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LOCAL CONVERGENCE
OF A TWO-STEP GAUSS-NEWTON WERNER-TYPE METHOD
FOR SOLVING LEAST SQUARES PROBLEMS

IOANNIS K. ARGYROS*, SANTHOSH GEORGE*

Abstract. The aim of this paper is to extend the applicability of a two-step
Gauss-Newton-Werner-type method (TGNWTM) for solving nonlinear least squares
problems. The radius of convergence, error bounds and the information on the
location of the solution are improved under the same information as in earlier
studies. Numerical examples further validate the theoretical results.
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1. INTRODUCTION

Let 4, be natural numbers with j > i. Let also € be an open and convex
subset of R7. We are concerned with the solution p of the least squares problem
[4,5,6,7,8,9]:

. 1 T
(1.1) min f(2) = S (@) (),
where F : Q — RJ is a Fréchet-differentiable mapping. Numerous problems
can be brought in the form (1.1) using Mathematical Modeling [1, 2, 3, 4, 5,
6, 7, 8,9, 10, 11, 12, 13]. The closed form solutions can only be found in
special cases. That explains why most solution methods for problem (1.1) are

iterative. Let zg,yo € 2 and set z = % In the present study, we provide
the local convergence analysis of GNWTM defined for each n =0,1,2,... by
Tnt1 = Tp— ApF(zp)
(1.2) Yn+1 = Tnt1 — AnF(Tpi1)
ZTL = 7"2“ ;—yn s

where A, = [F'(2p)TF'(2,)] ' F'(2,)T. If i = j, TGNWTM reduces to a
Gauss-Newton-Werner type method [3, 8, 9]. Notice that in each iteration the
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inversion of [F’(z,)" F'(2,)]"! is required only once. Therefore, the compu-
tational cost is essentially the same as in the Gauss- Newton method. The
LLT decomposition of [F”(z,)T F'(z,)] ™! costs O(n3) floating-point operations
(Flops) leading to the computation of x,1. It then follows from the second
substep of method (1.2) that O(n?) Flops are needed for the computation of
Yn+1-

The local convergence analysis of method (1.2) was given in the elegant
paper by Shakhno et al. in [9] (see also related work in [3, 8]). Their conver-
gence analysis uses average Lipschitz continuity condition as well as Lipschitz
conditions.

Using the concept of the average Lipschitz continuity [12] and our new idea
of restricted convergence domains, we present a local convergence analysis
with the following advantages (A) over works using the similar information
3,4, 8,9, 11, 12, 13]:

(a) Larger radius of convergence;
(b) Tighter error bounds on the distances ||z, — p||;
(c) An at least as precise information on the location of the solution p.

Achieving (a)—(c) is very important in computational sciences, since: (a)
We obtain a wider choice of initial guesses; (b)’ Fewer iterates are required
to obtain a desired error tolerance; (c¢)’ Better information about the ball of
convergence is obtained.

The rest of the paper is structured as follows: Section 2 contains the local
convergence analysis of method (1.2) whereas special cases and the applica-
tions are presented in the concluding Section 3.

2. LOCAL CONVERGENCE ANALYSIS

Set U(w,p) = {v € R/ : |lv — w| < p} to be the open ball in R/ and by
U(w, p) to denote its closure. Let R > 0. Define parameter Ry by R; :=
sup{t € [0,R] : U(p,t) C Q}. The convergence analysis of numerous iterative
methods has been given using the following concept due to Wang [12]:

DEFINITION 1. Mapping F : U(p, R1) — R? satisfies the Lipschitz condi-
tion with Ly average on U(p, R1) if

llz—yll _
IF @)~ Pl < [ Liw)du for each o,y € Ulp, Ra),
0
where L1 is a positive non-decreasing function.

It turns out that the convergence analysis of iterative methods based on the
preceding notion can be improved as follows:

DEFINITION 2. The mapping F : U(p,R1) — R’ satisfies the center-
Lipschitz condition with Ly average on U(p, Ry) if

[lz—pll _
|F'(z) — F'(p)]| < / Lo(u)du for each = € U(p, Ry),
0
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where Ly is a positive non-decreasing function.
Clearly, we have that
(2.1) Lo(u) < Ly(u) for each u € [0, Ry],

and %(1) can be arbitrary small [2, 3, 4]. Let 8 > 0 be a parameter. Suppose
that equation

(2.2) ,B/Ot Lo(u)du =1

has positive solutions. Denote by Ry the smallest such solution. Notice for
example that Ry exists, if

(2.3) BLo(R1)Ry > 1.

Indeed, function g(t) := B 3 L(u)du — 1 is such that g(0) = —1 < 0 and
g(R1) = BL(R1)R1 — 1 > 0. The existence of Ry follows from the intermediate
value theorem.

DEFINITION 3. The mapping F : U(p, R1) — R’ satisfies the restricted
Lipschitz condition with L average on U(p, Ry) if

lz—yll _
|F' () - F'(y)]| < /0 L(u)du for each z,y € U(p, Ro),

where L is a positive non-decreasing function.

We have that
(2.4) L(u) < Ly (u) for each u € [0, Ry,
since Ry < R;. Throughout this paper, we suppose that
(2.5) Lo(u) < L(u) for each u € [0, Ry,
unless, otherwise stated. Otherwise, i.e., if
(2.6) L(u) < Lo(u) for each u € [0, Ro],

then the results that follow hold with Lg replacing L. Moreover, we need the
definitions:

DEFINITION 4 ([12]). Let F : U(p, R1) — R? be a twice Fréchet-differentiable
mapping. We say that mapping I satisfies the Lipschitz condition with My av-
erage on U(p, R1) if

llz—yl| _
15" = Pl < [ Mi(w)du for each .y € Ulp, Ra),

where M7 is a positive nondecreasing function.
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DEFINITION 5. Let F : U(p, Ry) — R? be twice Fréchet-differentiable map-
ping. We say that mapping F satisfies the restricted Lipschitz condition with
M average on U(p, Ry) if

lz—yll _
17 @) = Pl < [ M()du for each @,y € Ulp. Ro),

where M 1is a positive nondecreasing function.
We have that
(2.7) M (u) < M (u) for each u € [0, Ry).

It is worth noticing that the definition of functions L and M (based on Ly
and Ry) was not possible in earlier studies using L; and M;j. That is, L =
L(Lo,Ro,Rl),M = M(Lo,Ro,Rl), whereas L1 = Ll(Rl) and M1 = Ml(Rl)
It turns out that Ly can replace the less precise L in the computation of the
upper bounds on the inverses of the operators involved and U(p, Ry), L, M can
replace U(p, Ry), L1, My, respectively in the proofs of such results. Moreover,
notice that the iterates ,, lie in U (p, Ry) which is a more precise location than
U(p, Ry) used in earlier studies [2, 3, 4, 8, 11, 12, 13]. We shall make the paper
as self contained as possible by stating some standard auxiliary concepts and
results.

Denote by R**7 the set of all i x j matrices. The Moore-Penrose pseudo-
inverse is defined by AT = (AT A)~'AT for each full rank A € R™J [6].

LEMMA 2.1 ([2,6]). Let A, A} € R™™. Assume that Ay = A+ Ay, ||AT||||A1]| <
1, and rank(A) = rank(Az). Then,

i 1AT]
= T
If rank(A) = rank(A2) = min{m, n}, the following holds
VI Ay
1 — AT Ay [
LEMMA 2.2 ([5]). Let A, Ay € R™*™. Assume that Ay = A+Ay, ||A1 AT < 1,
and rank(A) = n, then rank(As) = n.

LEMMA 2.3 ([12]). Let ¢(t) = %fg P(u)du,0 < t < p, where P(u) is a
positive integrable function and monotonically non-decreasing on [0, p|. Then,
©(t) is monotonically non-decreasing with respect to t.

LEMMA 2.4 ([12]). Let ¥(t) = t%fg Q(u)du,0 < t < p, where Q(u) is a
positive integrable function and monotonically non-decreasing on [0, p|. Then,
Y (t) is monotonically non-decreasing with respect to t.

142 — Af|| <

As in [9], it is convenient for the local convergence analysis that follows to
introduce some functions and parameters:

a = |Fpl, 8= FTFFT,
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d(x) = |lz—pll, so = max{d(zo), d(yo)},
p(t) = p(Lo, L, M)(t)

_ g/OtM(u)(t—u)zdu

+pt (/02t L(u)du + /Ot Lg(u)du> + V2082 /Ot Lo(u)du —t,

v = (Lo, L, M)
d(zg)+d(yg)

B I Mu)(d(xo) — u)du Bilelp * Lwdu
8d(wo) (1— B J™ Lo(u)du) ~ 2Azlrdn) (1 — g 10 1 (1) du)
faﬂzf (z0) Lo( Ydu
d(z0)(1 = 8 J3'®) Lo(u)du)

B J5 ™) M (u)(d(wo) — u)’du
8d(zo)® (1 - 8 J5 ) Lo(u)du)
V282 [ Lo(u)du
d(z0) (1= 8 J§*) Lo(u)du)

d(zg)+d(yo)

5f0 ’ L(u)du
d(ﬂfo)-‘rd Y0) ( ﬂf ZO)L ( )du)’
6711—&—1 = 5d($n) + /\d(xn)d(yn) + Td(zn),
e%H = 5d(a:n+1)3 + %(d(wn) + d(ypn) + d(zp+1))d(Tnt1) + 7d(2n),

and
Snt1 = max{d(zn41), d(ynt1)}-

Notice that if Lo = L = L; and M = M, then the preceding definitions
reduce to the corresponding ones in [9].
The local convergence analysis is based on the conditions (€):

(C1) Mapping F : U(p,R1) — R’ is twice Fréchet-differentiable, F’(p) has
full rank and p solves problem (1.1).

(@) F'(x)satisfies: the center-Lipschitz condition with Lo average on U(p, R1)
and the restricted Lipschitz condition with L average on U (p, Ro); F"(x)
satisfies the restricted Lipschitz condition with M average on U(p, Ry),
where Lo, L and M are positive non-decreasing functions on [0, 352).

(C3) Function p has a minimal zero R* in [0, Ry], which also satisfies

R*
6] Lo(u)du < 1.
0
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Then, we can show the following local convergence result for TGNWTM
under the conditions (€) and the preceding notation.

THEOREM 2.5. Suppose that conditions (C) hold. Then, sequences {xy},
{yn}, {2n} generated for xo,yo € U(p, R*)—{p} by TGNWTM are well defined
in U(p, R*), remain in U(p, R*) for each n = 0,1,2,... and converge to p.
Moreover, the following estimates hold

(2.8) d($n+1) < €}L+17

(2.9) d(Yns1) < €py1,

and

(2.10) Sl <8k < ... < AR

Proof. The proof follows the corresponding one in [9] but there are differ-
ences where we use (Lo, L), M instead of Ly, My, respectively used in [9]. We
shall use mathematical induction to show that iterates {xp}, {yx}, {2k} are
well defined converge to p and the error estimates (2.8)—(2.10) are satisfied.
Using TGNWTM for n = 0, we can write

1 —p = xo—p— [F(20)"F(20)] " F'(20)F (o)
= [F'(20)"F'(20)]""F'(20)" [F'(0) (o — p) — F(x0) + F(p)]
+[FTF' = FTF(p) — [F'(20)"F'(20)] ' F'(20)" F(p)
= [F'(20)"F'(20)] " F'(20)" J (o)
+[FTF' T VFTF(p) — [F'(20)" F'(20)] ' F'(20) F(p),
and
yi—p = z1—p—[F'(20) F'(20)] " F'(20)" F (1)
= [F'(20)"F'(20)]""F'(20)" [F"(20)(x1 — p) — F(21) + F(p)]
+[FTF T FTF(p) — [F'(20)" F'(20)] ' F'(20)" F(p)
= [F'(20)"F'(20)]"F'(20)" J (1)
+[FTF 7 FTF(p) — [F'(20)" F' (20)] ' F'(20) F (p),

where

In view of the estimate

F@) - F) - F (52) ) = [ 5 (P (5524 4 )
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for x = p and y = x(, we obtain in turn
|F(p) = F(wo) — F' (252) (p — w0)|| =
1 ! 1" [ xo+ /" To+ t 2
4| [ a-ofr (=8 so-e0) - (22 + b)) (a0 di
1 tllzo—p|| )
< [a=o [T M dulao - pl*de
0 0
d(zo) 2
%/0 M(u) (1 - gt5)” dud(a)?

d(zo) 5
/0 M (u)(d(x0) — w)? du,

0ol

and e
I () - (22} < [ et

By the central Lipschitz condition, we have that

@ - Pl <8 [ Lot

Moreover, by Lemma 2.1 and Lemma 2.2 and (C;), for all x € U(p, R*), we
get

(e 7 w) P

B
1= 8 5 Lo(w)du

(P P @) P e

and
-1 1 2 rd(z) L d
H (F/ (%)T o ($)> ' (ZC)T . (F/ (p)T ' (p)) F/( ) f/B f ) 0( ) U'
1 - ﬁf (@ Lo( )du
By the monotonicity of L(u) and M (u) with Lemma 2.3 and Lemma 2.4,
functions %fg (u)du and 5 L [ M (u)(t — u)?du are non-decreasing in t. That

is, by (C3)

o[B8 M@ (R = wPdu | BR J Lwdu | vEag? [ Lo(w)du
Bl 8(1— By Lw)du)  1— B [§® Lo(u)du) 1= B f; Lo(u)du)

B VU 2 TR Lo
81— B Lo(u)du) 1 — B f) Lo(u)du) 1—ﬁfo Lo(u)du)

<1.
Thus, by Lemma 2.1-2.9 and condition (C2), we have in turn
ley = pll - < [IF (20)" ' (20)] 7' F' (20)" |

[ra-o [ (52 4 1o 20)

X
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—F" (% + 5 (@0 —p))} (p — wo)* dt ‘
H|[FTE T ETE(p) — [F'(20)TF'(20)] ' F'(20)"F (0)]
_ Bdo)® [ M(u)(d(x0) = u)*du
T 8d(w0)*(1 - B 5 Lo(u)du)
| Bdlzo)d(yo) Ji " Liwydu 205 i) Lo(w)du

a0 (1 - 88 Lo(uydu)  d(z0)(1 — B 17 Lo(u)du)
< (5d($0) + )\d(l'o)d(yo) + Td(Zo) < dRy < R.

In an analogous way, we get in turn

lyr —pll <
<|I[F'(20)" F' (20)] ' F'(20)" |
X \ F (%) (x1 —p) — F(z1) + F(p) + (F’(zo) _r (%j)) (21 — p)H
+ H F’TF’*lF/TF( ) — [F/(ZO)TF/(ZO)]71F/(20)TF(p)H

_Bd(@1)? J§') M(u)(d(z1) — u)?du
T 8d(z1)? (1—ﬁf @) Lo(u )du)
p(x)d(=) J3 " L <>du L V20§ Lo(u)du

+
() (1= 85" Lo(wdu) — d(zo) (1= B 5" Lo(u)du)
<6d(z1)* + 3d(21)(d(z0) + d(yo) + d(21)) + 7d(20)
<6d(w0)® + 3d(20)(d(z0) + d(yo)) + Td(20) < 6Ry < R,

hold, where d(2{)) = (d(xq) + d(yo) + d(x1))/2, so x1,y1 € U(p, R) and we also
have that

Ry = max{[lzy = pl|, [ly1 = pll} < dRo,

so (2.10) is satisfied. Suppose that zy,yr € U(p, R) and (2.10) hold for k£ > 0.
By TGNWTM for k£ + 1 we get in turn that

Bd(a)* J5 ™) M (w)(d(wy) — w)*du
8d(x)* (1= 8 J3 Lo(u)du)
| Bty Iy WP Lwydu | v2apd(r) Jo' ™ Lo(u)du

ek — Pl <

d(ye) (1 B 5 Lo(uydn)  d(er) (1 - 6 Lo(u)da)
_ Bd(@)® J§ " M(u)(d(x0) — u)*du
T 8d(wo)* (1= 8 f5) Lo(u)du)
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Ba(wy)d(y) Jo " Lo(uydu | V2aB2d(z) 5 Lo(u)du
d(yo) (1= B J5"™ Lo(u)du) — d(z0) (1= B J§* Lo(u)du)

< dd(xp)® 4 Md(zp)d(yp) + 7d(2x) < 6Rp < R
and
Ba(zgi1)® fo ) M(u)(d(zrp1) — u)Pdu
— <
k1 —pll < 8d(1p11)° (1 B ﬁfod(xk) Lo(u)du>
Bd(xr)d(zp) Jo 7 Llwydu  v3as?d(z) f3) Lu)du
T / d(z) d(zk)
() (1= 6 J5™ Lo(u)du)  d(er) (1= 6 [5' Lo(u)du)
_ Bd(wrg)? 5 M) (d(wo) — u)*du
T 8d(wo)? (18 f5") Lo(u)du)
Bd(azkﬂ)d(z,/c)fod(zol) L(u)du N V2a32%d(z) Od(zo) Lo(u)du
d(z) (1 — Bfod(zo) Lo(u)du) d(20) (1 — ﬂfod(zo) Lo(u)du>
< Gd(enn)® + A(d(wn) + dlgr) + d(rs))d@rin) + (=)
< O0RL <R,

where d(z;,) = (d(zx) + d(yx) + d(xk+1))/2. Furthermore, we obtain

Rpy1 = max{||[ze1 — pll, lysr1 — pll} < 6Rk < 6° Ry < ... 6" Ry,

S0
Th+1, Yk+1 € U(p7 R)? (28)7 (210) h01d7
limg_ ooz = p and limg__, o Y = p. ]
Concerning the uniqueness of the solution p we have:
PROPOSITION 2.6. Under the conditions (C) further suppose that
R* - [R*
(2.11) B Lo(u)(R —w)du+ 92 | Lo(u)du < 1,
0 0
where § = ||[[F""F'~Y||. Then, limit point p is the only solution of problem

(1.1) in U(p, R*).
The proof follows from the corresponding one in [5] but we only use the
center-Lipschitz condition.
3. SPECIAL CASES AND APPLICATIONS

REMARK 3.1. (a) Set a = ||F(p)|| =0 in Theorem 2.5 and Proposition 2.6
to obtain the results in the case of zero residual.
(b) If Lo, L, M are constants, then we can obtain results of special cases.
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(¢) In the literature functions Ly and My are used instead of L and M, re-
spectively [3, 5, 8, 9, 12]. Let us compare ratios and ball of convergence.
Notice that in view of (2.1), (2.4), (2.5) and (2.7), we have

(3'1) :U’(L07L7M)(t) < :U’(LhLl?Ml)(t)v
and

(3.2) V(Lo, L, M)(t) < (L1, Ly, M1)(2),

(3.3) R*(Ly, L1, Mi)(£) < R*(Lo, L, M)(t).

Therefore, our radius of convergence is larger and our ratio of convergence
is smaller. Moreover the information on the location of the solution p is more
precise, since only L is used in (2.11) [9]. Notice that these advantages are
obtained under the same computational cost, since in practice the computation
of L1 and My require the computation of the rest of the functions Lo, L and
M as special cases.

REMARK 3.2. In particular, using the error estimates, it follows that for
a =0 we have 7 =0 and

d(zry1) < d(zp)(0d(zr)® + Ad(yr))

dlyer) < d(wee) [M(xkﬂ )+ 3 () + d(e) + dl)|
< ) [(3a(o0) + ) o) + 2]
< <xk+1>d<xk><6R* A
d(@p41)d(z) 01

Also, for sufficiently large k,
d(z41) < d(xy)(0d(wr)? + Ad(yr))

((5d((£k)2 + )\éld(xk)d(xk_l))

2

xk_l)(é + )\fl)

VANRIVAN

I
Y

leading to the equation

22 —20—-1=0,
so the order of iterative method (1.2) is the positive root of the preceding equa-
tion which is 1+ /2.

Next, we present an example to show that (3.1)—(3.3) hold as strict inequal-
ities justifying the advantages as claimed at the introduction of this study.

EXAMPLE 3.3. Let X = R3 D = U(0,1),p = (0,0,0). Define function F
on D forw = (z,y,2)T by

F(w)z(e —1,¢ y +y,z )T.
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Then, the Fréchet-derivative is given by

e’ 0 0
F'v)=|1 0 (e—1y+1 0
0 0 1

Notice that using the (2.9) conditions, we get Ly = e—1,L = M = e"/Fo I, =
Mi=efB=1i=5j=3,a=0. Then

R*(Ly, Ly, My)(t) = 0.1468 < R*(Lo, L, M)(t) = 0.2263,

which justify the improvements as stated in the introduction of this paper.
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