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GENERALIZED GROWTH AND APPROXIMATION ERRORS
OF ENTIRE HARMONIC FUNCTIONS IN Rn, n ≥ 3

DEVENDRA KUMAR∗

Abstract. In this paper we study the continuation of harmonic functions in
the ball to the entire harmonic functions in space Rn, n ≥ 3. The generalized
order introduced by M.N. Seremeta has been used to characterize the growth
of such functions. Moreover, the generalized order, generalized lower order and
generalized type have been characterized in terms of harmonic polynomial ap-
proximation errors. Our results apply satisfactorily for slow growth.
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1. INTRODUCTION

Since the entire functions form a simplest class of analytic functions which
includes all polynomials several researchers like Varga [14], Batyrev [1], Reddy
[7], Ibraginov and Shikhaliev [3], Vakarchuk [13], Kasana and Kumar [6] and
others had obtained the characterization of growth parameters of an entire
function f(z) in terms of the sequences of polynomial approximation and in-
terpolation errors taken over different domains in the complex plane. Simi-
lar characterizations had been investigated for entire harmonic functions in
Rn, n ≥ 3 in terms of harmonic polynomial approximation errors. When we
discuss time dependent problems in R3 it leads to study the entire harmonic
functions in R4. Therefore, it is significant to mention here that the harmonic
functions play an important role in theoretical mathematical research, physics
and mechanics to describe different stationary processes. Hence, sometime it
is reasonable to study generalized growth characteristics of harmonic functions
in an n-dimensional space.

Let x ∈ Rn(n ≥ 3) be an arbitrary point where x = (x1, x2, . . . , xn) and
put |x| = (x2

1 + x2
2 + · · · + x2

n)
1
2 . The set of all non-constant entire harmonic
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functions on Rn is denoted by H. For each u ∈ H, r > 0 we have an expansion
into a Fourier-Laplace series [11]

(1) u(rx) =
∞∑
k=0

Y (k)(x;u)rk,

where x ∈ Sn = {x ∈ Rn : |x| = 1} a unit sphere in Rn centered at the origin
and

Y (k)(x;u) =a(k)
1 Y

(k)
1 (x) + a

(k)
2 Y

(k)
2 (x) + · · ·+ a(k)

γk
Y (k)
γk

(x),

a
(k)
j =(u, Y (k)

j ) = Γ(n2 )
2(π)

n
2

∫
Sn
u(x)Y (k)

j (x)dS, j = 1, γk,

γk = (2k+n−2)(k+n−3)!
k!(n−2)! .

Here dS is the element of the surface area on the sphere Sn, (u, Y (k)
j ) is the

scalar product in L2(Sn) and Y (k) is a spherical harmonic of degree k, k ∈
Z+ = {0, 1, 2, . . . , } on the unit sphere Sn(n ≥ 2) [10].

Let BR = {y ∈ Rn : |y| ≤ R} be the ball of radius R in space Rn, n ≥ 3
centered at the origin, and BR be the closure of BR. We denote HR, the class
of harmonic functions in BR and continuous on BR, 0 < R <∞.

An approximation error of function u ∈ HR by harmonic polynomials P ∈
Πk is defined as

(2) EkR(u) = inf
P∈Πk

{max
y∈BR

|u(y)− P (y)|},

where Πk be a set of harmonic polynomials of degree not exceeding k.
We state some results which will be useful in the sequel.

Lemma 1. [15] If u ∈ HR, then for all k ∈ N inequality

max
x∈Sn

|Y (k)(x;u)|Rk ≤ 4(k+2ν)2ν

(2ν)! Ek−1
R (u)

holds, where ν = n−2
2 .

Lemma 2. [15] For an entire harmonic function u ∈ Rn, n ≥ 3 which is
assigned by the series (1), the following inequality hold√

(2ν)!
2

1
(k+2ν)ν max

x∈Sn
|Y (k)(x;u)| ≤M(r;u)r−k, ∀k ∈ Z+, r > 0,

where M(r;u) = maxx∈Sn |u(rx)|.

Lemma 3. [15] For an entire harmonic function u ∈ Rn, n ≥ 3, the following
estimation holds

EkR(u) ≤
√

2
(2ν)!(2ν + 1)(k + 2ν)2νM(r;u)(Rr )k, ∀k ∈ Z+, r > eR.
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2. GENERALIZED GROWTH PARAMETERS

Let φ be a real valued function defined and differentiable on [a,+∞) at
some a ≥ 0 such that φ(x) is positive, strictly monotonically increasing and
tends to ∞. Then φ is said to belong to the class Lo if for every real valued
function ϕ(x) such that ϕ(x)→ 0 as x→∞, φ satisfies

(3) lim
x→∞

φ[(1+ϕ(x))x]
φ(x) = 1

and belongs to the class ∆ if for all c, 0 < c < ∞, we have the stronger
condition

(4) lim
x→∞

φ(cx)
φ(x) = 1.

Using the functions from the classes Lo,∆ Seremeta [8] obtained the follow-
ing characterizations for entire function f(z) =

∑∞
k=0 akz

k:

Theorem A. Let α(x) ∈ ∆, β(x) ∈ Lo. Set G(x, c) = β−1[cα(x)]. If
dG(x,c)
d log x = O(1), as x→∞ for all c, 0 < c <∞, then the generalized order

ρ(α, β, f) = lim sup
r→∞

α(logM(r;f))
β(log r) = lim sup

r→∞
α(k)

β(log |ak|
− 1
k )
,

where M(r; f) = max|z|=r |f(z)|.

Theorem B. Let α(x) ∈ Lo, β−1(x) ∈ Lo, ϕ(x) ∈ Lo. Let ρ, 0 < ρ < ∞,
be a fixed number. Set G(x, σ, ρ) = ϕ−1{[β−1(σα(x))]

1
ρ }. Suppose that for all

σ, 0 < σ <∞,
(1) If ϕ(x) ∈ ∆ and α(x) ∈ ∆, then dG(x,σ,ρ)

d log x = O(1), as x→∞.
(2) If ϕ(x) ∈ Lo −∆ or α(x) ∈ Lo −∆, then limx→∞

dG(x,σ,ρ)
d log x = 1

ρ .
Then we have

lim sup
r→∞

α(logM(r;f))
β[(ϕ(r))ρ] = lim sup

k→∞

α( k
ρ

)

β{[ϕ(e
1
ρ |ak|

− 1
k )]ρ}

.

S.M. Shah [9] introduced the generalized lower order λ(α, β, f) as

λ(α, β, f) = lim inf
r→∞

α(logM(r;f))
β(log r)

and proved the following theorem:

Theorem C. Let f(z) = Σ∞k=0akz
k be an entire function. Set G(x) =

β−1(α(x)). For some function ξ(x) → ∞ β(xξ(x))
β(ex) → 0, dG(x)

d(log x) = O(1), as
x→∞,
| akak+1

| is ultimately a non decreasing function of k. Then

λ(α, β, f) = lim inf
k→∞

α(k)
β(log |ak|

− 1
k )
.
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It has been observed that the functions G(x, c) and G(x) of Theorem A
and Theorem C respectively, do not satisfy the conditions when α(x) = β(x)
i.e., when the entire function f(z) is of slow growth. To include these func-
tions, Kapoor and Nautiyal [5] introduced a new class of functions and defined
generalized order and generalized type as follows:

Let Ω be the class of functions φ(x) satisfying the following conditions:
(H,i) φ(x) is defined on [a,∞) such that φ is positive, strictly increasing,

differentiable and tends to ∞ as x→∞.
(H,ii)

lim
x→∞

d(φ(x))
d(log x) = K, 0 < K <∞.

The generalized order ρ(α, α, f), generalized lower order λ(α, α, f) and gen-
eralized type of the entire function f(z) were defined as

ρ(α, α, f) = lim sup
r→∞

α(logM(r;f))
α(log r) ,

λ(α, α, f) = lim inf
r→∞

α(logM(r;f))
α(log r) , 1 ≤ λ(α, α, f) ≤ ρ(α, α, f) ≤ ∞,

T (α, α, f) = lim sup
r→∞

α(logM(r;f))
[α(log r)]ρ .

where α(x) ∈ Ω.
N. Juhong and C. Qing [4] extended the range of α(x) by defining a new

class Ω∗ as the extension of Ω and obtained some results concerning above
generalized growth parameters of entire function f(z).

Let Ω∗ be the class of functions φ(x) satisfying the condition (H,i) and
(H,iii),

(H,iii)

lim
x→∞

d(φ(x))
d(log[p] x) = K, 0 < K <∞, p ≥ 1, p ∈ N+,

where log[0] x = x, log[1] x = log x, log[p] x = log[p−1] log x. Also φ(x) satisfies
(3) and (4).

It is clear that α(x) ∈ Ω is a particular case of α(x) ∈ Ω∗ for p = 1.

Theorem D. [4] Let α(x) ∈ Ω∗, then some necessary and sufficient condi-
tions of the entire function f(z) with generalized order ρ is

lim sup
r→∞

α(logM(r;f))
α(log r) − 1 = lim sup

k→∞

α(k)
α(log |ak|

− 1
k )
, p = 1,

lim sup
k→∞

α(k)
α(log |ak|

− 1
k )
≤ lim sup

r→∞
α(logM(r;f))

α(log r) ≤ lim sup
k→∞

α(k)
α(log |ak|

− 1
k )

+ 1, p = 2, 3, . . .
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Theorem E. [4]. Let α(x) ∈ Ω∗, then the entire function f(z) of general-
ized order ρ, 1 < ρ <∞, is of generalized type T if, and only if

lim sup
r→∞

α(logM(r;f))
[α(log r)]ρ = lim sup

k→∞

α(k)
[α(log |ak|

− 1
k )]ρ−1

, p = 1,

lim sup
r→∞

α(logM(r;f))
[α(log r)]ρ = lim sup

k→∞

α(k)
[α(log |ak|

− 1
k )]ρ

, p = 2, 3, . . .

3. MAIN RESULTS

In this section we shall characterize the generalized growth parameters of
entire harmonic functions in space Rn, n ≥ 3 in terms of harmonic polynomial
approximation error defined by (2).

Let u ∈ HR. Then the generalized order ρR(α, β, u) and generalized lower
order λR(α, β, u) of u is defined as

ρR(α, β, u) = lim sup
r→∞

α(logM(r;u))
α(log r) ,

λR(α, β, u) = lim inf
r→∞

α(logM(r;u))
α(log r) , 1 ≤ λR(α, β, u) ≤ ρR(α, β, u) ≤ ∞.

(5)

Further, for 0 < ρR <∞, we define the generalized type TR(α, β, u) of u as

(6) T (α, β, u) = lim sup
r→∞

α(logM(r;u))
β((ϕ(r))ρR ) .

The functions α, β and ϕ satisfy the conditions stated in Theorem B.
Now we prove our main results.

Theorem 4. α(x) ∈ ∆, β(x) ∈ Lo. Set G(x, c) = β−1(cα(x)). If dG(x,c)
d(log x) =

O(1), as x→∞ for all c, c ∈ (0,∞), then for u ∈ HR can be continued to the
entire harmonic function in space Rn, n ≥ 3, for which generalized order

(7) ρR(α, β, u) = lim sup
k→∞

α(k)
β(logR[EkR(u)]−

1
k )
.

Proof. Consider the complex valued functions

f1(z) =
∞∑
k=0

√
(2ν)!√

2(2ν+1)!(k+2ν)2νE
k
R(u)( zR)k =

∞∑
k=0

bkz
k(say),

g(z) =
∞∑
k=1

4
(2ν)!(k + 2ν)2νEkR(u)( zR)k =

∞∑
k=1

ckz
k(say).

From Lemma 3 we have

(8) lim
k→∞

(bk)−
1
k =∞ and lim

k→∞
(ck)−

1
k =∞,

therefore, f1(z) and g(z) represents entire functions of complex variable z.
Further, we have

log(bk)−1 ' logRk[EkR(u)]−1 as k →∞.
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Using Theorem A, we get

(9) lim sup
r→∞

α(logM(r;f1))
β(log r) = lim sup

k→∞

α(k)
β(logR[EkR(u)]−

1
k )
.

If µ(r; f1) denotes the maximum term of f1(z) then by a result of Valiron
[12, p. 34], we get logM(r; f1) ' logµ(r; f1) as r → ∞. From Lemma 1 we
have

M(r;u) ≤ |Y o(ξ;u)|+ 4
(2ν)!

∞∑
k=1

(k + 2ν)2νEk−1
R (u)( rR)k

or
(10) M(r;u) ≤ |Y o(ξ;u)|+M(r; g).
Now from Lemma 3 and (10) we have
(11) µ(r; f1) ≤M(r;u) ≤ |Y o(ξ;u)|+M(r; g).
Thus (10) gives

(12) lim sup
r→∞

α(logM(r;f1))
β(log r) ≤ lim sup

r→∞
α(logM(r;u))

β(log r) ≤ lim sup
r→∞

α(logM(r;g))
β(log r) .

Now using (5), (9) and (12) we get (7). �

Theorem 5. Let u ∈ HR be of generalized order ρR(α, β, u), 0 < ρR(α, β, u) <
∞. Let the functions α, β and ϕ satisfy the conditions of Theorem B, then the
function u can be continued to the entire harmonic function in space Rn, n ≥ 3,
for which generalized type

(13) T (α, β, u) = lim sup
r→∞

α(logM(r;u))
β((ϕ(r))ρR ) = lim sup

k→∞

α( k
ρR

)

β[{ϕ(e
1
ρR R[EkR(u)]−

1
k )}ρR ]

.

Proof. Since α ∈ Lo, we have from Theorem 4
(14) α(logM(r;u)) ' α(logM(r; f1))
and f1(z) is also an entire function of generalized order ρR(α, β, f1), now using
Theorem B, we have

(15) lim sup
r→∞

α(logM(r;f1))
β((ϕ(r))ρR ) = lim sup

k→∞

α( k
ρR

)

β[{ϕ(e
1
ρR |bk|

− 1
k )}ρR ]

.

Since ϕ(x) ∈ Lo, we have

(16) lim sup
k→∞

α( k
ρR

)

β[{ϕ(e
1
ρR |bk|

− 1
k )}ρR ]

= lim sup
k→∞

α( k
ρR

)

β[{ϕ(e
1
ρR R[EkR(u)]−

1
k )}ρR ]

.

The above relations (14), (15) and (16) with (6) together gives (13). �

Theorem 6. Let u ∈ HR. Set G(x) = β−1(α(x)). Then the function u can
be continued to the entire harmonic function in space Rn, n ≥ 3, for which
generalized lower order

(17) λR(α, β, u) = lim inf
r→∞

α(logM(r;u))
β(log r) ≥ lim inf

k→∞
α(k)

β(logR[EkR(u)]−
1
k )
.
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if the following condition satisfied:
For some function ξ(x) → ∞ as x → ∞,β(xξ(x))

β(ex) → 0, dG(x)
d(log x) = O(1), as

x→∞,
If, in addition, ratio | E

k
R(u)

Ek+1
R (u)

| is a non decreasing function of k then in-
equality in the right hand side of (17) transforms into the equality.

Proof. We see that f1(z) is also of generalized lower order λR(α, β, f1) and
bk
bk+1

= [ (k+1+2ν)
(k+2ν) ]2ν EkR(u)

Ek+1
R (u)

(Rz ), r > eR

is a non decreasing function of k. Now using (8) and applying Theorem C to
the function f1(z), we obtain

λR(α, β, f1) = lim inf
k→∞

α(k)
β(log |bk|

− 1
k )

= lim inf
k→∞

α(k)
β(logR[EkR(u)]−

1
k )
.

�

Remark 7. If α(x) = log x, β(x) = x in Theorem 4 and α(x) = β(x) =
ϕ(x) = x in Theorem 5, we get the coefficient characterizations for the classical
order and type of entire harmonic function u in space Rn, n ≥ 3, in terms of
harmonic polynomial approximation errors.

Remark 8. If α(x) = x, β(x) = x
1
ρR , ϕ(x) = xρR(x) in Theorem 5, where

ρR(x) is the proximate order of harmonic function u such that x = θ(τ) is the
function inverse to τ = xρR(x), we obtain the formula for the generalized type
with respect to proximate order ρR(x).

Theorem 9. Let α(x) ∈ Ω∗, then necessary and sufficient conditions for
u ∈ HR to be continued to the entire harmonic function in space Rn, n ≥ 3
with generalized order ρR(α, α, u) is

lim sup
r→∞

α(logM(r;u))
α(log r) − 1 = lim sup

k→∞

α(k)
α(logR[EkR(u)]−

1
k )
, for p = 1,

lim sup
k→∞

α(k)
α(logR[EkR(u)]−

1
k )
≤ lim sup

r→∞
α(logM(r;u))

α(log r)

≤ lim sup
k→∞

α(k)
α(logR[EkR(u)]−

1
k )

+ 1, for p = 2, 3, . . . .

Proof follows on the lines of Theorem 4 and using Theorem D.

Theorem 10. Let α(x) ∈ Ω∗, then the function u ∈ HR can be continued
to the entire harmonic function in space Rn, n ≥ 3, with generalized order
ρR(α, α, u), 1 < ρR(α, α, u) < ∞, is of generalized type TR(α, α, u) if, and
only if

lim sup
r→∞

α(logM(r;u))
[α(log r)]ρR = lim sup

k→∞

α(k)
[α(logR[EkR(u)]−

1
k )]ρR−1

, p = 1,

lim sup
r→∞

α(logM(r;u))
[α(log r)]ρR = lim sup

k→∞

α(k)
[α(logR[EkR(u)]−

1
k )]ρR

, p = 2, 3, . . .
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Proof follows on the lines of Theorem 5 and using Theorem E.
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