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INEQUALITIES FOR THE FINITE HILBERT TRANSFORM
OF CONVEX FUNCTIONS

SEVER SILVESTRU DRAGOMIR!?

Abstract. In this paper we obtain some new inequalities for the finite Hilbert
transform of convex functions. Applications for some particular functions of
interest are provided as well.
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1. INTRODUCTION

Allover this paper, we consider the finite Hilbert transform on the open
interval (a,b) defined by

N1 b . o t—e b -
(Tf) (a,b3t) := 1PV /a 1047 = lim | /a + /H} L) 4y

for t € (a,b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [12, Section 3.2] or [16, Lemma II.1.1].

For several recent papers devoted to inequalities for the finite Hilbert trans-
form (T'f), see [2]-[10], [13]-[15] and [17]-[18].

Now, if we assume that the mapping f : (a,b) — R is convex on (a,b), then
it is locally Lipschitzian on (a,b) and then the finite Hilbert transform of f
exists in every point ¢ € (a, b).

The following result concerning upper and lower bounds for the finite Hilbert
transform of a convex function holds.
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2 Inequalities for the Finite Hilbert Transform 149

THEOREM 1 (Dragomir et al., 2001 [1]). Let f : (a,b) — R be a convex
function on (a,b) and t € (a, b). Then we have

(1)

where ¢ (t) € [fL (t), f+()] te(a,b).

COROLLARY 2. Let f : (a,b) — R be a differentiable convex function on
(a,b) and t € (a,b). Then we have

(2) FOWED)+ O~ f@+fB)0-1)] <
< (T'f) (a,b;1)
< OWED)+fO) = fFO+ @) —a)].

We observe that if we take ¢ = “—"'b, then we get from (2) that

(3) () = fa) + 3/ (%52) (b - a)]
< (Tf) (a,b; “52)
< z[FO) = (552 + 27 () (b= a)].

In this paper we obtain some new inequalities for the finite Hilbert transform
of convex functions. Applications for some particular functions of interest are
provided as well.

2. INEQUALITIES FOR CONVEX FUNCTIONS

We can prove the following slightly more general result than Theorem 1.

THEOREM 3. Let f : (a,b) — R be a convex mapping on (a,b). Then for
t € (a,b) and ¢ (t), ¥ (t) € [fL(t), f} (t)] we have

(4) %[f (:§)+f(t)—f(a)+<ﬁ(t)(b—t)]S

(5) L[f (%) = f(a

< E[F () = £ + 50(F) (b—a) .

Proof. The proof is similar to the one from [1]. For the sake of completeness
we provide a proof here.



150 S.S. Dragomir

As for the mapping f : (a,b) = R, f(t) =1, t € (a,b), we have

(Tf)(a,b;t) = LPV [ Ldr

Then, obviously

B T—t

(Tf) (a,b;t) = 1pv/bf(7)—f(t)+f(t>dT

T—1 ™ T—t
a

=PV /b 1010 g 1O py [ g
from where we get the equality
b
6 Tf) (a,b;t) — LW (i) = Lpy [ 1010 g,
(6) (Tf)( r (=) =7 T

for all t € (a,b).
By the convexity of f we can state that for all a < ¢ < d < b we have

(7) HI2E > o (e),

where ¢ (¢) € [fL (¢), fi (¢)].
Using (8), we have

t—e
(8) / M=) g, >/ o (r)dr
and
b b
9) / 1)/ ,{()drz/ (8 dr = o () (b—t —2)
t+e t+e

and then, by adding (8) and (9), we get

t—e b
lim [ / Qi gr 4 | 10M0gr ) >

e—0+ t4e

t—e
> i —t—
> o [ et pw -1~

_/ T)dr+ot) (b—1) = f ()= f(a)+p (1) (b—1).

Consequently, we have

pv/ IO > f(8) ~ f(a) + o () (b~ 1)

and by the identity (6), we deduce the first inequality in (4).
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Similarly, by the convexity of f we have for a <c¢<d <b
(10) o (d) > A,
where 4 (c) € [ (¢)., fL ()]-
Using (10) we may state
t—e t—e
[ < [ pwdr =@ -c-a)
and
b b
/ SO gr < |7 g (r)dr = F(b) — f(t+2).
t+e t+e
By adding these inequalities and taking the limit, we get
i / T 0-I gr 4 [0 f0=10 | <
e—0+ a t—T e T—t —
< i e _
< lim [ (t) (t—e—a)+ f(b) - f(t+¢)]
=y @) (t—a)+ f () - f(1),
namely
PV [0 00r <) (- a) 4 (9) - 1 ()
and by the identity (6), we deduce the second inequality in (4). O

REMARK 4. We observe that for ¥ = ¢ € Jf, the subdifferential of f, we
recapture the inequality (4). If f is differentiable on (a,b) then we also get

2).

COROLLARY 5. Let f: (a,b) — R be a convex mapping on (a,b).

(11)
2

sg[f@—g/af(wdt].

Proof. If we take the integral mean in (4), we get

b
[ /f O () + 55 [ 10 = F @+ 0-0)

) (a,b;t) dt

IN
T\H
h
~
kﬁ
IS
Sa
~~

IN

3=
— 2

f=al

I‘H

Q

<b_1a/abf(t)dt—f(a)>§/ (Tf) (a, b ) t—;m/f Bn (

/abf(t)ln(i’_é)+b_la/ab[f(b)—f(t)+w(t)(t—a)]]-



152 S.S. Dragomir 5

Observe that

/ab[f(t)—f(a)+90(t)(b—t)]dt=2( f(t)dt—f(a)(b—a)>

and
[ro-rosene-a-2(rm0-o- [ roa)
and by (12) we get the desired result O
We have:

THEOREM 6. Let f : (a,b) — R be a conver mapping on (a,b) with finite
lateral derivatives f', (a) and f_ (b). Then fort € (a,b) we have

(13) L(b—a)f(a) <L(b—a)lU=f@
< (Tf) (a,b;t) — {01 (2=L)
< ;-0 <2 b-a) /().

In particular,

1) Ll-a)f (@) <2b-a 0
<(Tf) (a7 b?%)

2(h—a) 1R 10y s ).

IN

Proof. We recall that if & : I — R is a continuous convex function on the
interval of real numbers I and a € I then the divided difference function
o, : I\ {a} =R,

D, (1) :=[a, t; D] := 21—

t—a
is monotonic nondecreasing on I \ {a} .
Using this property for the function f : (a,b) — R, we have for ¢t € (a,b)
that

f(a)*{(t) < =11 o JO-[O)

a — T—t b—t
for any 7 € (a,b), T £ t.
By the gradient inequality for the convex function f we also have

%ﬁ(a) > fi (a) for t € (a,b)
and

10O < ¢ (b) for t € (a,b).
Therefore we have the following inequality
(15) fi(a) < LO=1@) < [0 ¢ SO0 ¢ ¢ (p)

for t, 7 € (a,b) and T # t.
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If we take the PV in (15), then we get

(16) I (a) (b~ )<M<bw>
< PV/ i i
< 0 -a) < f-0) (0 -a)
for t € (a,b).
Using the equality (6) we deduce the desired result (13). O

COROLLARY 7. With the assumptions in Theorem 6 we have

b
(17) %(b—a)fﬁr(a)gi/ %ﬁ(a)dt

gbi/b@f)(abt /ft)lnf—
<1 /f(*’ IO=IW gt < L (h—a) f_ (b).

The proof follows by (13) on taking the integral mean over t on [a, b] .

PROPOSITION 8. With the assumptions in Theorem 6, the inequality (11)
is better than the inequality (17). In fact, we have the chain of inequalities

b
(18) ;(b—a)f;(a)g%/ H () gy

(e [ s 100)

gb}/b(Tf)(a bit) dt — b_la/abfgf)ln(b_;)dt

- e

SW/ f(b) f()g%(b—a)f_(b).

IA
3 o

Proof. We use the following éebyéev’s inequality which states that, if g, h
have the same monotonicity (opposite monotonicity) then

(19) —/g £y dt > ( ba/g dtba/h

Now, since g (t) = b {(t) is nondecreasing on (a,b) and h(t) = b —t is

decreasing on [a, b], then by (19) we have

b
b)— .
ﬁ/a %(b_t)dtg%/a 1O-10) gy




154 S.S. Dragomir 7

which is equivalent to

which proves the fifth inequality in (18).

Also, since g (t) = W is nondecreasing on (a,b) and h(t) =t —a is

increasing on [a, b], then by (19) we have
A0S0 1 (" 10)-f@
e | Te (Pm@)dt<g [ St
which proves the second inequality in (18). O

We also have:

THEOREM 9. Let f : (a,b) — R be a convex mapping on (a,b). Then for
t € (a,b)

In particular,

b a+b

e | @ (abegt) -5k L, -k [T rear)

<

< 0 I (1 (o) - (+52))
L [f0si@) _ p ()],

Proof. We use Griiss’ inequality for integrable functions g, h

IN

(22) b_la/:g(wh(t)dt—b_la/abg(wdtb_la/:h(t)dt

Si(M—m)(N—TL),

<

provided m < g (t) < M, n < h(t) < N for almost every t € [a, b] .
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Using Griiss’ inequality for increasing functions, we have

t—e t—e t—e
(23) / FOIW (7 ¢ dr — / (OO gy 1 / (r—t)dr| <
S ft—e—a)(t—e—a) MO - 0]
and
b
(24) L0 (-~ pyar — [ LD Ogr . [* (- tyar
l+e +e +e

<hb—t—e)(b—t—e) [{YH0 - LGAH0]

where t € (a,b) and for small € > 0.
We have

/H IO (7 — ¢y dr = Hf(T) dr — f(t) (t—e —a)

a

and b
b
w@_mﬁ: f(r)ydr—f@t)(b—t—¢).
t+e t+e
Also .
— / (r—t)dr = 62(;(6; ta)) = -t
and

b
1 _ (b—t)?—e? _ (b—t+e)
b—t—c /HE (r—t)dr = (2(b—t—§) =5
From (23) we get

t—e t—e

(25) F(r)dr—f(8) (t—e —a) + =0t= / HO=110) 47| <
FO-ft—e)  fla)—f(t
l(t—s—a)(t_g_a)[ O)=f(t=e) _ <3_t<>]
while from (24) we get
b
(26) / T)dr—f({t)(b—t—¢e)— b*§+€/ f(TT:{(t)dT <
t+e

<Hb—t-e)(b—t—e) [LYQ _ Srasw)]

for t € (a,b) and small € > 0.
For t —a > e > 0 we get from (25) that

t—e t—e
%/a sy {<>d7+ta+€/ ()dT—f(t)‘g
(t - e — o) [L02L0=2) _ fl0-f0]

£ a—

(27)

IS,
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and from (26) for b — ¢ > ¢ > 0 that

b
—t— T)—f(t
bt+s/ f(r dT—f()bi-s-i_;/Haf(r)—{()dTS

< 1(b=t—e)(b=t=c) { (b)—f) _ f(t+a)—f(t)}
— 4 b—t+e b—t €
or, that
b + b
e8) |3 [ O e [ @ ar £ <
t4e t+4e
< 1(b=t—e)(b=t=¢) {f(b)—f(t) _ f(t+€)—f(t)}
— 4 b—t+e b—t € :

If we add (27) and (28) and use the triangle inequality, then we get

t_
%/ d7'+ / (r) dT—I—

t—e

b
e | fﬁﬁh—fﬁ—wjﬁlgfﬁ%h+f@ﬂjé <

<1t - —a) [LU=f0=0) _ Sle)]

€ a—t

_|_

1 (b—t—c)(b—t—¢) [f(b)—f(t) _ f(t+€)—f(t)}
4 b—t+e b—t €

for t € (a,b) and min {t — a,b—t} > > 0.
Taking the limit over € — 0+ we get

b
(29) lpv/ ) d7+ta/f ﬁ/ﬁ f(r)dr| <
_f(a b) — /
<iu—awﬂxw—“2i“}+iw—w[fﬁyiﬂ”—f+@
for t € (a,b).
Using the identity (6) we get from (29) the desired result (20). O

3. A NUMERICAL EXAMPLE

For a differentiable convex function f : (a,b) — R, define the following
expressions

By (f;a,b,t) = LO=LQIO00 4 J0 1y (0=4) 4 € (q,b)

and

Ey (f;a,b,t) = <>1n(b t>+f<b> O (Oft=a)

By inequality (2), we know that E; (f;a,b,t) is a lower bound for the finite
Hilbert transform (7'f) (a,b,t) while E, (f;a,b,t) is an upper bound.
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Consider the convex function f : [1,2] — R, f(z) = expz. Figure 1 contains
the plots of E; (f), T (f), Ey (f), while Figure 2 shows the magnitude of the

closeness.

=
[s:s}
]

Fig. 1. Plots of E; (f), T (f), E. (f).
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0.87

15 152 154 .. 156 158 16

Fig. 2. Plots of E; (f), T (f), Eu (f).
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