−τ )
m∑
j=1

f(x0 + hξj , y0 + hwn(ξj))
∫ ζ

0
lj(σ)dσ.

Denoting wnj = wn(ξj), for ζ = ξk, k ∈ {1, 2, . . . ,m} we obtain the iterative
relations

wn+1
k = e−τwnk + (1− e−τ )

m∑
j=1

f(x0 + hξj , y0 + hwnj )
∫ ξk

0
lj(σ)dσ.

The iterations occurs until the stopping condition max1≤j≤m ‖wn+1
j −wnj ‖ < ε

is fulfilled. Here ε > 0 is a tolerance. According to (5.2) we consider v(1) =
wn+1
j and the procedure continues with ui+1 = ui + hwn+1

m .

6. NUMERICAL EXPERIMENTS

Using computer programs based on these methods we solved the following
IVPs:

(1) ([9, p. 234]){
ẏ = y 4(x+2)3−y

(x+2)4−1 , x ∈ [0, 1],
y(0) = 15

with the solution y(x) = 1 + (x+ 2) + (x+ 2)2 + (x+ 2)3.
For M = 5 and the tolerance ε = 10−5 the maximum error

max0≤i≤M ‖y(xi) − ui‖ and Nf , the number of calling the function
f, are given in Table 6.1.
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Fixed equidistant Variable reference set
reference set m = 3

Error Nf Error Nf

1.82591e-08 75 8.94274e-08 99

Table 6.1. Results for Example (1).

(2) ([9, p. 244])


ẏ1 = y2, y1(0) = 1, x ∈ [0, xf ],
ẏ2 = −y1

r3 , y2(0) = 0,
ẏ3 = y4, y3(0) = 0,
ẏ4 = −y3

r3 , y4(0) = 1,

where r =
√
y2

1 + y2
3 and with the solution y1 = cosx, y2 = − sin x, y3 =

sin x, y4 = cosx.
The results of our numerical experiments are listed in Table 6.2.

Fixed equidistant Variable reference set
reference set m = 3

xf M ε Error Nf Error Nf

2π 10 10−5 0.0247309 300 6.47998e-05 550
2π 10 10−9 0.0246415 480 2.24345e-09 1050
4π 10 10−5 0.888217 534 0.000142862 966
4π 20 10−9 0.0496889 960 1.05491e-08 2100
6π 10 10−5 14.4197 762 6.23799e-05 1530
6π 40 10−9 0.0232977 1560 3.06542e-09 3640

Table 6.2. Results for Example (2).

Now we compare the results obtained using equidistant nodes and
Chebyshev points of second kind for the reference set. For the same
example the obtained results are given in Table 6.3.

Fixed equidistant Chebyshev fixed
reference set m = 5

xf M ε Error Nf Error Nf

2π 10 10−5 6.93002e-05 400 2.69646e-05 400
2π 10 10−9 1.91509e-05 650 8.13527e-06 650
4π 10 10−5 0.00215349 600 0.000338729 551
4π 20 10−9 3.85763e-05 1300 1.6391e-05 1300
6π 10 10−5 0.0275954 900 0.0164587 820
6π 40 10−9 1.00764e-05 2200 4.18516e-06 2200

Table 6.3. Results for Example (2).
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As expected, the results using Chebyshev points of second kind are
better than that obtained using equidistant nodes, due to the bet-
ter approximation property of Lagrange interpolation polynomial with
Chebyshev points of second kind toward the equidistant points, [11].

(3) ([9, p. 245]) Keeping the differential system as in the previous example
but changing the initial value conditions to y(0) = [0.4, 0, 0, 2], for
xf = 2π, M = 20 and ε = 10−9 with the method based on variable
reference set we obtained max0≤i≤M ‖y(xi)− ui‖ = 2.94126 · 10−9 and
Nf = 1400.

In this case the solution is
y(x) = [cosu− 0.6, − sinu

1−0.6 cosu , 0.8 sin u, 0.8 cosu
1−0.6 cosu ],

where x = u− 0.6 sin u.
Based on the previous examples the method with variable number

of reference points is more efficient than the method with fixed number
reference points, but we cannot deduce theoretically such a conclusion.

Using the method for stiff problems presented above we solved:
(4) {

ẏ1 = 998y1 + 1998y2, y1(0) = 1, x ∈ [0, 1],
ẏ2 = −999y1 − 1999y2, y2(0) = 0,

with the solution y1 = 2e−x − e−1000x, y2 = −e−x + e−1000x.
For τ = 10 the results are given in Table 6.4. We recall that τ is

the length of the step for the t variable of the stabilization principle.

Fixed equidistant Chebyshev fixed
reference set m = 5

M ε Error Nf Error Nf

300 10−5 0.00164977 8585 0.000402419 8435
500 10−7 0.000128781 10700 4.35037e-05 10555

Table 6.4. Results for Example (4).

(5)
ẏ = −20y, y(0) = 1, x ∈ [0, 1].

For τ = 10,M = 20 and ε = 10−7 the results are given in Table 6.5.

Fixed equidistant Chebyshev fixed
reference set m = 5

Error Nf Error Nf

1.19382e-06 800 4.58431e-07 785

Table 6.5. Results for Example 5.
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To make the results reproducible we provide some code at https://github.
com/e-scheiber/scilab-ivpsolvers.git.
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ing many improvements of this paper.
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