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LOCAL CONVERGENCE ANALYSIS
OF FROZEN STEFFENSEN-TYPE METHODS

UNDER GENERALIZED CONDITIONS

IOANNIS K. ARGYROS∗ and SANTHOSH GEORGE†

Abstract. The goal in this study is to present a unified local convergence analy-
sis of frozen Steffensen-type methods under generalized Lipschitz-type conditions
for Banach space valued operators. We also use our new idea of restricted con-
vergence domains, where we find a more precise location, where the iterates lie
leading to at least as tight majorizing functions. Consequently, the new con-
vergence criteria are weaker than in earlier works resulting to the expansion of
the applicability of these methods. The conditions do not necessarily imply the
differentiability of the operator involved. This way our method is suitable for
solving equations and systems of equations.
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1. INTRODUCTION

Let E stand for a Banach space and S be a nonempty open subset of E .
By L(E) we denote the space of bounded linear operators from E into E .
Let also F : S −→ E be a continuous operator. The problem of locating
a zero x∗ of operator F is very important in many diverse areas such as
inverse theory, optimization, control theory, Mathematical Physics, Chemistry,
Biology, Ecconomics, Computational Sciences and also in Engineering. A
plethora of problems from the aforementioned disciplines can be formulated
to finding a zero of F using Mathematical modeling [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12]. The exact zero of F is desirable but this goal can be achieved only
in some special cases. That is why researchers and practitioners generate a
sequence converging to x∗ under some conditions on operator F.

In this study, we introduce the method defined for each n = 0, 1, 2, . . . by

(1) xn+1 = xn −A−1
n F (xn),
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where An = A(h1(ttn), h2(ytn)), x0 ∈ S is an initial point; A(., .) : S × S −→
L(E); {tn} is a nondecreasing sequence of integers such that t0 = 0, tn ≤ n for
each n = 0, 1, 2, . . . , h1 : S −→ S, h2 : S −→ S are continuous data operators
and ytn stands for the highest indexed point x0, x1, . . . , xtn for which A−1

n

exists provided A(h1(x0), h2(x0))−1 ∈ L(E). It is well established that it is not
advantageous to replace the operator A−1

n at each step of the iterative method
(from the numerical efficiency point of view). If this operator is kept piece
wise constant, then we obtain more efficient iterative methods. It is also well
known that optimal methods can be obtained based on the dimension of the
space. Many widely used iterative methods can be obtained as special cases
of (1) say, if tn = n, so ytn = xn :
Steffensen-type method [10]:
(2) xn+1 = xn − [h1(xn), h2(xn);F ]−1F (xn) for each n = 0, 1, 2, . . . ,
where [., .;F ] : S × S −→ L(E) and for each x, y ∈ E with x ̸= y [x, y;F ](x−
y) = F (x) − F (y).

Steffensen method:
(3) xn+1 = xn − [xn, xn + F (xn);F ]−1F (xn) for each n = 0, 1, 2, . . . .
That is we specialize (2) by setting setting h1(x) = x and h2(x) = x+ F (x).

Backward-Steffensen method:
(4) xn+1 = xn − [xn − F (xn), xn;F ]−1F (xn) for each n = 0, 1, 2, . . .
Method (2) reduces to (4), if h1(x) = x− F (x) and h2(x) = x.

Central-Steffensen method
(5) xn+1 = xn− [xn−F (xn), xn+F (xn);F ]−1F (xn) for each n = 0, 1, 2, . . . .
This method is obtained from (2), if h1(x) = x− F (x) and h2(x) = x+ F (x).

Generalized Steffensen-type method
(6)
xn+1 = xn−[xn−θ(xn)F (xn), xn+τ(xn)F (xn);F ]−1F (xn) for each n = 0, 1, . . . ,
where θ, τ : S −→ R+ ∩ {0} are real functions such that sequences {θ(xn)}
and {τ(xn)} are convergenct sequences. Method (6) is a specialization of (2),
if h1(x) = x− θ(x)F (x) and h2(x) = x+ τ(x)F (x). Many other choices of tn
and An are possible [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

The motivation and novelty of method (1) are listed below:
(i) Method (1) is always well defined, since we can choose ytn = xn for

each n = 0, 1, 2, . . . .
(ii) Many methods are special cases of method (1), so it is important to

unify their convergence analysis.
(iii) The local convergence analysis uses generalized Lipschitz-type condi-

tions and the continuity of operator F. The differentiability of operator
F is not assumed or implied by the conditions. This way (1) is suit-
able for solving non-differentiable equations. It is worth noticing that
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method (2) or its special aforementioned cases or other similar meth-
ods using divided differences cannot be used to solve non-differentiable
equations, e.g., when h1(xi) = h2(xi) for some i = 0, 1, 2, . . . . An-
other possibility is when E = Ri (i a natural number) and vectors
h1(xi), h2(xi) are not the same but have at least one entry equal.
Then, the classical divided difference cannot be defined. It is also
worth noticing that local convergence results are important since they
reveal the degree of difficulty in choosing initial points.

(iv) Another problem appearing when we study the convergence of iterative
methods is the fact that the ball of convergence is small in general
and the error bounds on the distances ∥xn − x∗∥ are pesimistic. We
address these problems by using center-Lipschitz-type condition that
help us determine a subset S0 of S also containing the iterates. By
concentrating on S0 instead of S the Lipschitz functions are tighter
than the ones depending on S. This way the convergence ball is at
least as large (i.e., we obtain at least as many initial points), the error
bounds at least as tight (i.e., at least as few iterations are needed to
obtained an error tolerance ε) and the information on the location of
the solution is at least as precise. These improvements are obtained
under the same computational effort, since in practice the computation
of the old Lipschitz functions requires the computation of the new
Lipschitz functions as special cases.

The rest of the study is developed as follows: Section 2 contain the lo-
cal convergence analysis of method (1) whereas in Section 3, we present the
conclusion.

2. SEMI-LOCAL CONVERGENCE ANALYSIS

Let U(x, δ) stand for the open ball centered at x ∈ E and of radius δ > 0.
Moreover, we denote its closure by Ū(x, δ). Define parameter ρ1 by ρ1 =
sup{t ≥ 0 : U(x∗, t) ⊆ S}. The local convergence analysis is based on the
conditions (A):

(a1) There exist x∗ ∈ S, with F (x∗) = 0, α > 0 and x̄ ∈ S with ∥x̄−x∗∥ = α,
such that A−1

∗ := A(x∗, x̄)−1 ∈ L(E).
(a2) ∥A−1

∗ (A(h(x), h2(x)) −A∗)∥ ≤ φ0(∥h1(x) − x∗∥, ∥h2(x) − x̄∥), for each
x ∈ S where hm : S −→ S,m = 1, 2 are continuous operators, φ0 :
I × I −→ I is a continuous, nondecreasing function in both variables
and I = R+ ∩ {0}.

(a3) ∥hm(x) − x∗∥ ≤ ψm(∥x − x∗∥) for each x ∈ S, for some functions
ψm : I −→ I which are continuous and nondecreasing.

(a4) Equation
φ0(ψ1(t), α+ ψ2(t)) = 1

has at least one positive solution. Denote by ρ2 the smallest such
solution. Set S0 = U(x∗, ρ), where ρ = min{ρ1, ρ2}.
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(a5) ∥A−1
∗ (A(h1(y), h2(y))(x − x∗) − F (x))∥ ≤ φ(∥h1(y) − x∥, ∥h2(y) −

x∗∥)∥x − x∗∥ for each x, y ∈ S0, where φ : I0 × I0 −→ I is some
continuous non-decreasing function and I0 = [0, ρ].

(a6) Equation φ(t+ψ1(t), ψ2(t)) +φ0(ψ1(t), α+ψ2(t)) = 1 has at least one
solution in (0, ρ2). Denote by ρ∗ the smallest such solution.

Next, we show the local convergence result for method (1) using the condi-
tions (A) and the preceding notation.

Theorem 1. Suppose that the conditions (A) hold. Then, sequence {xn}
generated by method (1) for starter x0 ∈ U(x∗, ρ∗) − {x∗} is well defined in
U(x∗, ρ∗), stays in U(x∗, ρ∗) for each n = 0, 1, 2, . . . and limn−→∞ xn = x∗.

Proof. Let x ∈ U(x∗, ρ∗). Using (a1)–(a4) and (a6), we have in turn that
∥A−1

∗ (A(h1(x), h2(x)) −A∗)∥ ≤ φ0(∥h1(x) − x∗∥, ∥h2(x) − x̄∥)
≤ φ0(ψ1(∥x− x∗∥), ∥h2(x) − x∗∥ + ∥x∗ − x̄∥)
≤ φ0(ψ1(ρ∗), α+ ψ2(ρ∗)) < 1.(7)

It follows from (7) and the Banach lemma on invertible operators [5, 6] that
A(h1(x), h2(x)) is invertible and
(8) ∥A(h1(x), h2(x))−1A∗∥ ≤ 1

1−φ0(ψ1(∥x−x∗∥),α+ψ2(∥x−x∗∥)) .

Moreover, x1 is well defined by (1) by (8) for x = x0. We can write by method
(1) that

x1 − x∗ = x0 − x∗ −A−1
0 F (x0)

= A−1
0 [A0(x0 − x∗) − F (x0)]

= [A−1
0 A∗]A−1

∗ [A0(x0 − x∗) − F (x0)].(9)
By (8), (9), (a3) and (a4), we obtain in turn that

∥x1 − x∗∥ ≤ ∥A−1
0 A∗∥∥A−1

∗ [A0(x0 − x∗) − F (x0)]∥
≤ φ(∥h1(x0)−x0∥,∥h2(x0)−x∗∥)∥x0−x∗∥

1−φ0(ψ1(∥x0−x∗∥),α+ψ2(∥x0−x∗∥))

≤ φ(∥h1(x0)−x0∥+∥x0−x∗∥,∥h2(x0)−x∗∥)∥x0−x∗∥
1−φ0(ψ1(∥x0−x∗∥),α+ψ2(∥x0−x∗∥))

≤ c∥x0 − x∗∥ < ρ∗,(10)
which shows that x1 ∈ U(x∗, ρ∗), where

(11) c = φ(∥h1(x0)−x∗∥+∥x0−x∗∥,∥h2(x0)−x∗∥)
1−φ0(ψ1(∥x0−x∗∥),α+ψ2(∥x0−x∗∥)) ∈ [0, 1).

Suppose that ytm ∈ U(x∗, ρ∗) for each m = 0, 1, 2, . . . k. Then, as in (8)-(10)
with x = ytk , and x replaced by xk+1 we get

(12) ∥A(h1(y)tk), h2(ytk))−1A∗∥ ≤ 1
1−φ0(ψ1(∥ytk

−x∗∥,α+ψ2(∥ytk
−x∗∥)

and
(13) ∥A−1

∗ [A∗(xk−x∗)−F (x∗)]∥ ≤ φ(∥h1(ytk)−xk∥, h2(ytk)−x∗∥)∥xk−x∗∥,
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so again
(14) ∥xk+1 −x∗∥ ≤ ∥A−1

k A∗∥∥A−1
∗ [Ak(xk −x∗) −F (xk)]∥ ≤ c∥xk −x∗∥ < ρ∗,

which implies xk+1 ∈ U(x∗, ρ∗) and limk−→∞ xk = x∗. □
Concerning the uniqueness of the solution x∗ suppose

(a6)’ Equation
φ(t+ ψ1(t), t+ ψ2(t)) + φ0(ψ1(t), α+ ψ2(t)) = 1

has at least one solution in (0, ρ2). Denote by ρ̄∗ the smallest such solution.
Replace (a6) by (a6)’ in conditions (A) and (a1)-(a5) and (a6)’ conditions
(A)’. Then, we have:

Proposition 2. Suppose that the conditions (A)’ hold. Then, x∗ is the only
solution of equation F (x) = 0 in U(x∗, ρ̄∗) provided that x0 ∈ U(x∗, ρ̄∗)−{x∗}.

Proof. Let y∗ ∈ U(x∗, ρ̄∗) be such that F (y∗) = 0. We have instead of (14)
the estimate
(15) ∥xk+1 − y∗∥ ≤ c̄∥xk − y∗∥,

where c̄ = φ(∥h1(x0)−x∗∥+∥x0−x∗∥,∥h2(x0)−x∗∥+∥x∗−y∗∥)
1−φ0(ψ1(∥x0−x∗∥),α+ψ2(∥x0−x∗∥)) ∈ [0, 1), (by (a6)’). Then,

it follows from (15) that limk−→∞ xk = y∗. But we showed in Theorem 1 that
limk−→∞ xk = x∗. Hence, we conclude that x∗ = y∗. □

Remark 3. Let us look again at method (2) and consider the conditions
given in [10], so we can compare the results. Their conditions were given in
nonaffine invariant form but we present them here in affine invariant form.
The advantages of affine invariant results over non affine invariant results are
well known [5, 6, 11, 12].

(c1) (a1)
(c2) ∥A−1

∗ ([x, y;F ] − A∗)∥ ≤ φ̄0(∥x − x∗∥, ∥y − x∗∥) for each x, y ∈ S and
x ̸= y.

(c3) ∥A−1
∗ ([x, y;F ]− [z, w;F ])∥ ≤ φ̄(∥x−z∥, ∥y−w∥) for each x, y, z, w ∈ S

and (x, y), (z, w) different pairs.
(c4) ∥hm(x) − hm(x∗)∥ ≤ ψ̄m(∥x− x∗∥)
(c5) hm(x∗) = x∗, h

′
1(x∗) ̸= h′

2(x∗), h1(x) = h2(x) ⇔ x = x∗.
(c6) φ̄(ψ̄1(t) + t, ψ̄2(t)) + φ̄0(ψ̄1, α + ψ̄2(t)) = 1 has at least one positive

solution. Denote by r∗ the smallest such solution.
Restrictive conditions (c4) and (c5) were not used in our study. Conditions
(a2), (a3) are weaker than (c3), (c4), respectively. Condition (a2) helps us
determine a more precise domain (i.e., S0) containing the iterates than S and
also helps us define function ψ. Moreover, we have
(16) φ0(t) ≤ φ̄0(t)

(17) φ(t) ≤ φ̄(t),

(18) c ≤ c̄,
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(19) r∗ ≤ ρ∗

and

(20) S0 ⊆ S.

Estimates (16)–(19) justify the improvements stated in the introduction. Ex-
amples, where (16))–(19) hold as strict inequalities can be found in [4, 5, 6].

3. CONCLUSION

We presented a local convergence analysis of frozen Steffensen-type meth-
ods for generating a sequence approximating Banach space valued equations.
This method specializes to many popular methods. If the starting inverse ex-
ists, then the method is always well defined. Using our idea of the restricted
convergence domain, we provide a more precise domain where the iterates lie.
Hence, the majorant functions involved are at least as tight as in previous
studies. This way, the convergence criteria are at least as weak; the conver-
gence domain is enlarged; the error bounds on the distance ∥xn−x∗∥ is tighter
and the information on the location of the solution is at least as precise. The
results reduce to earlier ones, if only divided diferences are used. Moreover,
the differentiability of operator F is not assumed or implied as in previous
works, making method (1) suitable for solving systems of equations.
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