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ON BERMAN’S PHENOMENON
FOR (0,1,2) HERMITE–FEJÉR INTERPOLATION

GRAEME J. BYRNE∗ and SIMON J. SMITH†

Abstract. Given f ∈ C[−1, 1] and n points (nodes) in [−1, 1], the Hermite–
Fejér interpolation (HFI) polynomial is the polynomial of degree at most 2n− 1
which agrees with f and has zero derivative at each of the nodes. In 1916, L.
Fejér showed that if the nodes are chosen to be the zeros of Tn(x), the nth Cheby-
shev polynomial of the first kind, then the HFI polynomials converge uniformly
to f as n → ∞. Later, D. L. Berman established the rather surprising result
that this convergence property is no longer true for all f if the Chebyshev nodes
are augmented by including the endpoints −1 and 1 as additional nodes. This
behaviour has become known as Berman’s phenomenon. The aim of this pa-
per is to investigate Berman’s phenomenon in the setting of (0, 1, 2) HFI, where
the interpolation polynomial agrees with f and has vanishing first and second
derivatives at each node. The principal result provides simple necessary and suf-
ficient conditions, in terms of the (one-sided) derivatives of f at ±1, for pointwise
and uniform convergence of (0, 1, 2) HFI on the augmented Chebyshev nodes if
f ∈ C4[−1, 1], and confirms that Berman’s phenomenon occurs for (0, 1, 2) HFI.
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Keywords. interpolation, polynomial interpolation, Hermite–Fejér interpola-
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1. INTRODUCTION

Suppose f ∈ C[−1, 1] and let

(1) X = {xk,n : k = 0, 1, 2, . . . , n− 1; n = 1, 2, 3, . . .}

be an infinite triangular matrix of nodes such that, for all n,

(2) 1 ≥ x0,n > x1,n > . . . > xn−1,n ≥ −1.

The well-known Lagrange interpolation polynomial of f is the polynomial
Ln(X, f)(x) = Ln(X, f, x) of degree at most n− 1 which satisfies

Ln(X, f, xk,n) = f(xk,n), 0 ≤ k ≤ n− 1.
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A classic result due to Faber [6] states that for any X there exists f ∈
C[−1, 1] so that Ln(X, f) does not converge uniformly to f on [−1, 1] as
n → ∞. On the other hand, a more positive result occurs for the matrix
of Chebyshev nodes

T =
{
xk,n = cos

(2k+1
2n π

)
: k = 0, 1, 2, . . . , n− 1; n = 1, 2, 3, . . .

}
where, for each n, the xk,n are the zeros of the nth Chebyshev polynomial
Tn(x) = cos(n arccosx), −1 ≤ x ≤ 1. This result states that if the modulus of
continuity ω(δ; f) of f is defined by

ω(δ; f) = max
{
|f(s)− f(t)| : −1 ≤ s, t ≤ 1, |s− t| ≤ δ

}
,

then Ln(T, f) converges uniformly to f under the quite mild restriction
ω( 1

n ; f) logn→ 0, as n→∞
(see Rivlin [11, Chapter 4] for details and references).

A generalization of Lagrange interpolation is provided by Hermite–Fejér in-
terpolation (HFI). Given a non-negative integer m and nodes X defined by (1)
and (2), the (0, 1, . . . ,m) HFI polynomial Hm,n(X, f)(x) = Hm,n(X, f, x) of f
is the unique polynomial of degree at most (m + 1)n − 1 which satisfies the
(m+ 1)n conditions Hm,n(X, f, xk,n) = f(xk,n), 0 ≤ k ≤ n− 1,

H
(r)
m,n(X, f, xk,n) = 0, 1 ≤ r ≤ m, 0 ≤ k ≤ n− 1.

Note that H0,n(X, f) = Ln(X, f). The original motivation for studying HFI
was provided by Fejér [7], who in 1916 showed that if f ∈ C[−1, 1], then
‖H1,n(T, f) − f‖ → 0 as n → ∞ (here and subsequently, ‖ · ‖ denotes the
uniform norm on [−1, 1]). Thus on the Chebyshev nodes, (0, 1) HFI succeeds
where Lagrange interpolation may fail.

In the years since Fejér’s work, (0, 1, . . . ,m) HFI has been much studied by
many authors. In this paper our focus is on an aspect of HFI that has become
known as Berman’s phenomenon, which occurs if the Chebyshev nodes are
augmented by the end points of the interval [−1, 1]. In other words, we will
be studying (0, 1, . . . ,m) HFI on the nodes Ta = {xk,n+2 : 0 ≤ k ≤ n+ 1, n =
1, 2, 3, . . .}, where

(3)

 x0,n+2 = 1, xn+1,n+2 = −1,

xk,n+2 = cos
( (2k−1)π

2n
)
, 1 ≤ k ≤ n.

Thus, for each n, the xk,n+2 are the zeros of (1− x2)Tn(x).
Initially it might be thought that augmenting the Chebyshev nodes with ±1

will have little effect on the convergence behaviour of interpolation polynomials
when compared with interpolation on the Chebyshev nodes alone. However,
D. L. Berman [1] was able to show that if f(x) = |x|, then H1,n(Ta, f, 0)
diverges, while later [2] he showed that for g(x) = x2, H1,n(Ta, g, x) does not
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converge to x2 at any point of (−1, 1). (This result for x2 does not extend
to [−1, 1] because ±1 are interpolation nodes for all n.) An explanation for
Berman’s phenomenon was provided by Bojanic, as follows.

Theorem 1 (Bojanic). [3]. If f ∈ C[−1, 1] has left and right derivatives
f ′L(1) and f ′R(−1) at 1 and −1, respectively, then H1,n(Ta, f) converges uni-
formly to f on [−1, 1] if and only if f ′L(1) = f ′R(−1) = 0.

At this point it is natural to ask whether Berman’s phenomenon occurs
for (0, 1, . . . ,m) HFI if m 6= 1. When m = 0 (Lagrange interpolation) it is
straightforward to show that it does not occur. This follows from the repre-
sentation

Ln+2(Ta, f, x) =Ln(T, f, x) + 1
2Tn(x)

{
(1+x)[f(1)− Ln−1(T, f, 1)]

+ (−1)n(1−x)[f(−1)− Ln−1(T, f,−1)]
}
,

which can be verified by observing that both sides of the equation are poly-
nomials of degree at most n + 1 which agree at the n + 2 nodes xk,n+2 given
by (3). Thus Ln(Ta, f) → f uniformly on [−1, 1] whenever Ln(T, f) → f
uniformly on [−1, 1].

The question of whether Berman’s phenomenon occurs for (0, 1, . . . ,m) HFI
for any m > 1 was answered in the affirmative by Cook and Mills [5] in 1975,
who showed that if h(x) = (1−x2)3, then H3,n(Ta, h, 0) diverges. (Incidentally,
it was in [5] that the term Berman’s phenomenon was first used.) The result of
Cook and Mills was later extended by Maky [9] who showed that H3,n(Ta, h, x)
diverges at each point in (−1, 1). These findings for (0, 1, 2, 3) HFI on Ta
contrast with the earlier result of Krylov and Steuermann [8] that H3,n(T, f)
converges uniformly to f on [−1, 1] for any f ∈ C[−1, 1].

In this paper our focus will be on (0, 1, 2) HFI. Here it was shown by Sz-
abados and Varma [13] that, as with Lagrange interpolation, for any matrix
of nodes X there exists f ∈ C[−1, 1] so that H2,n(X, f) does not converge
uniformly to f on [−1, 1]. On the other hand, and again like Lagrange inter-
polation, it follows from Byrne et al. [4, Theorem 1] that if ω(1/n; f) logn→ 0
as n→∞, then H2,n(T, f) converges uniformly to f .

To investigate (0, 1, 2) HFI on Ta it proves helpful to follow the approach
of Bojanic [3], and introduce incremental modifications to the (0, 1, 2) HFI
process on T . To this end, with nodes xk = xk,n+2 defined by (3) and f ∈
C[−1, 1], define the polynomial Q2,n+2(Ta, f) of degree at most 3n+ 1 by the
3n+ 2 conditions

(4)

 Q2,n+2(Ta, f, xk) = f(xk), 0 ≤ k ≤ n+ 1,

Q′2,n+2(Ta, f, xk) = Q′′2,n+2(Ta, f, xk) = 0, 1 ≤ k ≤ n,



6 Graeme J. Byrne and Simon J. Smith 4

and define the polynomial R2,n+2(Ta, f) of degree at most 3n+3 by the 3n+4
conditions

(5)

 R2,n+2(Ta, f, xk) = f(xk), R′2,n+2(Ta, f, xk) = 0, 0 ≤ k ≤ n+ 1,

R′′2,n+2(Ta, f, xk) = 0, 1 ≤ k ≤ n.

Also, for future reference, recall that H2,n+2(Ta, f) is defined by the 3n + 6
conditions

(6)

 H2,n+2(Ta, f, xk) = f(xk),

H ′2,n+2(Ta, f, xk) = H ′′2,n+2(Ta, f, xk) = 0, 0 ≤ k ≤ n+ 1.

Our principal results are presented in the following theorem. Note that
throughout this paper we are concerned with functions defined on [−1, 1],
and so any derivative evaluated at 1 or −1 is assumed to be the appropriate
one-sided derivative.

Theorem 2. Suppose that the polynomials Q2,n+2(Ta, f), R2,n+2(Ta, f) and
H2,n+2(Ta, f) are defined by (4)–(6), where the interpolation nodes xk = xk,n+2
are defined by (3).

a) If f ∈ C[−1, 1] and lim
n→∞

‖H2,n(T, f)− f‖ = 0, then

lim
n→∞

‖Q2,n+2(Ta, f)− f‖ = 0.

b) If f ∈ C2[−1, 1], then lim
n→∞

‖R2,n+2(Ta, f)− f‖ = 0 if and only if
f ′(1) = f ′(−1) = 0. Furthermore, if f ′(1) and f ′(−1) are not both 0,
then R2,n+2(Ta, f, x) is divergent if 0 < |x| < 1, and R2,n+2(Ta, f, 0)
converges to f(0) if and only if f ′(1) = f ′(−1).

c) If f ∈ C4[−1, 1], then lim
n→∞

‖H2,n+2(Ta, f)− f‖ = 0 if and only if

(7) f ′(1) = f ′(−1) = f ′′(1) = f ′′(−1) = 0.

If 0 < |x| < 1 and (7) does not hold, then H2,n+2(Ta, f, x) is divergent;
in particular, if f ′(1) and f ′(−1) are not both 0, then

(8) lim sup
n→∞

1
n2 |H2,n+2(Ta, f, x)| > 0.

Furthermore, H2,n+2(Ta, f, 0) converges to f(0) if and only if f ′(1) =
f ′(−1) and f ′′(1) = −f ′′(−1) (which occurs, for example, if f is odd).
If f ′(1) 6= f ′(−1), then

(9) lim sup
n→∞

1
n2 |H2,n+2(Ta, f, 0)| > 0.

Theorem 2 confirms that Berman’s phenomenon occurs for (0,1,2) HFI. In
particular, the following results hold.

Corollary 3. (0, 1, 2) HFI provides the following illustrations of Berman’s
phenomenon.
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a) If f(x) = x, then lim sup
n→∞

1
n2 |H2,n+2(Ta, f, x)| > 0 for 0 < |x| < 1 and

lim
n→∞

H2,n+2(Ta, f, 0) = 0.
b) If g(x) = x2, then lim sup

n→∞
1
n2 |H2,n+2(Ta, g, x)| > 0 for all x in (−1, 1).

The theorem will be proved via a sequence of lemmas in the next section.

2. PROOF OF THE MAIN RESULT (THEOREM 2)

We begin by noting that the polynomials Q2,n+2(Ta, f), R2,n+2(Ta, f) and
H2,n+2(Ta, f), defined by (4)–(6), are related to each other and to H2,n(T, f)
according to the formulas

Q2,n+2(Ta, f, x) =
(10)

= H2,n(T, f, x) + 1
2 (Tn(x))3

× (1 + x) (f(1)−H2,n(T, f, 1)) + (−1)n(1− x) (f(−1)−H2,n(T, f,−1))] ,

R2,n+2(Ta, f, x) =(11)
= Q2,n+2(Ta, f, x) + 1

4 (Tn(x))3 (1− x2)
×
[
(1 + x)Q′2,n+2(Ta, f, 1)− (−1)n(1− x)Q′2,n+2(Ta, f,−1)

]
and

H2,n+2(Ta, f, x) =(12)
= R2,n+2(Ta, f, x)− 1

16 (Tn(x))3 (1− x2)2

×
[
(1 + x)R′′2,n+2(Ta, f, 1) + (−1)n(1− x)R′′2,n+2(Ta, f,−1)

]
.

Each of (10)–(12) can be verified by simply checking that the polynomial on
the right-hand side satisfies the defining conditions (in terms of degree and
values at the interpolation nodes (3)) of the polynomial on the left-hand side.
Also note (Byrne et al. [4, Section 1]) that H2,n(T, f) has the explicit formula

(13) H2,n(T, f, x) = 1
n3 (Tn(x))3 Sn(f, x)

where, with xk = xk,n+2 defined by (3),

(14) Sn(f, x) =
n∑
k=1

(−1)k−1
√

1− x2
k

(
1−xxk

(x−xk)3 − xk
2(x−xk)2 + n2−1

2(x−xk)

)
f(xk).

The results of the following two lemmas will be used to develop alternative
representations for R2,n+2(Ta, f) and H2,n+2(Ta, f) to those in (11) and (12).

Lemma 4. For xk = xk,n+2 defined by (3) and f ∈ C[−1, 1], the following
summation formulas hold.

(15) Tn(x)
n

n∑
k=1

(−1)k−1
√

1−x2
k

x−xk
f(xk) = Ln(T, f, x)
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(16) Tn(x)
n

n∑
k=1

(−1)k−1
√

1−x2
k

(x−xk)2 f(xk) = T ′n(x)
Tn(x)Ln(T, f, x)− L′n(T, f, x)

Tn(x)
n

n∑
k=1

(−1)k−1
√

1−x2
k

(x−xk)3 f(xk) =
[(

T ′n(x)
Tn(x)

)2
− 1

2
T ′′n (x)
Tn(x)

]
Ln(T, f, x)(17)

− T ′n(x)
Tn(x)L

′
n(T, f, x) + 1

2L
′′
n(T, f, x)

Tn(x)
n

n∑
k=1

(−1)k−1
√

1−x2
k

(x−xk)4 f(xk) =(18)

=
[

1
6
T ′′′n (x)
Tn(x) −

T ′n(x)T ′′n (x)
(Tn(x))2 +

(
T ′n(x)
Tn(x)

)3 ]
Ln(T, f, x)

+
[

1
2
T ′′n (x)
Tn(x) −

(
T ′n(x)
Tn(x)

)2 ]
L′n(T, f, x) + 1

2
T ′n(x)
Tn(x)L

′′
n(T, f, x)− 1

6L
′′′
n (T, f, x)

Proof. The formula (15) for Lagrange interpolation on the Chebyshev nodes
is well-known (see, for example, Rivlin [12, Section 1.3]). The remaining for-
mulas (16)–(18) follow by successive differentiation of (15). �

Lemma 5. For xk = xk,n+2 defined by (3), the following summation formu-
las hold.

n∑
k=1

(−1)k−1
√

1−x2
k

1−xk
= n(19)

n∑
k=1

(−1)k−1
√

1−x2
k

(1−xk)2 = n3(20)

n∑
k=1

(−1)k−1
√

1−x2
k

(1−xk)3 = 1
6n

3(5n2 + 1)(21)

n∑
k=1

(−1)k−1
√

1−x2
k

(1−xk)4 = 1
90n

3(61n4 + 25n2 + 4)(22)

n∑
k=1

(−1)k−1
√

1−x2
k

(1+xk)r = (−1)n+1
n∑
k=1

(−1)k−1
√

1−x2
k

(1−xk)r , r = 1, 2, 3, . . .(23)

Proof. If f(x) ≡ 1, then Ln(T, f, x) ≡ 1, so (15) gives
n∑
k=1

(−1)k−1
√

1−x2
k

x−xk
= n

Tn(x) .

Putting x = 1 gives (19). The formulas (20)–(22) follow from (16)–(18) in
similar fashion after noting that if f(x) ≡ 1, then L

(r)
n (T, f, x) ≡ 0 for r ≥ 1,

and (Rivlin [12, p. 38])

(24) T (r)
n (1) = n2(n2−12)(n2−22)...(n2−(r−1)2)

1 . 3 . 5...(2r−1) .
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Finally, (23) is a straightforward consequence of the symmetry of the Cheby-
shev nodes (i.e. xk,n+2 = −xn−k+1,n+2 for 1 ≤ k ≤ n). �

We now obtain alternative representations for the interpolation polynomials
R2,n+2(Ta, f) and H2,n+2(Ta, f) to those in (11) and (12).

Lemma 6. For xk = xk,n+2 defined by (3) and f ∈ C[−1, 1],

R2,n+2(Ta, f, x) =H2,n(T, f, x)(25)

+ 1
4(Tn(x))3

{
(1 + x)2(2− x) [f(1)−H2,n(T, f, 1)]

+ (−1)n(1− x)2(2 + x) [f(−1)−H2,n(T, f,−1)]

+ (1− x2) [(1 + x)A1,n − (1− x)B1,n]
}

and

H2,n+2(Ta, f, x) =R2,n+2(Ta, f, x) + 1
16(Tn(x))3(1− x2)2×

(26)

×
[
3x
{
[f(1)−H2,n(T, f, 1)]−(−1)n [f(−1)−H2,n(T, f,−1)]

}
+ (1 + x)(A2,n +B1,n)− (1− x)(B2,n +A1,n)

]
where

A1,n = 1
n3

n∑
k=1

(−1)k−1
√

1− x2
k

(
3

(1−xk)2 + n2−1
2(1−xk)

)
f(1)−f(xk)

1−xk
,(27)

B1,n = 1
n3

n∑
k=1

(−1)k−1
√

1− x2
k

(
3

(1+xk)2 + n2−1
2(1+xk)

)
f(−1)−f(xk)

1+xk
,(28)

A2,n = 1
n3

n∑
k=1

(−1)k−1
√

1− x2
k

(
15

(1−xk)3 + n2+2
(1−xk)2 + n2−1

1−xk

)
f(1)−f(xk)

1−xk
,(29)

B2,n = 1
n3

n∑
k=1

(−1)k−1
√

1− x2
k

(
15

(1+xk)3 + n2+2
(1+xk)2 + n2−1

1+xk

)
f(−1)−f(xk)

1+xk
.(30)

Proof. For convenience, denote the RHS of (25) by r(x). To establish (25)
it is sufficient to show r(x) satisfies the 3n + 4 defining conditions (5) of
R2,n+2(Ta, f). In fact, apart from r′(1) = r′(−1) = 0, the conditions are
verified easily. To show r′(1) = 0, firstly observe from (5) that (upon using
T ′n(1) = n2)

r′(1) = H ′2,n(T, f, 1) + 3n2 (f(1)−H2,n(T, f, 1))−A1,n.

However, by (13) and (14),

H ′2,n(T, f, 1) = 3n2H2,n(T, f, 1) + 1
n3S

′
n(f, 1),
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where

(31) S′n(f, 1) = −
n∑
k=1

(−1)k−1
√

1− x2
k

(
3

(1−xk)3 + n2−1
2(1−xk)2

)
f(xk).

Thus
r′(1) = 3n2f(1) + 1

n3S
′
n(f, 1)−A1,n,

and this is zero by (20), (21) and (27). The result r′(−1) = 0 is established
by similar means.

Again for convenience, denote the RHS of (26) by h(x). By the same ar-
guments as above, it is evident that (26) will be proved if it can be shown
that h′′(1) = h′′(−1) = 0. To show h′′(1) = 0, begin by noting that from (25)
and (26),

h′′(1) =H ′′2,n(T, f, 1) + (7n4 − n2) (f(1)−H2,n(T, f, 1))− (6n2 + 2)A1,n +A2,n.

(32)

However, by (13) and (14),

(33) H ′′2,n(T, f, 1) = (7n4 − n2)H2,n(T, f, 1) + 6
nS
′
n(f, 1) + 1

n3S
′′
n(f, 1),

where

(34) S′′n(f, 1) =
n∑
k=1

(−1)k−1
√

1− x2
k

(
3xk+12
(1−xk)4 + n2−1

(1−xk)3

)
f(xk).

By substituting (27), (29), (31), (33) and (34) into (32), and employing sum-
mation formulas (20)–(22), it follows (after somewhat tedious calculations)
that h′′(1) = 0. The result h′′(−1) = 0 is proved in similar fashion. �

The next result characterizes the quantities Ai,n and Bi,n of Lemma 6 in
terms of values of Lagrange interpolation polynomials and their derivatives.

Lemma 7. For i = 1, 2, the quantities Ai,n and Bi,n that are defined by
(27)–(30) can be written as

A1,n = 3n2 [f(1)− Ln(T, f, 1)] + 7n2−1
2n2 L′n(T, f, 1)− 3

2n2L
′′
n(T, f, 1),(35)

B1,n =(−1)n+1[3n2 [f(−1)− Ln(T, f,−1)](36)

− 7n2−1
2n2 L′n(T, f,−1)− 3

2n2L
′′
n(T, f,−1)

]
,

A2,n =(11n4 + 7n2) [f(1)− Ln(T, f, 1)] + 27n4+11n2−2
2n2 L′n(T, f, 1)(37)

− 8n2+1
n2 L′′n(T, f, 1) + 5

2n2L
′′′
n (T, f, 1),

B2,n =(−1)n+1[(11n4 + 7n2) [f(−1)− Ln(T, f,−1)](38)

− 27n4+11n2−2
2n2 L′n(T, f,−1)− 8n2+1

n2 L′′n(T, f,−1)− 5
2n2L

′′′
n (T, f,−1)

]
.
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Proof. To obtain (35), begin by writing (27) as

A1,n = 3
n3

n∑
k=1

(−1)k−1
√

1−x2
k

(1−xk)3 g(xk) + n2−1
2n3

n∑
k=1

(−1)k−1
√

1−x2
k

(1−xk)2 g(xk),

where g(x) = f(1)−f(x). Now apply the identities (16) and (17) at x = 1, not-
ing that Ln(T, g, x) = f(1)− Ln(T, f, x) and using the result (24) for T (r)

n (1).
To obtain (36), apply (16) and (17) at x = −1 to (28) with g(x) = f(−1)−f(x),
and use T (r)

n (−1) = (−1)n+rT
(r)
n (1). The remaining expressions (37) and (38)

are proved in a similar fashion. �

For a function f that has continuous derivatives on [−1, 1], the following
lemma characterizes the limiting behaviour of the Ai,n and Bi,n as n→∞ in
terms of these derivatives. The proof of the lemma uses the following result
which is a special case of a more general theorem concerning Lagrange inter-
polation on Jacobi nodes that is due to Neckermann and Runck [10, Satz 2,
p. 168]:

(39) If m > 0 and f (2m) ∈ C[−1, 1], then lim
n→∞

‖L(m)
n (T, f)− f (m)‖ = 0.

Lemma 8. Suppose Ai,n and Bi,n are defined by (27)–(30). If f ∈ C2[−1, 1],
then

lim
n→∞

A1,n = 7
2f
′(1),(40)

lim
n→∞

(−1)nB1,n = 7
2f
′(−1).(41)

If f ∈ C4[−1, 1], then

lim
n→∞

(
A2,n − 27n2

2 f ′(1)
)

= 11
2 f
′(1)− 8f ′′(1),(42)

lim
n→∞

(
(−1)nB2,n − 27n2

2 f ′(−1)
)

= 11
2 f
′(−1) + 8f ′′(−1).(43)

Proof. Suppose f ∈ C2[−1, 1]. We work with the expression (35) for A1,n.
Firstly, with x1 = cos(π/(2n)), it follows from the Mean Value Theorem that
there exists α ∈ (x1, 1) so that∣∣∣f(1)− Ln(T, f, 1)

∣∣∣ =
∣∣∣ (f(1)− Ln(T, f, 1))− (f(x1)− Ln(T, f, x1))

∣∣∣
=
∣∣∣(1− x1)

(
f ′(α)− L′n(T, f, α)

) ∣∣∣
≤ 2 sin2( π

4n
)
‖f ′ − L′n(T, f)‖.

Thus, by (39),

(44) lim
n→∞

n2 [f(1)− Ln(T, f, 1)] = 0.
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Also, if Pn denotes the set of polynomials of degree at most n, let q be the
best uniform approximation to f ′ in Pn−3. Then, by Markov’s inequality,

|L′′n(T, f, 1)| ≤ ‖L′′n(T, f)− q′‖+ ‖q′‖
≤ (n− 2)2‖L′n(T, f)− q‖+ ‖q′‖
≤ (n− 2)2 (‖L′n(T, f)− f ′‖+ ‖f ′ − q‖

)
+ ‖q′‖.

Now, there exists an absolute constant c so that ‖q′‖ ≤ c(n − 3)2ω( 1
n−3 ; f ′)

(see Szabados and Vértesi [14, p. 284]), so
1
n2 |L′′n(T, f, 1)| ≤ ‖L′n(T, f)− f ′‖+ ‖f ′ − q‖+ c ω( 1

n−3 ; f ′).

Since f ∈ C2[−1, 1], it follows from (39) and the Weierstrass approximation
theorem that
(45) lim

n→∞
1
n2L

′′
n(T, f, 1) = 0.

Substituting (44) and (45) into (35) and using (39) then gives the result (40).
The result (41) is established from (36) in near-identical fashion.

Now suppose f ∈ C4[−1, 1]. Here we work with the expression (37) for
A2,n. With xk = cos((2k − 1)π/(2n)), by the Mean Value Theorem there
exists β ∈ (x2, x1) so that f ′(β) − L′n(T, f, β) = 0. Thus, with α ∈ (x1, 1) as
above, there exists γ ∈ (β, α) such that
|f(1)− Ln(T, f, 1)| =

∣∣(1− x1)
(
f ′(α)− L′n(T, f, α)

) ∣∣
=
∣∣∣(1− x1)

[(
f ′(α)− L′n(T, f, α)

)
−
(
f ′(β)− L′n(T, f, β)

)] ∣∣∣
=
∣∣(1− x1)(α− β)

(
f ′′(γ)− L′′n(T, f, γ)

) ∣∣
≤4 sin2( π

4n
)

sin2
(

3π
4n

)
‖f ′′ − L′′n(T, f)‖,

and so, by (39),
(46) lim

n→∞
n4 [f(1)− Ln(T, f, 1)] = 0.

Similarly,∣∣f ′(1)− L′n(T, f, 1)
∣∣ =

∣∣ (f ′(1)− L′n(T, f, 1)
)
−
(
f ′(β)− L′n(T, f, β)

) ∣∣
≤ 2 sin2

(
3π
4n

)
‖f ′′ − L′′n(T, f)‖,

so
(47) lim

n→∞
n2 [f ′(1)− L′n(T, f, 1)

]
= 0.

Now let r be the best uniform approximation to f ′′ in Pn−4. By the method
used above to derive (45) it follows that

1
n2 |L′′′n (T, f, 1)| ≤ ‖L′′n(T, f)− f ′′‖+ ‖f ′′ − r‖+ c ω( 1

n−4 ; f ′′),
and so
(48) lim

n→∞
1
n2L

′′′
n (T, f, 1) = 0.
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Substituting (46)–(48) into (37) and using (39) then gives (42). The result (43)
is established similarly. �

We have now developed all the preliminary results needed to establish our
theorem.

Proof of Theorem 2. Firstly observe that a) is an immediate consequence of
the representation (10) for Q2,n+2(Ta, f).

b) Suppose f ∈ C2[−1, 1] and x ∈ (−1, 1). Then H2,n(T, f) converges
uniformly to f , so by (25), R2,n+2(Ta, f, x) converges (pointwise or uniformly)
to f(x) if and only if

lim
n→∞

(Tn(x))3 [(1 + x)A1,n − (1− x)B1,n] = 0,

which (by (40) and (41)) is equivalent to

(49) lim
n→∞

(Tn(x))3
[
(1 + x)f ′(1) + (−1)n+1(1− x)f ′(−1)

]
= 0.

Clearly, then, R2,n+2(Ta, f) converges uniformly to f if f ′(1) = f ′(−1) = 0.
On the other hand, since Tn(0) = 0 for n odd and |Tn(0)| = 1 for n even,

(49) holds true at x = 0 if and only if f ′(1) = f ′(−1). Thus R2,n+2(Ta, f, 0)→
f(0) if and only if f ′(1) = f ′(−1).

For fixed x with 0 < |x| < 1, it is well-known that there exists a subsequence
{nr}∞r=1 of natural numbers so that |Tnr (x)| → 1. Since |Tnr+1(x)| → |x|, it
follows that there is a subsequence {mr}∞r=1 of natural numbers that con-
tains infinitely many odd values and infinitely many even values and satisfies
|Tmr (x)| ≥ |x|/2 for all r. Thus (49) holds true if and only if (1 + x)f ′(1) +
(1 − x)f ′(−1) = 0 and (1 + x)f ′(1) − (1 − x)f ′(−1) = 0, which is equivalent
to f ′(1) = f ′(−1) = 0.

c) Suppose f ∈ C4[−1, 1] and x ∈ (−1, 1). Again H2,n(T, f) converges
uniformly to f , so by (25) and (26),
H2,n+2(Ta, f, x) =
= f(x) + 1

16(Tn(x))3(1− x2)
[
(1 + x)2(3− x)A1,n

− (1− x)2(3 + x)B1,n + (1 + x)2(1− x)A2,n − (1− x)2(1 + x)B2,n
]

+ o(1)
where, here and subsequently, the o(1) term is uniform in x. Then by (40)-(43),

H2,n+2(Ta, f, x) =
(50)

= f(x) + 1
32(Tn(x))3(1− x2)

[
7(1 + x)2(3− x)f ′(1)

−7(−1)n(1−x)2(3+x)f ′(−1)+(1 + x)2(1−x)
[
(27n2+11)f ′(1)−16f ′′(1)

]
− (−1)n(1− x)2(1 + x)

[
(27n2 + 11)f ′(−1) + 16f ′′(−1)

]]
+ o(1).

It is obvious from this expression that H2,n+2(Ta, f) converges uniformly to f
if f ′(1) = f ′(−1) = f ′′(1) = f ′′(−1) = 0.
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On the other hand, (50) shows that H2,n+2(Ta, f, 0)→ f(0) if and only if

lim
n→∞
n even

(27n2 + 32)
[
f ′(1)− f ′(−1)

]
− 16

[
f ′′(1) + f ′′(−1)

]
= 0,

which is equivalent to f ′(1) = f ′(−1) and f ′′(1) = −f ′′(−1). Furthermore, if
f ′(1) 6= f ′(−1), (9) follows from (50).

For fixed x with 0 < |x| < 1, suppose H2,n+2(Ta, f, x) → f(x). Then, with
{mr} defined as in (b) above, it follows from (50) that

(51) lim
r→∞

[
7(1 + x)2(3− x)f ′(1)− 7(−1)mr (1− x)2(3 + x)f ′(−1)

+ (1 + x)2(1− x)
[
(27m2

r + 11)f ′(1)− 16f ′′(1)
]

− (−1)mr (1− x)2(1 + x)
[
(27m2

r + 11)f ′(−1) + 16f ′′(−1)
]]

= 0.

Because {mr} has infinitely many values of each parity, (51) implies that
(1 + x)f ′(1) + (1− x)f ′(−1) = 0 and (1 + x)f ′(1)− (1− x)f ′(−1) = 0, which
means f ′(1) = f ′(−1) = 0. A similar argument then shows that f ′′(1) =
f ′′(−1) = 0. Finally, if f ′(1) and f ′(−1) are not both 0, (8) is a consequence
of (50) and the definition of mr. �

Remark. Theorem 1 for (0, 1) HFI does not place any conditions on the
derivatives of f , other than the existence of f ′ at ±1. By contrast, our The-
orem 2 for (0, 1, 2) HFI imposes quite stringent conditions on the derivatives
of f . However, it seems difficult to fully extend Bojanic’s methods to (0, 1, 2)
HFI, essentially because the positivity of terms that occur when working with
(0, 1) HFI no longer applies to the corresponding terms in (0, 1, 2) HFI. Never-
theless, it would be of interest to know whether the conditions of our theorem
can be weakened.

Acknowledgements. The authors thank Professor Terry Mills for helpful
discussions during the preparation of this paper.

REFERENCES

[1] D.L. Berman, On the theory of interpolation, Dokl. Akad. Nauk SSSR, 163 (1965),
pp. 551–554 (in Russian). [Soviet Math. Dokl., 6 (1965), pp. 945–948]

[2] D.L. Berman, An investigation of the Hermite–Fejér interpolation process, Dokl. Akad.
Nauk SSSR, 187 (1969), pp. 241–244 (in Russian). [Soviet Math. Dokl., 10 (1969),
pp. 813–816]

[3] R. Bojanic, Necessary and sufficient conditions for the convergence of the extended
Hermite–Fejér interpolation process, Acta Math. Acad. Sci. Hungar., 36 (1980), pp. 271–
279.

[4] G.J. Byrne, T.M. Mills and S.J. Smith, On Hermite–Fejér type interpolation on
the Chebyshev nodes, Bull. Austral. Math. Soc., 47 (1993), pp. 13–24.

[5] W.L. Cook and T.M. Mills, On Berman’s phenomenon in interpolation theory, Bull.
Austral. Math. Soc., 12 (1975), pp. 457–465.
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