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LINEAR COMPLEMENTARITY PROBLEMS
SOLVABLE AS LINEAR PROGRAMS

ZAKIA KEBBICHE∗

Abstract. In this paper, we present a theoretical and numerical study of linear
complementary problems solvable as linear programs. We give several examples
of linear complementarity problems which can be solved as linear programs using
linear programming approaches. Also, we propose two examples solved by the
simplex and Karmarkar’s method, while the most widely know method for solv-
ing linear complementarity problems “the complementarity pivoting algorithm
due to Lemke” has failed to find a solution.
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1. INTRODUCTION

Complementarity plays a central role in all constrained optimization prob-
lems. The linear complementarity problem is an ideal model for the develop-
ment and analysis of algorithms through its different practical applications.
Indeed, linear programming, convex quadratic programming, variational in-
equalities, partial differential equations, can be transformed into complemen-
tarity problems. In addition, many problems in mechanics, economics, chem-
istry and meteorology, can be modeled by complementarity.

Most algorithms proposed for the resolution of the linear complementarity
problem are based on the assumption that the matrix M belongs to a particu-
lar class of matrices. In 1975, Mangasarian demonstrated that the resolution of
the linear complementarity problem with the class of Z-matrices “real square
matrix whose off-diagonal entries are nonpositive” is equivalent to that of a
well-defined linear program. Moreover, in 1976 he proposed another more gen-
eral class, Pang (1979) proposed to call this generalization of the class Z as
the class of hidden Z-matrices since many of the properties which hold for the
class Z are preserved for the class hidden Z.

As a result, some problems in mathematics and mechanics: finding the
smallest element in a polyhedron, finding the convex hull of a set of points in
space, the theory of optimal stopping time, problems with free boundaries, can
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be solved using a linear programs associated with the linear complementarity
problem. Therefore, any method designed for linear programming can be used.
It is known that the Lemke’s algorithm solves the linear complementarity
problem only for special classes of the matrix M . This problem may admit a
solution but the algorithm is unable to find it. So, the goal of this work is to
get more information and results from the linear complementarity problem by
solving the associated linear program.

The paper is organized as following. In Section 2, we starts by defining the
problem, then we give definitions and some notations. In Section 3, we discuss
about existence of the solution of the linear complementarity problem where
M is a hidden Z-matrix. Section 4 is devoted to defining the linear program
associated with the linear complementarity problem. Section 5 presents spe-
cial cases of hidden Z-matrices. We establish in this section the conditions
that the linear program must satisfy in order that each solution of the linear
program is also a solution of the linear complementarity problem. In Section
6, we present several numerical examples for linear complementarity solvable
as linear programs. We also present two examples when Lemke’s method has
failed to find a solution to the linear complementarity problem. Finally, in
Section 7 we give a conclusion of this work.

2. THE PROBLEM

The linear complementarity problem, denoted LCP (q,M), is that of finding
a vector z ∈ Rn satisfying

(1) (LCP )


Mz + q ≥ 0,

z ≥ 0,
zt(Mz + q) = 0,

or to show that no such vector z exists. M is a given n × n real matrix and
q ∈ Rn.

Definition 1. A matrix M ∈ Rn×n is said to be a semidefinite if ∀z ∈ Rn

ztMz ≥ 0.
Definition 2. M ∈ Rn×n is said to be a Z-matrix if its off diagonal entries

are nonpositive.
Definition 3. M ∈ Rn×n is said to be a P -matrix if its principal minors

are positive.
Definition 4. M ∈ Rn×n is said to be a K-matrix if M is a Z-matrix and

a P -matrix.
Definition 5. M ∈ Rn×n is said to be a hidden Z-matrix if there exist Z-

matrices X, Y ∈ Rn×n and two vectors r and s in Rn
+ satisfying the following

conditions

(2)
{

MX = Y
rTX + sTY > 0.
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The class of hidden Z-matrices is denoted by hidden Z.

Notation 6. Given a matrix M ∈ Rn×n and a vector q ∈ Rn, we define
the feasible set of LCP (q,M) by

F (q,M) =
{
z ∈ Rn : z ≥ 0,Mz + q ≥ 0

}
and the solution set is denoted by

S(q,M) =
{
z ∈ F (q,M) : zt(Mz + q) = 0

}
.

3. EXISTENCE OF THE SOLUTION OF THE LCP (q,M)

Theorem 7. Let M ∈ Rn×n be a hidden Z-matrix, and F (q,M) 6= ∅, then
the LCP (q,M) has a solution.

To prove this theorem, we construct an equivalent linear complementarity
problem as following

Lemma 8. Consider the LCP (q̃,M) where M =
(

0 −M t

M 0

)
, q̃ =

(p
q

)
,

M ∈ Rn×n is a hidden Z-matrix, p, q ∈ Rn, where p = r +M ts, r and s are
as in Definition 5. If

(x
y

)
∈ F (q̃,M) then (I −M t)y + p > 0.

Proof. Suppose
(x

y

)
∈ F (q̃,M), as M is a hidden Z-matrix, there exist X,

Y ∈ Z such that MX = Y and rtX+stY > 0 where r, s ∈ Rn
+. Let X = D−U

and Y = D− V where U and V are nonnegative matrices and D is a positive
diagonal matrix. We have

0 < rtX + stY = (rt + stM)X
= pt(D − U) = pt(D − U) + yt(Y −MX)
= pt(D − U) + yt[(D − V )−M(D − U)]
= (−ytM + pt)(D − U) + yt(D − V )
≤ (yt(I −M) + pt)D,

since
(x

y

)
∈ F (q̃,M) and U, V ≥ 0. Moreover, [yt(I −M) + pt]D > 0 lead to

(I −M t)y + p > 0,

as D is a positive diagonal matrix. �

In the following lemma, we study the relationship between the solution of
the LCP (q̃,M) and the LCP (q,M).

Lemma 9. The LCP (q,M) has a solution if and only if the LCP (q̃,M)
has a solution.



4 Linear complementarity problems 153

Proof. Necessity. Suppose x̄ ∈ Rn solves the LCP (q,M) and we show
that z =

(x̄
y

)
is a feasible solution for the LCP (q̃,M) where y = s (s as in

Definition 5 is a feasible solution for the LCP (q̃,M)). Note that p −M ty =
r +M ts−M ty = r +M ts−M ts ≥ 0. Therefore, the LCP (q̃,M) is feasible,
further,M is semidefinite matrix then the LCP (q̃,M) has a feasible solution
implies it has a complementarity solution. So the LCP (q̃,M) has a solution.

Sufficiency. Suppose the LCP (q̃,M) has a solution. Let z̃ =
(x̃

ỹ

)
∈

S(q̃,M). From the complementarity condition it follow that x̃t(p −M tỹ) +
ỹt(q+Mx̃) = 0. Since both terms are nonnegative, we get x̃t(p−M tỹ) = 0 and
ỹt(q+Mx̃) = 0. From Lemma 8, it follow that ỹ+ (p−M tỹ) > 0, this implies
for all i ∈ {1, .., n}, either (p −M tỹ)i > 0 or ỹi > 0. Now, if (p −M tỹ)i > 0
then x̃i = 0 which implies x̃i(q+Mx̃)i = 0. If yi > 0 then (q+M x̃)i = 0. This
implies x̃i(q + M x̃)i = 0 for all i = 1, .., n. Hence, we get x̃t(q + Mx̃) = 0.
Therefore x̃ solves the LCP (q,M). �

Proof of Theorem 7. Note that feasibility of the LCP (q,M) implies the fea-
sibility of the LCP (q̃,M). Further, M is semidefinite matrix implies the
LCP (q̃,M) has a solution. By Lemma 9, the LCP (q,M) has a solution if and
only if the LCP (q̃,M) has a solution. Therefore feasibility of the LCP (q̃,M)
implies solvability of the LCP (q,M). �

4. CHARACTERIZATION OF THE LCP (q,M) AS A LINEAR PROGRAM

In his study of solving linear complementarity problems as linear programs,
Mangasarian [3] proved the following result.

Theorem 10. Let M ∈ Rn×n be a hidden-Z matrix and F (q,M) 6= ∅, then
the LCP (q,M) has a solution which can be obtained by solving the linear
program

(3) (LP )


min ptz,

Mz + q ≥ 0,
z ≥ 0,

where p = r +M ts, r and s are as in Definition 5.

In order to prove this theorem, first we define the dual linear program of
(LP )

(4) (D)


max − qty,

−M ty + p ≥ 0,
y ≥ 0,

and then we need to the following lemma.

Lemma 11. If z solves the linear program (LP ) and if the corresponding
optimal dual variable y of (D) satisfies (I −M t)y + p > 0, then z solves the
LCP (q,M).
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Proof. We have yt(Mz + q) + zt(−M ty + p) = ytq + ztp = 0, since y ≥ 0,
Mz+q ≥ 0, z ≥ 0 and (−M ty+p) ≥ 0, then yi(Mz+q)i = 0, zi(−M ty+p)i =
0, i = 1...n, but yi + (−M ty + p)i > 0, i = 1...n. So, either yi > 0 or
(−M ty+ p)i > 0, i = 1...n, and therefore zi = 0 or (Mz+ q)i = 0, from where
z solves the LCP (q,M). �

Proof of Theorem 10. Since y = s is a dual feasible point, then, (LP ) and (D)
have an optimal solutions noted by z and y respectively. Let X = D− V and
Y = D − U, where V and U are nonnegative matrices and D is a positive
diagonal matrix, then

0 <rtX + stY = (rt + stM)X
=pt(D − V )
=pt(D − V ) + yt(−MD +MV +D − U) (since M(D − V ) = D − U)
=(−ytM + pt)(D − V ) + yt(D − U)
≤(yt(I −M) + pt)D.

Also, (I − M t)y + p > 0, as −ytM + pt ≥ 0, V ≥ 0, y ≥ 0, U ≥ 0) and
D is a positive diagonal matrix. According to the Lemma 11, z solves the
LCP (q,M). �

5. SPECIAL CASES OF HIDDEN Z-MATRICES

We establish in this section the conditions that p of the linear program (LP )
must satisfy in order that each solution of the (LP ) is also a solution of the
LCP (q,M).

Theorem 12. (See [5]). If F (q,M) 6= ∅ and there exist r, s, c ∈ Rn, X, Y ∈
Rn×n such that

(5)


MX = Y + qct

rtX + stY ≥ 0
rt(X + C) + st(Y + C) > 0, C = diag(c)
X,Y ∈ Z, s, r, c ≥ 0.

then the LCP (q,M) has a solution which can be obtained by solving the linear
program (LP) with p = r +M ts.

Setting c = δe, C = δI in the above where δ is some positive number, we
obtain

Corollary 13. (See [5]). If F (q,M) 6= ∅ and there exist δ ∈ R, r, s ∈
Rn, X, Y ∈ Rn×n such that

(6)


MX = Y + δqet

rtX + stY ≥ 0
r + s > 0, δ > 0
X,Y ∈ Z, s, r ≥ 0.
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then the LCP (q,M) has a solution which can be obtained by solving the linear
program (LP) with p = r +M ts.

We give in Table 1 a convenient summary of some of the cases for which the
LCP (q,M) is solvable as linear program together with the conditions that M
and p must satisfy.

Matrix M Conditions on M Vector p Conditions on p

M = Y X−1 X,Y ∈ Z,
rtX + stY > 0 p = r +M ts r, s ≥ 0

M = Y X−1 X ∈ K,Y ∈ Z p ≥ 0 ptX > 0

M = Y X−1 X ∈ Z, Y ∈ K p = M ts ≥ 0 s ≥ 0,
sTY > 0

M M ∈ Z p p > 0
M M−1 ∈ Z p = M ts s > 0

M −M ∈ K p = −e or
p = MT e

e > 0

M −M−1 ∈ K p = −MT e or
p = e

e > 0

MX = Y + δqet rtX + stY ≥ 0,
X, Y ∈ Z,δ > 0 p = r +M ts

r + s > 0,
r, s ≥ 0

Table 1. Summary of some of the cases for which the LCP (q,M) is
solvable as linear program.

6. NUMERICAL EXAMPLES

We give now some examples for which the LCP (q,M) can be solved by a
linear program.

Example 14. Let M =
(

1 1
−2 −3

)
and q =

(
−1
6

)
. M is a hidden

Z-matrix with X =
(

3 −3
−2 3

)
∈ K and Y =

(
1 0
0 −3

)
∈ Z. �

Example 15. Consider M =

 2 −2 −2
−1 2 1
−1 0 2

 and q =

 1
−3
2

 . M is a

hidden Z-matrix withX =

 1 0 0
0 1 −1
−1 0 1

 ∈ K and Y =

 4 −2 0
−2 2 −1
−3 0 2

 ∈
Z. �
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Example 16. Let M =

 0 −1 1
−2 6 −5
0 −3 2

 and q =

 2
−1
1

 . M is a

hidden Z-matrix with X =

 1 0 0
0 1 −1
0 0 −1

 ∈ Z and Y =

 0 −1 0
−2 6 −1
0 −3 1

 ∈
Z. �

Example 17. Consider M =

 0 −2 −2
−1 2 1
−1 0 2

 and q =

 7
−4
1

 . M is a

hidden Z-matrix withX =

 1 0 0
0 1 −1
−1 0 1

 ∈ K and Y =

 0 −2 0
−2 2 −1
−3 0 2

 ∈
Z. �

Example 18. Let

M =



2 −1
−1 2 −1

−1 . . . . . .
. . . 2 −1

−1 2


∈ R10×10, and q = (−1, . . . ,−1)T ∈ R10.

The table below summarizes the results obtained in number of iterations K
and calculation time T by Lemke’s algorithm (Alg. 1), the Simplex algorithm
(Alg. 2) and that of Karmarkar (Alg. 3).

Alg. 1 Alg. 2 Alg. 3
Examples K T K T K T
Example 14 2 0.00 1 0.00 62 0.00
Example 15 3 0.00 2 0.00 82 0.01
Example 16 2 0.00 1 0.00 50 0.00
Example 17 2 0.00 1 0.00 72 0.00
Example 18 10 0.00 12 0.01 178 0.01

Table 2. Number of iterations and computation time.

Remark 19. 1) The number of iterations recorded by Alg. 1 and that of
Alg. 2 is significantly lower than that obtained by the Alg. 3.

2) The calculation time obtained by the three algorithms is almost the
same. �

We give now two examples for which the LCP (q,M) can be solved by the
simplex and Karmarkar’s methods but not by Lemke’s method.
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Example 20. Let M =
(
−1 1
2 −1

)
and q =

(
1
−2

)
.

This example satisfies the conditions of theorem (12) with r = (0, 1)t, s =

(1, 0)t and c = (0, 2)t where X =
(
−1

2 0
0 2

)
∈ Z and Y =

( 1
2 0
−1 2

)
∈ Z.

Hence p = r+M ts = (−1, 2)t, then the linear program associated with the
LCP (q,M) is

(LP )


min − z1 + 2z2
−z1 + z2 + 1 ≥ 0
2z1 − z2 − 2 ≥ 0

(z1, z2) ≥ 0.

The solution is (z1, z2)t = (1, 0)t which also solves the LCP (q,M). �

Example 21. Let M =

 0 3 4
1 −1 0
0 −1 −3

 and q =

 −2
0
1

 , we have

MX = Y + δqet

with X =

 −1 0 0
0 −1 0
0 0 −1

 , Y =

 2 −1 −2
−1 1 0
−1 0 2

 , δ = 1, s = e, r = 0.

According to Corollary 13, p = r +M ts = M te = (1, 1, 1)t, then the linear
program associated with LCP (q,M) is

(LP )


min z1 + z2 + z3
3z2 + 4z3 − 2 ≥ 0
z1 − z2 ≥ 0

−z2 − 3z3 + 1 ≥ 0
(z1, z2, z3) ≥ 0.

The optimal solution is (z1, z2, z3)t = (0.4, 0.4, 0.2)t. �

The following table summarizes the number of iterations obtained by the
three algorithms (R means that Lemke’s algorithm ends with a secondary ray).

Alg. 1 Alg. 2 Alg. 3
Example 20 R 1 48
Example 21 R 2 59

Table 3. Number of iterations obtained by the three algorithms.

Remark 22. Through the tested examples, the results obtained give a
particular value to the simplex method and Karmarkar’s method. �
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7. CONCLUSION

In this paper, we have presented a class of linear complementarity problems
which can be solved via linear programming approaches. From a practical
point of view, we have used methods designed for linear programming (the
simplex and the Karmarkar’s methods) to solve the linear program associated
with the linear complementarity problem. This idea has offered us a new hori-
zon of research concerning the resolution of a linear complementarity problem
with specific classes of matrices, especially when Lemke’s algorithm has failed
to find a solution.

The following questions arise: 1) The conditions assumed to test if M is
a hidden Z-matrix are not easy to check because of the nonlinearity in the
condition rtX + stY > 0 for unknowns X,Y, r and s. 2) Can we characterize
all classes of matrices for which the linear complementarity problems can be
solved by a linear program?
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