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SHAPE PRESERVING PROPERTIES AND MONOTONICITY
PROPERTIES OF THE SEQUENCES OF CHOQUET TYPE

INTEGRAL OPERATORS

SORIN G. GAL∗

Abstract. In this paper, for the univariate Bernstein-Kantorovich-Choquet,
Szász-Kantorovich-Choquet, Baskakov-Kantorovich-Choquet and Bernstein-Du-
rrmeyer-Choquet operators written in terms of the Choquet integrals with re-
spect to monotone and submodular set functions, we study the preservation of
the monotonicity and convexity of the approximated functions and the mono-
tonicity of some approximation sequences.
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1. INTRODUCTION

Qualitative results and quantitative uniform, pointwise and Lp results in ap-
proximation by Bernstein-Durrmeyer-Choquet, Bernstein-Kantorovich-Cho-
quet, Szász-Kantorovich-Choquet and Baskakov-Kantorovich-Choquet oper-
ators defined in terms of the Choquet integral with respect to a family of
monotone and submodular set functions, were obtained by the author in a
series of very recent papers [7]-[11]. As it was pointed out in some of these
papers, for large classes of functions, the Choquet type operators approximate
better than their classical correspondents.

By analogy with what happens in the case of the classical positive and linear
operators, it is a natural question to look for shape preserving properties
of these Choquet type operators and for monotonicity of the sequences of
approximation.

The aim of the present paper is to give answers to this question.
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The plan of the paper goes as follows. Section 2 contains some prelimi-
naries on the Choquet integral. In Section 3 we prove monotonicity and con-
vexity preserving properties for the Bernstein-Kantorovich-Choquet, Szász-
Kantorovich-Choquet, Baskakov-Kantorovich-Choquet operators and we dis-
cuss these properties for the Bernstein-Durrmeyer-Choquet type operators.
Section 4 proves the monotonicity property of the sequences of Baskakov-
Kantorovich-Choquet and of Bernstein-Kantorovich-Choquet type operators.

2. PRELIMINARIES

In this section we present some concepts and results on the Choquet integral
which will be used in the main section.

Definition 2.1. Let Ω be a nonempty set and C be a σ-algebra of subsets
in Ω.

(i) (see, e.g., [18, p. 63]) Let µ : C → [0,+∞). If µ(∅) = 0 and A,B ∈ C,
with A ⊂ B, implies µ(A) ≤ µ(B), then µ is called a monotone set function
(or capacity). Also, if

µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B), for all A,B ∈ C,
then µ is called submodular. Finally, if µ(Ω) = 1, then µ is called normalized.

(ii) (see [4], or [18, p. 233]) Let µ be a monotone set function on C.
If f : Ω → R is C-measurable, i.e. for any Borel subset B ⊂ R we have

f−1(B) ∈ C, then for any A ∈ C, the Choquet integral is defined by

(C)
∫
A
fdµ =

∫ +∞

0
µ(Fβ(f) ∩A)dβ +

∫ 0

−∞
[µ(Fβ(f) ∩A)− µ(A)]dβ,

where Fβ(f) = {ω ∈ Ω; f(ω) ≥ β}. If (C)
∫
A
fdµ ∈ R, then f is called Choquet

integrable on A. Notice that if f ≥ 0 on A, then in the above formula we get∫ 0
−∞ = 0.

If µ is the Lebesgue measure, then the Choquet integral (C)
∫
A
fdµ reduces

to the Lebesgue integral.

In what follows, we list some known properties of the Choquet integral.

Remark 2.2. If µ : C → [0,+∞) is a monotone set function, then the
following properties hold :

(i) For all a ≥ 0 we have (C)
∫
A
afdµ = a · (C)

∫
A
fdµ (if f ≥ 0 then see,

e.g., [18, Theorem 11.2, (5), p. 228] and if f is of arbitrary sign, then see, e.g.,
[5, Proposition 5.1, (ii), p. 64]).

(ii) If µ is submodular too, then for all f, g of arbitrary sign and lower
bounded we have (see, e.g., [5, Theorem 6.3, p. 75])

(C)
∫
A

(f + g)dµ ≤ (C)
∫
A
fdµ+ (C)

∫
A
gdµ,
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that is the Choquet integral is sublinear.
However, in particular, the comonotonic additivity holds, that is if µ is a

monotone set function and f, g are C-measurable and comonotone on A (that
is (f(ω) − f(ω′)) · (g(ω) − g(ω′)) ≥ 0, for all ω, ω′ ∈ A), then by, e.g. [5,
Proposition 5.1, (vi), p. 65], we have

(C)
∫
A

(f + g)dµ = (C)
∫
A
fdµ+ (C)

∫
A
gdµ.

(iii) If f ≤ g on A then (C)
∫
A
fdµ ≤ (C)

∫
A
gdµ (see, e.g., [18, Theorem

11.2, (3), p. 228] if f, g ≥ 0 and [18, Theorem 11.2, (3), p. 232] if f, g are of
arbitrary sign). Also, (C)

∫
A

1dµ = µ(A).
(iv) The formula µ(A) = γ(M(A)), where γ : [0, 1]→ [0, L] is an increasing

and concave function, with γ(0) = 0 and M is a σ-additive measure (or only
finitely additive) on a σ-algebra on Ω (that is, M(∅) = 0 and M is countably
additive), gives simple examples of monotone and submodular set functions
(see, e.g., [5, Example 2.1, pp. 16–17]). For a simple example, we can take
γ(t) =

√
t.

Such of set functions µ are also called distorsions of countably additive
measures (or distorted measures). If M is the Lebesgue measure, then µ
defined as above will be called distorted Lebesgue measure. �

3. SHAPE PRESERVING PROPERTIES

Firstly, we deal with the Kantorovich-Choquet type operators.
Denoting by BI the sigma algebra of all Borel measurable subsets in P(I),

everywhere in this section, (Γn,x)n∈N,x∈I , will be a collection of families Γn,x =
{µn,k,x}nk=0, of monotone, submodular and strictly positive set functions µn,k,x
on BI , with I = [0, 1] in the case of Bernstein-Kantorovich polynomials and I =
[0,+∞) in the cases of Szász-Mirakjan-Kantorovich and Baskakov-Kantorovich
operators.

Suggested by the classical forms of the linear and positive operators of
Bernstein-Kantorovich (see, e.g., [12]), Szász-Kantorovich (see, e.g., [3], [2])
and Baskakov-Kantorovich (see, e.g., [17]), in the paper [8] were introduced
and studied the approximation properties of the following Choquet type op-
erators.

Definition 3.1. The Bernstein-Kantorovich-Choquet, Szász-Kantorovich-
Choquet and Baskakov-Kantorovich-Choquet operators with respect to Γn,x =
{µn,k,x}nk=0, are defined by the formulas

(3.1) Kn,Γn,x(f)(x) =
n∑
k=0

(n
k

)
xk(1− x)n−k ·

(C)
∫ k+1

n+1

k
n+1

f(t)dµn,k,x(t)

µn,k,x([ k
n+1 ,

k+1
n+1 ])

,
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(3.2) Sn,Γn,x(f)(x) = e−nx
∞∑
k=0

(nx)k

k! ·
(C)

∫ k+1
n

k
n

f(t)dµn,k,x(t)

µn,k,x([ kn ,
k+1
n ])

,

(3.3) Vn,Γn,x(f)(x) =
∞∑
k=0

(n+k−1
k

)
xk

(1+x)n+k ·
(C)

∫ k+1
n

k
n

f(t)dµn,k,x(t)

µn,k,x([ kn ,
k+1
n ])

.

We note that in order to be well defined these operators, it is good enough if,
for example, we suppose that f : I → R+ is a BI -measurable function, bounded
on I, where I = [0, 1] for Kn,Γn,x(f)(x) and I = [0,+∞) for Sn,Γn,x(f)(x) and
Vn,Γn,x(f)(x).

Since in general, the change of variable does not work for the Choquet
integral, we also can introduce the following different Choquet operators, given
formally by

(3.4) Kn,Γn(f)(x) =
n∑
k=0

(n
k

)
xk(1− x)n−k · (C)

∫ 1

0
f
(
k+t
n+1

)
dµn,k,x(t),

(3.5) Sn,Γn(f)(x) = e−nx
∞∑
k=0

(nx)k

k! · (C)
∫ 1

0
f
(
k+t
n

)
dµn,k,x(t),

(3.6) V n,Γn(f)(x) =
∞∑
k=0

(n+k−1
k

)
xk

(1+x)n+k · (C)
∫ 1

0
f
(
k+t
n

)
dµn,k,x(t),

different from Kn,Γn , Sn,Γn and Vn,Γn , correspondingly.

Remark 3.2. It is known that if all the set functions in the family Γn one
reduce to the Lebesgue measure denoted here by M (which is independent
of n too), then Kn,M = Kn,M , Sn,M = Sn,M and V n,M = Vn,M . But as we
will show later, these equalities also hold for some monotone and submodular
function different from the Lebesgue measure. �

Everywhere in this paper the shape preserving properties will be consid-
ered in the case when the set functions in the collection of families Γn,x are
independent of x and and k.

The main result of the paper is the following.

Theorem 3.3. Let Γn = {µn}, n ∈ N, be a family of monotone set functions
on BI , where I = [0, 1] for Kn,Γn(f)(x), Kn,Γn(f)(x) and I = [0,+∞) for
Sn,Γn(f)(x), Sn,Γn(f)(x) and Vn,Γn(f)(x), V n,Γn(f)(x). Suppose that f : I →
R+ is bounded on I.

(i) If f is nondecreasing on I, then for all n ∈ N, Kn,Γn(f), Sn,Γn(f) and
Vn,Γn(f) are nondecreasing on I;



5 Shape preserving properties and monotonicity properties 139

(ii) If f is nondecreasing on I, then for all n ∈ N, Kn,Γn(f), Sn,Γn(f) and
V n,Γn(f) are nondecreasing on I;

(iii) Suppose that, in addition, Γn = {µn}, n ∈ N, is a family of submodular
set functions on BI . If f is nonconcave on I, then for all n ∈ N, Kn,Γn(f),
Sn,Γn(f) and V n,Γn(f) are nonconcave on I.

(iv) If f is nonconcave on I and all µn(A) = γn(M(A)), n ∈ N are distorted
Lebesgue measures with all the γn, increasing, concave and continuous on [0, 1],
then for all n ∈ N, Kn,Γn(f), Sn,Γn(f) and Vn,Γn(f) are nonconcave on I.

Proof. (i) Denoting

An,k =
(C)

∫ k+1
n+1

k
n+1

f(t)dµn(t)

µn([ k
n+1 ,

k+1
n+1 ])

, Bn,k =
(C)

∫ k+1
n

k
n

f(t)dµn(t)

µn([ kn ,
k+1
n ])

,

by simple calculation (for Bernstein fundamental polynomials, for Szász fun-
damental polynomials and for Baskakov fundamental polynomials, also see,
e.g., [1, pp. 83–84, pp. 169–170] and [6, p. 125], correspondingly) we get

K ′n,Γn
(f)(x) = n ·

n−1∑
k=0

pn−1,k(x) [An,k+1 −An,k]

S′n,Γn
(f)(x) = ne−nx

∞∑
k=0

(nx)k

k! [Bn,k+1 −Bn,k] ,

V ′n,Γn
(f)(x) = n

∞∑
k=0

vn+1,k(x) [Bn,k+1 −Bn,k] .

Since f is nondecreasing on I, by applying the properties in Remark 2.2, (iii),
we get

An,k ≤ f
(
k+1
n+1

)
·

(C)
∫ k+1

n+1

k
n+1

dµn(t)

µn([ k
n+1 ,

k+1
n+1 ])

= f
(
k+1
n+1

)

=
(C)

∫ k+2
n+1

k+1
n+1

f
(
k+1
n+1

)
dµn(t)

µn([ k+1
n+1 ,

k+2
n+1 ])

≤
(C)

∫ k+2
n+1

k+1
n+1

f(t)dµn(t)

µn([ k+1
n+1 ,

k+2
n+1 ])

= An,k+1,

since f
(
k+1
n+1

)
≤ f(t), for all t ∈ [ k+1

n+1 ,
k+2
n+1 ]. This implies that K ′n,Γn

(f)(x) ≥
0, for all x ∈ I, that is Kn,Γn(f)(x) is nondecreasing on I, for all n ∈ N.
The proofs in the cases of Bn,k and the corresponding Sn,Γn(f) and Vn,Γn(f)
operators are similar.
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(ii) Since f is nondecreasing on I (therefore is BI -measurable) and for any
k, n, f

(
k+t
n+1

)
remains nondecreasing on I, it follows that f

(
k+t
n+1

)
is BI -

measurable as function of t. Now, by simple calculations we immediately
obtain

K
′
n,Γn

(f)(x) =

= n ·
n−1∑
k=0

pn−1,k(x)
[
(C)

∫ 1

0
f
(
k+1+t
n+1

)
dµn(t)− (C)

∫ 1

0
f
(
k+t
n+1

)
dµn(t)

]
,

S
′
n,Γn

(f)(x) =

= ne−nx
∞∑
k=0

(nx)k

k!

[
(C)

∫ 1

0
f
(
k+1+t
n

)
dµn(t)− (C)

∫ 1

0
f
(
k+t
n

)
dµn(t)

]
,

V
′
n,Γn

(f)(x) =

= n
∞∑
k=0

vn+1,k(x)
[
(C)

∫ 1

0
f
(
k+1+t
n

)
dµn(t)− (C)

∫ 1

0
f
(
k+t
n

)
dµn(t)

]
.

Since f is nondecreasing on I, it follows that (for all t ∈ [0, 1], n, k)

f
(
k+1+t
n+1

)
≥ f

(
k+t
n+1

)
and f

(
k+1+t
n

)
≥ f

(
k+t
n

)
.

Applying the property in Remark 2.2, (iii), we get

(C)
∫ 1

0
f
(
k+1+t
n+1

)
dµn(t)− (C)

∫ 1

0
f
(
k+t
n+1

)
dµn(t) ≥ 0

and

(C)
∫ 1

0
f
(
k+1+t
n

)
dµn(t)− (C)

∫ 1

0
f
(
k+t
n

)
dµn(t) ≥ 0.

This implies that the first derivatives of these operators are positive, that is
the operators Kn,Γn(f), Sn,Γn(f) and V n,Γn(f) also are nondecreasing for any
n ∈ N.

(iii) Since f is nonconcave on I (therefore is BI -measurable) and for any
k, n, f

(
k+t
n+1

)
remains nonconcave on I, it follows that f

(
k+t
n+1

)
is BI -measurable

as function of t. Now, by the calculations for the classical Kantorovich variants
of the operators (see, e.g. again [1, pp. 83–84, pp. 169–170] and [6, p. 125],
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correspondingly), we immediately obtain

K
′′
n,Γn

(f)(x) =n(n− 1) ·
n−2∑
k=0

pn−2,k(x)

·
[
(C)

∫ 1

0
f
(
k+2+t
n+1

)
dµn(t)− 2(C)

∫ 1

0
f
(
k+1+t
n+1

)
dµn(t)

+(C)
∫ 1

0
f
(
k+t
n+1

)
dµn(t)

]
,

S
′′
n,Γn

(f)(x) =n2e−nx
∞∑
k=0

(nx)k

k!

·
[
(C)

∫ 1

0
f
(
k+2+t
n

)
dµn(t)− 2(C)

∫ 1

0
f
(
k+1+t
n

)
dµn(t)

+(C)
∫ 1

0
f
(
k+t
n

)
dµn(t)

]
,

V
′′
n,Γn

(f)(x) =n(n+ 1)
∞∑
k=0

vn+2,k(x)

·
[
(C)

∫ 1

0
f
(
k+2+t
n

)
dµn(t)− 2(C)

∫ 1

0
f
(
k+1+t
n

)
dµn(t)

+(C)
∫ 1

0
f
(
k+t
n

)
dµn(t)

]
.

Since f is nonconcave on I, it follows that (for all t ∈ [0, 1], n, k ∈ N, 0 ≤ k ≤ n)
we have

f
(
k+2+t
n+1

)
+ f

(
k+t
n+1

)
≥ 2f

(
k+1+t
n+1

)
.

Since every µn is submodular, applying consecutively the properties in Remark
2.2, (iii) and (ii), we obtain

2 · (C)
∫ 1

0
f
(
k+1+t
n+1

)
dµn(t) ≤(C)

∫ 1

0

[
f
(
k+2+t
n+1

)
+ f

(
k+t
n+1

)]
dµn(t)

≤(C)
∫ 1

0
f
(
k+2+t
n+1

)
dµn(t)

+ (C)
∫ 1

0
f
(
k+t
n+1

)
dµn(t).

This implies that the second derivatives K ′′n,Γn
(f)(x) is ≥ 0 on I, that is the

operator Kn,Γn(f)(x) is nonconcave on I. The proof in the cases of the other
two operators is similar.

(iv) We use the notations for An,k and Bn,k from the point (i) and the ideas
of calculation from the point (iii). We present here only the proof in the case of
Kn,Γn(f), because the proofs in the case of Bn,k and of the operators Sn,Γn(f)
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and Vn,Γn(f) are similar. Thus, we have

K ′′n,Γn
(f)(x) = n(n− 1) ·

n−2∑
k=0

pn−2,k(x) · [An,k+2 − 2An,k+1 +An,k] .

Since the Lebesgue measure M is invariant at translations, it immediately
follows that

µn([ k
n+1 ,

k+1
n+1 ]) = µn([ k+1

n+1 ,
k+2
n+1 ]) = µn([ k+2

n+1 ,
k+3
n+1 ]) := Cn, n ∈ N,

which implies

K ′′n,Γn
(f)(x) = n(n−1)

Cn
·
n−2∑
k=0

pn−2,k(x) · [an,k+2 − 2an,k+1 + an,k] .

with an,k = (C)
∫ k+1

n+1

k
n+1

f(t)dµn(t). But we can write

an,k+1 = (C)
∫ k+2

n+1

k+1
n+1

f(t)dµn(t)

=
∫ ∞

0
µn({t ∈ [ k+1

n+1 ,
k+2
n+1 ]; f(t) ≥ α})dα

=
∫ ∞

0
µn({t− 1

n+1 ∈ [ k
n+1 ,

k+1
n+1 ]; f(t) ≥ α})dα

=
∫ ∞

0
µn({w ∈ [ k

n+1 ,
k+1
n+1 ]; f(w + 1

n+1) ≥ α})dα

= (C)
∫ k+1

n+1

k
n+1

f(t+ 1
n+1)dµn(t).

Since in the similar way we get an,k+2 = (C)
∫ k+1

n+1

k
n+1

f(t+ 2
n+1)dµn(t), it follows

that

an,k+2 − 2an,k+1 + an,k =(C)
∫ k+1

n+1

k
n+1

f(t)dµn(t) + (C)
∫ k+1

n+1

k
n+1

f(t+ 2
n+1)dµn(t)

− 2(C)
∫ k+1

n+1

k
n+1

f(t+ 1
n+1)dµn(t).

But since f is nonconcave on I = [0, 1], we have

f(t) + f(t+ 2
n+1) ≥ 2f(t+ 1

n+1), for all t ∈ [ k
n+1 ,

k+1
n+1 ].

Since every µn is submodular, applying the Choquet integral on [ k
n+1 ,

k+1
n+1 ] to

the previous inequality and applying consecutively the properties in Remark
2.2, (iii) and (ii), reasoning exactly as at the above point (iii), we arrive at
an,k+2 − 2an,k+1 + an,k ≥ 0, which leads to the desired conclusion. �
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Remark 3.4. From the proofs, it easily follows that Theorem 3.3, (i), (ii)
hold if we replace in their statements the word nondecreasing with the word
nonincreasing. But if we replace in Theorem 3.3, (iii) and (iv) the word non-
concave with the word nonconvex, it is easy to see that their proofs do not
work since the subaditivity of the Choquet integral is not helpful. However,
under some additional hypothesis, we can prove the shape preserving proper-
ties concerning the nonconvexity, as follows. �

Corollary 3.5. Let Γn = {µn}, n ∈ N, be a family of monotone set func-
tions on BI , where I = [0, 1] for Kn,Γn(f)(x), Kn,Γn(f)(x) and I = [0,+∞)
for Sn,Γn(f)(x), Sn,Γn(f)(x) and Vn,Γn(f)(x), V n,Γn(f)(x). Suppose that f :
I → R+ is bounded on I.

(i) If f is nonconvex and monotone on I, then Kn,Γn(f)(x), Sn,Γn(f)(x)
and V n,Γn(f)(x) are nonconvex and of the same monotonicity with f on I, for
any n ∈ N.

(ii) If f is nonconvex and monotone on I and all µn(A) = γn(M(A)), n ∈
N are distorted Lebesgue measures with all the γn, increasing, concave and
continuous on [0, 1], then for all n ∈ N, Kn,Γn(f), Sn,Γn(f) and Vn,Γn(f) are
nonconvex and of the same monotonicity on I with f .

Proof. The preservation of monotonicity of f in both cases (i) and (ii),
follows from Theorem 3.3. For the preservation of the nonconvexity of f , we
deal only with the case (i), since the proof in the case (ii) is similar. Indeed,
the nonconvexity of f implies that (for all t ∈ [0, 1], n, k ∈ N, 0 ≤ k ≤ n) we
have

f
(
k+2+t
n+1

)
+ f

(
k+t
n+1

)
≤ 2f

(
k+1+t
n+1

)
.

Since as functions of t, f
(
k+2+t
n+1

)
and f

(
k+t
n+1

)
are of the same monotonicity,

they are comonotonic and applying to the previous inequality the Choquet
integral and the property in Remark 2.2, (ii), we obtain

2 · (C)
∫ 1

0
f
(
k+1+t
n+1

)
dµn(t) ≥(C)

∫ 1

0

[
f
(
k+2+t
n+1

)
+ f

(
k+t
n+1

)]
dµn(t)

=(C)
∫ 1

0
f
(
k+2+t
n+1

)
dµn(t)

+ (C)
∫ 1

0
f
(
k+t
n+1

)
dµn(t).

Using the relationship for K ′′n,Γn
(f)(x) in the proof of Theorem 3.3, (iii), this

immediately implies that the second derivatives K ′′n,Γn
(f)(x) is ≤ 0 on I, that

is the operator Kn,Γn(f)(x) is nonconvex on I. The proof in the cases of the
other two operators is similar. �

Remark 3.6. If in Theorem 3.3, f is of arbitrary sign on I, then the state-
ment of Theorem 3.3 can be restated for the slightly modified operator defined
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by
L∗n(f)(x) = Ln(f −m)(x) +m,

where Ln is any from the operators in the statement and m ∈ R is a lower
bound for f , that is f(x) ≥ m, for all x ∈ I.

Indeed, this is immediate from the fact that if f is nondecreasing (noncon-
cave), then f −m remains nondecreasing (nonconcave, respectively). �

In continuation to the comments in Remark 3.2, we can prove the following
result.

Lemma 3.7. Suppose that µn,k,x = µ :=
√
M , for all n, k and x, where M

is the Lebesgue measure and f : I → R+ is bounded and BI-measurable. Then
we have

(C)
∫ k+1

n

k
n

f(t)dµ(t)

µ([ kn ,
k+1
n ])

= (C)
∫ 1

0
f
(
k+t
n

)
dµ(t).

Proof. For any fixed α ≥ 0, let us make the notations

An,k(α) =
{
t ∈ [0, 1]; f

(
k+t
n

)
≥ α

}
and Bn,k(α) =

{
w ∈

[
k
n ,

k+1
n

]
; f(w) ≥ α

}
.

It is clear that Bn,k(α) is obtained by applying to An,k(α) the linear trans-
form w(t) = t

n + k
n = 1

n (t+ k), t ∈ [0, 1]. By the well-known properties of
the Lebesgue measure, we get M(Bn,k(α)) = 1

nM(An,k(α)), which evidently
implies µ(Bn,k(α)) = 1√

n
µ(An,k(α)). Therefore, we get

(C)
∫ 1

0
f
(
k+t
n

)
dµ(t) =

∫ ∞
0

µ(An,k(α))dα =
√
n

∫ ∞
0

µ(Bn,k(α))dα

=
√
n · (C)

∫ k+1
n

k
n

f(w)dµ(w) =
(C)

∫ k+1
n

k
n

f(w)dµ(w)

µ( kn ,
k+1
n ]

,

which proves our assertion. Evidently that the above relationship remains
valid by replacing n with n+ 1. �

Remark 3.8. Lemma 3.7 shows that for the monotone and submodular
set function µ =

√
M , with M the Lebesgue measure, the operators given by

(3.4), (3.5) and (3.6), coincide with the operators given by (3.1), (3.2) and
resp. (3.3). �

Remark 3.9. In the papers [9]-[11], were introduced and studied the quali-
tative and quantitative approximation properties of the multivariate Bernstein-
Durrmeyer-Choquet polynomials, which in the univariate are given by the
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formula

Dn,Γn,x(f)(x) =
n∑
k=0

pn,k(x) ·
(C)

∫ 1

0
f(t)tk(1− t)n−kdµn,k,x(t)

(C)
∫ 1

0
tk(1− t)n−kdµn,k,x(t)

,

where {µn,k,x}, n ∈ N, k ∈ {0, 1, ..., n}, x ∈ [0, 1], is a family of monotone,
submodular and strictly positive set functions on B[0,1].

It is well-known that the proof of the shape preserving properties for the
classical Bernstein-Durrmeyer operators is based on the integration by parts,
rule which does not hold for the general Choquet integral. This fact in-
duces much difficulty in any attempt to prove these properties for Bernstein-
Durrmeyer-Choquet polynomials and for this reason, it remains as an open
question under which conditions still they hold.

However, we can show that, in general, the shape preserving properties
for these polynomials do not hold. Indeed, for example, let us consider the
Bernstein-Durrmeyer-Choquet polynomials introduced by [10, Example 5.2],
given by

Dn,Γn(f)(x) = Bn(f)(x) + xn

(C)
∫ 1

0
f(t)tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f(1)

 ,
with respect to the strictly positive, monotone and submodular set function
µ(A) =

√
M(A), where M(A) denotes the classical Lebesgue measure. Note

here that if f is positive and increasing (but not necessarily constant function),
then the above quantity between the right brackets is, in general, < 0.

Now, suppose that f is positive, continuous and nondecreasing on [0, 1], such
that it is constant equal to f(1) in a small left neighbourhood of 1 and strictly
increasing on the rest of [0, 1]. Then, since B′n(f)(1) = n

[
f(1)− f

(
n−1
n

)]
,

we obtain

D′n,Γn
(f)(1) = n

[
f(1)− f

(
n−1
n

)]
+ n

(C)
∫ 1

0
f(t)tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f(1)



= n

(C)
∫ 1

0
f(t)tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f
(
1− 1

n

)

< n

f(1) ·
(C)

∫ 1

0
tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f
(
1− 1

n

) = f(1)− f
(
1− 1

n

)
= 0,
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for all sufficiently large n ∈ N.
From the continuity of the polynomial Dn,Γn(f)(x), the last inequality im-

plies that for any sufficiently large n ∈ N, there exists a small neighborhood
of 1, such that D′n,Γn

(f)(x) < 0 for all x in that neighborhood, contradicting
a possible preservation of the nondecreasing monotonicity of f . �

4. MONOTONICITY OF THE APPROXIMATION SEQUENCES

In this section we present two samples concerning the monotonicity of the
sequences of Choquet type operators, the rest of the cases being leaved as open
questions to the readers.

In this sense, we can state the following.

Theorem 4.1. Suppose that Γn one reduces to a single monotone and sub-
modular function µ.

(i) Let f : [0,+∞) → R+ be differentiable on [0,+∞). If f is nonconcave,
f ′ > 0 and f ′ is nonconvex on [0,+∞), then the sequence (V n,µ(f)(x))n∈N is
nonincreasing, i.e. V n,µ(f)(x) ≥ V n+1,µ(f)(x), for all n ∈ N, x ∈ [0,+∞);

(ii) Let f be differentiable on [0, 1]. If f is nonconcave, f ′ > 0 and f ′

nonconvex on [0, 1], then the sequence (different a bit from Kn,µ)

K̃n,µ(f)(x) =
n∑
k=0

(n
k

)
xk(1− x)n−k · (C)

∫ 1

0
f
(
k+t
n

)
dµ(t), n ∈ N,

is decreasing, i.e. K̃n,µ(f)(x) ≥ K̃n+1,µ(f)(x), for all n ∈ N, x ∈ [0, 1].

Proof. (i) For the classical Baskakov operators

Vn(f)(x) =
∞∑
k=0

(n+k−1
k

)
xk

(1+x)n+k f(k/n),

it is known the formula (see, [14], or also [1, pp. 176–177]),

Vn(f)(x)− Vn+1(f)(x) = 1
n(n+1)

∞∑
k=0

(n+k−1
k

)
xk

(1+x)n+k

[
k+1
n , k+1

n+1 ,
k

n+1 ; f
]

= n(n+ 1)
∞∑
k=0

(n+k−1
k

)
xk

(1+x)n+k · E(f),

where
E(f) =

(
f( k+1

n )
(k+1)(n+k+1) −

f( k+1
n+1 )

n(k+1) + f( k
n+1 )

n(n+k+1)

)
.

Denoting F ( kn) = (C)
∫ 1

0
f
(
k+t
n

)
dµ(t), by the above calculations we get

V n,µ(f)(x)− V n+1,µ(f)(x) = n(n+ 1)
∞∑
k=0

(n+k−1
k

)
xk

(1+x)n+k · E(F ),
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where

E(F ) =
(

F( k+1
n )

(k+1)(n+k+1) −
F( k+1

n+1 )
n(k+1) + F ( k

n+1 )
n(n+k+1)

)
= 1
n(k+1)(n+k+1) ·

(
(C)

∫ 1

0
nf(k+1+t

n )dµ(t) + (C)
∫ 1

0
(k + 1)f( k+t

n+1)dµ(t)

−(C)
∫ 1

0
(n+ k + 1)f ′(k+1+t

n+1 )dµ(t)
)
.

If we prove that for all t ∈ [0, 1], n, k ∈ N we have

G(t) := nf
(
k+1+t
n

)
+ (k + 1)f

(
k+t
n+1

)
− (n+ k + 1)f

(
k+1+t
n+1

)
≥ 0,

then applying here the Choquet integral and taking into account its properties
in Remark 2.2, (iii) and (ii), it follows E(F ) ≥ 0 and the required conclusion.
In this sense, let us observe that from the above considerations, G(0) ≥ 0
means exactly the nonconcavity of f . Let n and k arbitrary fixed. It follows
that if we prove that G′(t) ≥ 0 for all t ≥ 0, then we arrive at the desired
conclusion. Indeed, we have

G′(t) = f ′(k+1+t
n ) + k+1

n+1f
′( k+t
n+1)− n+k+1

n+1 f ′(k+1+t
n+1 )

= f ′(k+1+t
n )− f ′(k+1+t

n+1 ) + k+1
n+1f

′( k+t
n+1)− k

n+1f
′(k+1+t

n+1 ).

Since k+1+t
n > k+1+t

n+1 > k+t
n+1 and by hypothesis f ′ is nondecreasing, firstly it

follows
f ′(k+1+t

n )− f ′(k+1+t
n+1 ) ≥ 0.

Then, since f ′ is nonconvex, by e.g. [13, pp. 44], it follows that f ′(x)
x is

nonincreasing on (0,+∞), which will imply that k+1
n+1f

′( k+t
n+1)− k

n+1f
′(k+1+t

n+1 ) ≥
0, finishing the proof. Indeed, we get

f ′(k+1+t
n+1 )

f ′( k+t
n+1)

≤ k+1+t
k+t ≤

k+1
k ,

which leads to the desired conclusion.
(ii) For the classical Bernstein operators

Bn(f)(x) =
n∑
k=0

(n
k

)
xk(1− x)n−kf( kn),

it is known the formula ([16, Theorem 1], or also [1, pp. 88–89])

Bn(f)(x)−Bn+1(f)(x) = x(1−x)
n(n+1)

n−1∑
k=0

(n−1
k

)
xk(1− x)n−1−k ·

[
k
n ,

k+1
n+1 ,

k+1
n ; f

]
,

where by easy calculation we get[
k
n ,

k+1
n+1 ,

k+1
n ; f

]
=

= n2(n+1)
(k+1)(n−k) ·

[
n(f(k+1

n )− f( k+1
n+1)− k(f(k+1

n )− f( kn)) + f( kn)− f( k+1
n+1)

]
.
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Denoting F ( kn) = (C)
∫ 1

0
f
(
k+t
n

)
dµ(t) and

K̃n,µ(f)(x) =
n∑
k=0

(n
k

)
xk(1− x)n−k · (C)

∫ 1

0
f
(
k+t
n

)
dµ(t)

and reasoning as at the point (i), by the above calculations we get

K̃n,µ(f)(x)− K̃n+1,µ(f)(x) = x(1−x)
n(n+1) ·

n−1∑
k=0

(n−1
k

)
xk(1− x)n−1−kE,

where

E = n2(n+1)
(k+1)(n−k)

[
(C)

∫ 1

0
(n− k)f

(
k+1+t
n

)
dµ(t)

− (C)
∫ 1

0
(n+ 1)f

(
k+1+t
n+1

)
dµ(t) + (C)

∫ 1

0
(k + 1)f

(
k+t
n

)
dµ(t)

]
.

By using similar reasoning with those from the point (i), here it remains to
prove that for all t ∈ [0, 1] and n ∈ N, k = 0, 1, ..., n− 1, we have

G(t) := (n− k)f(k+1+t
n ) + (k + 1)f(k+t

n )− (n+ 1)f(k+1+t
n+1 ) ≥ 0.

From this point, the proof is identical with that for the above point (i). �

Acknowledgement. I thank professor Ioan Raşa for suggesting this topic.
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