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APPROXIMATIONS OF OBJECTIVE FUNCTION AND
CONSTRAINTS IN BI-CRITERIA OPTIMIZATION PROBLEMS

IONUT TRAIAN LUCA∗ and DOREL I. DUCA†

Abstract. In this paper we study approximation methods for solving bi-criteria
optimization problems. Initial problem is approximated by a new one which has
the components of the objective and the constraints replaced by their approx-
imation functions. Components of the objective function are first and second
order approximated and constraints are first order approximated. Conditions
such that efficient solution of the approximate problem will remain efficient for
initial problem and reciprocally are studied. Numerical examples are developed
to emphasize the importance of these conditions.
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1. INTRODUCTION

Bi-criteria optimization problems are quite often used as mathematical mod-
els for all kind of phenomena generated by real-world and theoretical situa-
tions. As examples we might mention portfolio theory [4], energy field [5],
data analysis [3], logistics [6].

Among methods widely used to solve bi-criteria optimization problems
are “scalarization” methods [2] (weighting problem, k th objective Lagrangian
problem, k th objective ε-constrained problem). Sometimes mathematical mod-
els are highly complex and thus using approximation problems might be a more
efficient method to solve bi-criteria optimization problems.

This article is analyzing conditions such that efficient solution of a certain
approximate problem will remain efficient for the initial problem and recip-
rocally. Approximate problem consists of replacing components of objective
function and also constraints with their approximate functions.
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2. BASIC CONCEPTS

Let X be a set in Rn, x0 an interior point of X, η : X × X → X and
f : X → R. If f is differentiable at x0 then we denote:

F 1 (x) = f (x0) +∇f (x0) η (x, x0)

and call it first η-approximation of f , while if f is twice differentiable at x0
then we denote:

F 2 (x) = f (x0) +∇f (x0) η (x, x0) + 1
2η (x, x0)T ∇2f (x0) η (x, x0) .

and call it second η-approximation of f .

Definition 1. Let X be a nonempty set of Rn, x0 an interior point of X,
f : X → R a function differentiable at x0 and η : X ×X → X. Then function
f is: invex at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≥ ∇f (x0) η (x, x0)

or equivalently:
f (x) ≥ F 1 (x) ;

incave at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≤ ∇f (x0) η (x, x0)

or equivalently
f (x) ≤ F 1 (x) ;

avex at x0 with respect to η if it is both invex and incave at x0 w.r.t. η.

If function f is invex, respectively incave or avex we denote invex1, respec-
tively incave1 or avex1.

Definition 2. Let X be a nonempty set of Rn, x0 an interior point of X,
f : X → R a function twice differentiable at x0 and η : X × X → X. Then
function f is:
second order invex at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≥ ∇f (x0) η (x, x0) + 1
2η (x, x0)T ∇2f (x0) η (x, x0)

or equivalently:
f (x) ≥ F 2 (x) ;

second order incave at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≤ ∇f (x0) η (x, x0) + 1
2η (x, x0)T ∇2f (x0) η (x, x0)

or equivalently:
f (x) ≤ F 2 (x) ;

second order avex at x0 with respect to η if it is both second order invex and
second order incave at x0 w.r.t. η.
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If function f is second order invex, respectively second order incave or
second order avex we denote invex2, respectively incave2 or avex2.

Let X be a nonempty set of Rn, x0 an interior point of X, η : X ×X → X,
T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

We consider the bi-criteria optimization problem (P 0,0
0 ), defined as:

min (f1, f2) (x)
x = (x1, x2, ..., xn) ∈ X
gt (x) ≤ 0, t ∈ T
hs (x) = 0, s ∈ S.

Assuming that functions f1, f2, are differentiable of order i, j ∈ {1, 2}
and functions gt, (t ∈ T ) , hs, (s ∈ S) are first order differentiable, we will
approximate original problem (P 0,0

0 ) by problems (P i,j1 ):
min

(
F i1, F

j
2

)
(x)

x = (x1, x2, ..., xn) ∈ X
G1
t (x) ≤ 0, t ∈ T

H1
s (x) = 0, s ∈ S

where (i, j) ∈ {(1, 0) , (1, 1) , (2, 0) , (2, 1) , (2, 2)} and F 0
1 = f1, F

0
2 = f2.

We denote by

Fk =
{
x ∈ X : Gkt (x) ≤ 0, t ∈ T, Hk

s (x) = 0, s ∈ S, k ∈ {0, 1}
}

the set of feasible solutions for bi-criteria optimization problem (P i,jk ), where
(i, j) ∈ {(1, 0) , (1, 1) , (2, 0) , (2, 1) , (2, 2)} and k ∈ {0, 1}.

3. APPROXIMATE PROBLEMS AND RELATION TO INITIAL PROBLEM

In this section we will study the conditions such that efficient solution of
approximated problems (P 1,0

1 ), (P 2,0
1 ), (P 2,1

1 ) and (P 2,2
1 ) will remain efficient

also for initial problem (P 0,0
0 ) and reciprocally.

Conditions for the relation (P 0,0
0 ) vs. (P 1,1

1 ) have been studied in [1] so we
will not analyze them anymore.

By approximating also the feasible set it is important to determine condi-
tions such that F0 ⊆ F1 and F1 ⊆ F0. These inclusions were studied in [1].
We will use them in our work, so we will briefly present the Theorems stating
these inclusions.

Theorem 3. [1]. Let X be a nonempty set of Rn, x0 an interior point of
X, η : X ×X → X, and gt, hs : X → R, (t ∈ T, s ∈ S).

Assume that:
a) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0

with respect to η,
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b) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

then
F0 ⊆ F1.

Theorem 4. [1]. Let X be a nonempty set of Rn, x0 an interior point of
X, η : X ×X → X, and gt, hs : X → R, (t ∈ T, s ∈ S).

Assume that
a) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0

with respect to η,
b) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0

with respect to η,
then

F1 ⊆ F0.

Theorem 5. Let X be a nonempty set of Rn, x0 an interior point of X, η :
X ×X → X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:
a) x0 ∈ F0,
b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0

with respect to η,
c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0

with respect to η,
d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,
e) η (x0, x0) = 0.

If x0 is an efficient solution for (P 2,0
1 ), then x0 is an efficient solution for

(P 0,0
0 ).
Proof. x0 being an efficient solution for (P 2,0

1 ), implies that

@x ∈ F1 s.t.
(
F 2

1 (x) , f2 (x)
)
≤
(
F 2

1 (x0) , f2 (x0)
)
.

Conditions b) and c) imply that
F0 ⊆ F1

and thus
(1) @x ∈ F0 s.t.

(
F 2

1 (x) , f2 (x)
)
≤
(
F 2

1 (x0) , f2 (x0)
)
.

Let’s assume that x0 is not an efficient solution for (P 0,0
0 ). Then

∃y ∈ F0 s.t. (f1 (y) , f2 (y)) ≤ (f1 (x0) , f2 (x0))
which implies that ∃y ∈ F0 s.t.

(2)
{
f1 (y) < f1 (x0)
f2 (y) 5 f2 (x0)
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or

(3)
{

f1 (y) 5 f1 (x0)
f2 (y) < f2 (x0) .

Because f1 is invex2 at x0 with respect to η we get F 2
1 (y) ≤ f1 (y) , ∀y ∈ F0.

Because η (x0, x0) = 0 we get f1 (x0) = F 2
1 (x0). Thus from (2) we get that

∃y ∈ F0 s.t. {
F 2

1 (y) < F 2
1 (x0)

f2 (y) 5 f2 (x0)

which contradicts (1) and from (3) we get that ∃y ∈ F0 s.t.{
F 2

1 (y) 5 F 2
1 (x0)

f2 (y) < f2 (x0)

which contradicts (1).
In conclusion x0 is an efficient solution for (P 0,0

0 ). �

Theorem 6. Let X be a nonempty set of Rn, x0 an interior point of X, η :
X ×X → X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:
a) x0 ∈ F1,
b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0

with respect to η,
c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0

with respect to η,
d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,
e) η (x0, x0) = 0.

If x0 is an efficient solution for (P 0,0
0 ), then x0 is an efficient solution for

(P 2,0
1 ).
Proof. x0 being an efficient solution for (P 0,0

0 ), implies that

@x ∈ F0 s.t. (f1 (x) , f2 (x)) ≤ (f1 (x0) , f2 (x0)) .

Conditions b) and c) imply that

F1 ⊆ F0

and thus

(4) @x ∈ F1 s.t. (f1 (x) , f2 (x)) ≤ (f1 (x0) , f2 (x0)) .

Let’s assume that x0 is not an efficient solution for (P 2,0
1 ). Then

∃y ∈ F1 s.t.
(
F 2

1 (y) , f2 (y)
)
≤
(
F 2

1 (x0) , f2 (x0)
)
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which implies that ∃y ∈ F1 s.t.

(5)
{
F 2

1 (y) < F 2
1 (x0)

f2 (y) 5 f2 (x0)
or

(6)
{
F 2

1 (y) 5 F 2
1 (x0)

f2 (y) < f2 (x0) .

Because f1 is incave2 at x0 with respect to η we get f1 (y) ≤ F 2
1 (y) , ∀y ∈ F1.

Because η (x0, x0) = 0 we get f1 (x0) = F 2
1 (x0). Thus from (5) we get that

∃y ∈ F1 s.t. {
f1 (y) < f1 (x0)
f2 (y) 5 f2 (x0)

which contradicts (4) and from (6) we get that ∃y ∈ F1 s.t.{
f1 (y) 5 f1 (x0)
f2 (y) < f2 (x0)

which contradicts (4).
In conclusion x0 is an efficient solution for (P 2,0

1 ). �

Theorem 7. Let X be a nonempty set of Rn, x0 an interior point of X, η :
X ×X → X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:
a) x0 ∈ F0,
b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0

with respect to η,
c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0

with respect to η,
d) f1 is differentiable at x0 and invex1 at x0 with respect to η,
e) η (x0, x0) = 0.

If x0 is an efficient solution for (P 1,0
1 ), then x0 is an efficient solution for

(P 0,0
0 ).

Proof. Proof is similar to Theorem 5. �

Theorem 8. Let X be a nonempty set of Rn, x0 an interior point of X, η :
X ×X → X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:
a) x0 ∈ F1,
b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0

with respect to η,
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c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is differentiable at x0 and incave1 at x0 with respect to η,
e) η (x0, x0) = 0.

If x0 is an efficient solution for (P 0,0
0 ), then x0 is an efficient solution for

(P 1,0
1 ).
Proof. Proof is similar to Theorem 6. �

Theorem 9. Let X be a nonempty set of Rn, x0 an interior point of X, η :
X ×X → X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:
a) x0 ∈ F0,
b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0

with respect to η,
c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0

with respect to η,
d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,
e) f2 is differentiable at x0 and invex1 at x0 with respect to η,
f) η (x0, x0) = 0.

If x0 is an efficient solution for (P 2,1
1 ), then x0 is an efficient solution for

(P 0,0
0 ).
Proof. Proof is similar to Theorem 5. �

Theorem 10. Let X be a nonempty set of Rn, x0 an interior point of
X, η : X ×X → X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs :
X → R, (t ∈ T, s ∈ S) functions.

Assume that:
a) x0 ∈ F1,
b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0

with respect to η,
c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0

with respect to η,
d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,
e) f2 is differentiable at x0 and incave1 at x0 with respect to η,
f) η (x0, x0) = 0.

If x0 is an efficient solution for (P 0,0
0 ), then x0 is an efficient solution for

(P 2,1
1 ).
Proof. Proof is similar to Theorem 6. �

Theorem 11. Let X be a nonempty set of Rn, x0 an interior point of
X, η : X ×X → X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs :
X → R, (t ∈ T, s ∈ S) functions.
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Assume that:
a) x0 ∈ F0,
b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0

with respect to η,
c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0

with respect to η,
d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,
e) f2 is twice differentiable at x0 and invex2 at x0 with respect to η,
f) η (x0, x0) = 0.

If x0 is an efficient solution for (P 2,2
1 ), then x0 is an efficient solution for

(P 0,0
0 ).

Proof. Proof is similar to Theorem 5. �

Theorem 12. Let X be a nonempty set of Rn, x0 an interior point of
X, η : X ×X → X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs :
X → R, (t ∈ T, s ∈ S) functions.

Assume that:
a) x0 ∈ F1,
b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0

with respect to η,
c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0

with respect to η,
d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,
e) f2 is twice differentiable at x0 and incave2 at x0 with respect to η,
f) η (x0, x0) = 0.

If x0 is an efficient solution for (P 0,0
0 ), then x0 is an efficient solution for

(P 2,2
1 ).

Proof. Proof is similar to Theorem 6. �

4. NUMERICAL EXAMPLES

In the above theorems, conditions referring to invexity, incavity or avexity
of functions are essential to ensure that efficient solution of the initial prob-
lem remains efficient for the approximate problem and reciprocally. If those
conditions are not fulfill it is possible either that efficient solution of initial
problem remains efficient for the approximate problem (and reciprocally) or
it does not remain efficient.

Example 1. Let the initial bi-criteria optimization problem (P 0,0
0 ) be:

min (x1 − 2x2;x1 + x2)
−x1x2 + 1 ≤ 0
x1;x2 ≥ 0
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An efficient solution of problem (P 0,0
0 ) is x0 = (1, 1) ∈ F0 and the value of the

objective function in x0 is f(1, 1) = (−1, 2). First and second approximate
functions for the components of the objective function in x0 = (1, 1) are:

F 1
p (x) = fp (x0) +∇fp (x0) η (x, x0) , p ∈ {1, 2}

and
F 2
p (x) = fp (x0)+∇fp (x0) η (x, x0)+1

2η (x, x0)T ∇2fp (x0) η (x, x0) , p ∈ {1, 2} ,
while first approximate functions for the constraint is:

G1
t (x) = gt (x0) +∇gt (x0) η (x, x0) , t ∈ {1, 2, 3} .

Considering η (x, x0) = x− x0 we get:
F i1 (x) = F i1 (x) = x1 − 2x2, i ∈ {0, 1, 2}

F j2 (x) = F j2 (x) = x1 + x2, j ∈ {0, 1, 2}
and

G1
1 (x) = −x1 − x2 + 2, G1

2 (x) = x1, G
1
3 (x) = x2

Consequently, the approximate problems (P i,j1 ), with (i, j) ∈ {(1, 0), (1, 1),
(2, 0), (2, 1), (2, 2)} are: 

min (x1 − 2x2;x1 + x2)
−x1 − x2 + 2 ≤ 0
x1;x2 ≥ 0

Calculating the value of objective function for problem (P i,j1 ) in x = (0, 2) ∈
F1 we obtain:(

F i1, F
j
2

)
(0, 2) = (−4, 2) < (−1, 2) =

(
F i1, F

j
2

)
(1, 1)

where (i, j) ∈ {(1, 0) , (1, 1) , (2, 0) , (2, 1) , (2, 2)}, which proves that x0 =
(1, 1) ∈ F1 is not an efficient solution for approximate problem (P i,j1 ). �

Example 2. Let the initial bi-criteria optimization problem (P 0,0
0 ) be:

min
(
x2

1 + (x2 − π − 1)2; (x1 + 1
10)2 − 1

2(x2 + 1)2
)

−x1 − sin x1 + x2 ≤ 0
x1 − 5π

2 ≤ 0
x1;x2 ≥ 0

An efficient solution of problem (P 0,0
0 ) is x0 = (π2 , 1 + π

2 ) ∈ F0 and the value
of the objective function in x0 is f(π2 , 1 + π

2 ) = (π2

2 ; π2

8 −
9π
10 −

199
100).

To compute the approximate problem (P 1,1
1 ) in x0 we have to calculate:

F 1
p (x) = fp (x0) +∇fp (x0) η (x, x0) , p ∈ {1, 2}

and
G1
t (x) = gt (x0) +∇gt (x0) η (x, x0) , t ∈ {1, 2, 3, 4}
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Considering η (x, x0) = x− x0 we get:

F 1
1 (x) = πx1 − πx2 + π + π2

2 ,

F 1
2 (x) = (π + 1

5)x1 − (π2 + 2)x2 − π2

8 + π
2 + 1

100 ,

G1
1 (x) = −x1 + x2 − 1,

G1
2 (x) = x1 − 5π

2 , G
1
3 (x) = x1, G

1
4 (x) = x2

Thus, the approximate problem (P 1,1
1 ) is:

min
(
πx1 − πx2 + π + π2

2 ; (π + 1
5)x1 − (π2 + 2)x2 − π2

8 + π
2 + 1

100

)
−x1 + x2 − 1 ≤ 0
x1 − 5π

2 ≤ 0
x1;x2 ≥ 0

Calculating the value for the objective function of problem (P 1,1
1 ) in x =

(5π
2 , 1 + 5π

2 ) ∈ F1 we get:

F 1(5π
2 , 1 + 5π

2 ) = (π2

2 ,
9π2

8 −
9π
2 −

199
100) < (π2

2 ; π2

8 −
9π
10 −

199
100) = F 1(π2 , 1 + π

2 )
and thus we have proved that x0 = (π2 , 1 + π

2 ) is not an efficient solution for
problem (P 1,1

1 ). �
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