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LOW-RANK MATRIX APPROXIMATIONS
OVER CANONICAL SUBSPACES

ACHIYA DAX∗

Abstract. In this paper we derive closed form expressions for the nearest rank-
k matrix on canonical subspaces. We start by studying three kinds of subspaces.
Let X and Y be a pair of given matrices. The first subspace contains all the
m × n matrices A that satisfy AX = O. The second subspace contains all the
m×n matrices A that satisfy Y T A = O, while the matrices in the third subspace
satisfy both AX = O and Y T A = 0.

The second part of the paper considers a subspace that contains all the sym-
metric matrices S that satisfy SX = O. In this case, in addition to the nearest
rank-k matrix we also provide the nearest rank-k positive approximant on that
subspace. A further insight is gained by showing that the related cones of posi-
tive semidefinite matrices, and negative semidefinite matrices, constitute a polar
decomposition of this subspace.

The paper ends with two examples of applications. The first one regards the
problem of computing the nearest rank-k centered matrix, and adds new insight
into the PCA of a matrix.

The second application comes from the field of Euclidean distance matrices.
The new results on low-rank positive approximants are used to derive an explicit
expression for the nearest source matrix. This opens a direct way for computing
the related positions matrix.

MSC 2010. 15A03, 15A18, 15A21, 15A42, 15A60, 65F99.
Keywords. Canonical subspaces, Low-rank positive approximants, The nearest
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1. INTRODUCTION

In this paper we study matrix approximation problems that involve sub-
spaces of matrices. Let X ∈ Rn×p and Y ∈ Rm×q be a pair of given matrices.
Then the term “canonical subspace” refers to the following types of matrix
subspaces.

(1.1) X = {B |B ∈ Rm×n and BX = O},

(1.2) Y = {B |B ∈ Rm×n and Y TB = O},
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(1.3) Z = {B |B ∈ Rm×n, Y TB = O and BX = O},
and
(1.4) S = {S |S ∈ Rn×n, S = ST and SX = O}.
Note that S ∈ S implies XTS = O. The matrix O denotes a null matrix with
appropriate dimensions.

The plan of the paper is as follows. It starts by deriving explicit solutions
to matrix nearness problems of the form

(1.5)
minimize f(B) = ‖A−B‖
subject to B ∈ B,

where A ∈ Rm×n is a given matrix, B denotes one of the subspaces, X,Y or Z,
and ‖ · ‖ denotes a unitarily invariant norm. In the third section we show that
the SVD of a matrix B ∈ B has a special structure. This observation paves
the way for solving low-rank approximations problems of the form

(1.6)
minimize f(B) = ‖A−B‖
subject to B ∈ B and rank(B) ≤ k,

where k denotes the desired matrix rank.
The second part of the paper concentrates on symmetric matrices. It starts

by solving (1.5) and (1.6) when B = S. Then we move to matrix nearness
problems that seek (low-rank) positive semidefinite matrices in S. It is shown
that the sets
(1.7) S+ = {S |S ∈ S and S ≥ 0}

(1.8) S− = {S |S ∈ S and S ≤ 0}
are convex cones in S. The notation S ≥ 0 means that the symmetric matrix S
is positive semidefinite. Similarly S ≤ 0 means that S is negative semidefinite.
With these notations at hand the problems that we solve are

(1.9)
minimize f(S) = ‖A− S‖F
subject to S ∈ S+,

and

(1.10)
minimize f(S) = ‖A− S‖F
subject to S ∈ S+ and rank(S) ≤ k,

where hereA is an arbitrary matrix from Rn×n. It is shown that these problems
have closed form solutions, and if A belongs to S then the derived solution
remains valid in any unitarily invariant norm. The role of S+ and S− is clarified
by showing that this pair of convex cones constitutes a polar decomposition
of S.

The paper ends with two examples of applications. In Section 7 the prop-
erties of canonical subspaces are used to compute the nearest rank-k centered
matrix. The results add new insight into the PCA of a matrix.
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In Section 8 we solve matrix nearness problems from the field of Euclidean
Distance (ED) matrices. Given a “predistance” matrix, A, it is desired to
compute the nearest “source” matrix and the related “positions” matrix. As
we shall see, the results on positive approximants enable us to derive closed
form solutions to these problems.

2. THE NEAREST MATRIX ON A SUBSPACE

We shall start by deriving equivalent presentations to the subspaces X,
Y, and Z, which are defined in (1.1)–(1.3). Using a SVD of X, or a QR
factorization, it is possible to compute a matrix with orthonormal columns,
X̂, that has the following property: A vector v ∈ Rn satisfies vTX = o if and
only if vT X̂ = o. The number of columns in X̂ equals rank(X). Yet, for the
sake of simplicity, it is possible to assume that rank(X) = p. Replacing X

with X̂ turns (1.1) into the form

(2.1) X = {B |B ∈ Rm×n and BX̂ = O}.

Similar arguments allow us to replace Y with a matrix Ŷ ∈ Rm×q that has
orthonormal columns. This turns (1.2) and (1.3) into the forms

(2.2) Y = {B |B ∈ Rm×n and Ŷ TB = O}

and

(2.3) Z = {B |B ∈ Rm×n, Ŷ TB = 0 and BX̂ = O},

respectively.
Another equivalent presentation is derived in the following way. Let the

n × (n − p) matrix X̃ be obtained by completing the columns of X̂ to be an
orthonormal basis of Rn. Then the n× n matrix [X̃, X̂] satisfies

(2.4) [X̃, X̂]T [X̃, X̂] = I = [X̃, X̂][X̃, X̂]T .

Observe that the first equality in (2.4) means

(2.5) X̃T X̃ = I, X̂T X̂ = I, X̃T X̂ = O, and X̂T X̃ = O;

while the second equality implies

(2.6) X̃X̃T + X̂X̂T = I

and

(2.7) X̃X̃T = I − X̂X̂T .

(The dimensions of the unit matrix, I, and the null matrix, O, depend on the
context.) Now let B be some matrix in X. Then from (2.6) we see that

B = B(X̃X̃T + X̂X̂T ) = BX̃X̃T = RX̃T ,
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where R = BX̃ ∈ Rm×(n−p). Conversely, given a matrix R ∈ Rm×(n−p) then
the equality X̃T X̂ = O implies that the matrix RX̃T belongs to X. This
enables us to rewrite X in the form
(2.8) X = {RX̃T |R ∈ Rm×(n−p)}.
That is, X is essentially a subspace which contains all the m × n matrices
whose rows belong to Range(X̃).

Similarly, let the m × (n − q) matrix Ỹ be obtained by completing the
columns of Ŷ to be an orthonormal basis of Rm. Then the subspaces Y and
Z have equivalent presentations in the forms
(2.9) Y = {Ỹ R |R ∈ R(m−q)×n}
and
(2.10) Z = {Ỹ RX̃T |R ∈ R(m−q)×(n−p)}.

Let ‖ · ‖ denote any unitarily invariant norm on Rm×n. To find the nearest
matrix on X, or Y, we need the following observation.

Lemma 2.1. Let H ∈ Rm×n be a given matrix, and let the matrix H` ∈
Rm×n be obtained from H by replacing the last n− ` columns of H with zero
columns. Then
(2.11) ‖H`‖ ≤ ‖H‖.

Proof. Using Cauchy interlacing theorem on the matrices HTH and HT
` H`

shows that the singular values of H` are weakly majorized by those of H.
Therefore (2.11) is a consequence of Ky Fan dominance theorem [15]. �

Theorem 2.2 (The nearest matrix on X). Let A be a given matrix in Rm×n

and consider the problem

(2.12)
minimize f(B) = ‖A−B‖
subject to B ∈ X,

where ‖ · ‖ is a unitarily invariant norm on Rm×n. Then the matrix
(2.13) AX̃X̃T = A(I − X̂X̂T )
solves this problem.

Proof. The equality in (2.13) is a direct consequence of (2.7). Using (2.8)
we can write B = RX̃T for some R ∈ Rm×(n−p). Then, since ‖ · ‖ is unitarily
invariant

‖A−RX̃T ‖ = ‖(A−RX̃T )[X̃, X̂]‖

= ‖[AX̃,AX̂]− [R,O]‖ ≥ ‖[O,AX̂]‖,

where the last equality is due to Lemma 2.1. Consequently the choice R = AX̃
gives the minimal value. �

The proof of the next theorem is derived in a similar way.
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Theorem 2.3 (The nearest matrix on Y). Let A and ‖ · ‖ be as above and
consider the problem

(2.14)
minimize f(B) = ‖A−B‖
subject to B ∈ Y.

Then the matrix

(2.15) Ỹ Ỹ TA = (I − Ŷ Ŷ T )A

solves this problem.

The structure of Z is slightly more complicated and, therefore, the nearest
matrix is computed with respect to one norm, the Frobenius matrix norm
‖ · ‖F . (The reasons are explained after the proof of Theorem 2.4.) For the
sake of clarity we mention that for any matrix A = (aij) ∈ Rm×n the Frobenius
norm of A is defined as

‖A‖F =

 m∑
i=1

n∑
j=1

(aij)2

1/2

,

and
‖A‖2F = trace(ATA) = trace(AAT ).

Theorem 2.4 (The nearest matrix on Z). Let A be a given matrix in Rm×n

and consider the problem

(2.16)
minimize f(Z) = ‖A− Z‖F
subject to Z ∈ Z.

Then the matrix

(2.17) Ỹ Ỹ TAX̃X̃T = (I − Ŷ Ŷ T )A(I − X̂X̂T )

solves this problem.

Proof. Using (2.10) it is possible to rewrite (2.16) in the form

(2.18)
minimize g(R) = ‖A− Ỹ RX̃T ‖2F
subject to R ∈ R(m−q)×(n−p).

Then, since the Frobenius norm is unitarily invariant,

‖A− Ỹ RX̃T ‖2F =
∥∥∥[Ỹ , Ŷ ]T (A− Ỹ RX̃T )[X̃, X̂]

∥∥∥2

F

=
∥∥∥[Ỹ , Ŷ ]TA[X̃, X̂]− [Ỹ , Ŷ ]T Ỹ RX̃T [X̃, X̂]

∥∥∥2

F
.

Now comparing the matrices

[Ỹ , Ŷ ]TA[X̃, X̂] =
[
Ỹ TAX̃ | Ỹ TAX̂

Ŷ TAX̃ | Ŷ TAX̂

]
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and

[Ỹ , Ŷ ]T Ỹ RX̃T [X̃, X̂] =
[
R | O
O | O

]
shows that the optimal choice of R is

�(2.19) R = Ỹ TAX̃.

Remark. It is tempting to think that the choice (2.19) is also optimal for
any other unitarily invariant norm. However, as the following example shows,
setting to zero the north-west corner of a matrix does not necessarily reduce
the matrix norm. To see this point we consider the matrices

G =
(

1 1
1 1

)
and H =

(
0 1
1 1

)
Then the trace norm of G is 2 while the trace norm of H is

√
5. That is,

“punching” G increases its trace norm. (Recall that the trace norm of a
matrix is the sum of its singular values.) �

We shall finish this section, by showing that the nearest matrices that we
have found are essentially orthogonal projections. Let A = (aij) and B = (bij)
be two matrices in Rm×n. Then it is well known that

(2.20) 〈A,B〉 =
m∑
i=1

n∑
j=1

aijbij

is an inner product on Rm×n, and the related matrix norm is the Frobenius
norm

(2.21) ‖A‖F = (〈A,A〉)1/2.

Recall also that a matrix A is “orthogonal” to B (and vice versa) if

(2.22) 〈A,B〉 = 0.

The inner product (2.20) and the Frobenius norm turn Rm×n to be a Hilbert
space, in which the solutions that we have found are called “orthogonal pro-
jections”. The next lemma clarifies this feature. It is a general property that
holds for any subspace of a Hilbert space.

Lemma 2.5. Let B denote one of the subspaces X,Y, or Z. Let A be an
arbitrary matrix in Rm×n. Then there exists a unique matrix B̂ ∈ B that
solves the problem

(2.23)
minimize f(B) = ‖A−B‖F
subject to B ∈ B.

Moreover, the matrix A− B̂ is orthogonal to any matrix B ∈ B. That is,

(2.24) 〈A− B̂, B〉 = 0 ∀B ∈ B.
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It is instructive, however, to see why (2.24) holds on the specific subspaces
X,Y and Z. Let us consider for example the subspace X. Then here (2.24) is
reduced to

〈A−A(I − X̂X̂T ), B〉 = 0, ∀B ∈ X
or

〈AX̂X̂T , RX̃T 〉 = 0 ∀R ∈ Rm×(n−p).

Recall that a rank-one matrix in Rm×n has the form uvT ∈ Rm×n, where
u ∈ Rm and v ∈ Rn. Now it is easy to verify that the inner product of a
rank-one matrix satisfies
(2.25) 〈A,uvT 〉 = uTAv.

Note also that

RX̃T =
n−p∑
j=1

rjx̃
T
j

where rj and x̃j denote the jth columns of R and X̃. Combining these rela-
tions gives

〈AX̂X̂T , RX̃T 〉 =
n−p∑
j=1
〈AX̂X̂T , rjx̃

T
j 〉 =

n−p∑
j=1

rTj AX̂X̂
T x̃j = 0,

where the last equality follows from the orthogonality relation X̂T X̃ = O. The
verification of (2.23) for Y and Z is done in a similar way. The next result is
another well known property of orthogonal projections in Hilbert spaces.

Corollary 2.6. Let B, A, and B̂ be as in Lemma 2.5. Then for any matrix
H ∈ B we have the equality
(2.26) ‖A−H‖2F = ‖A− B̂‖2F + ‖B̂ −H‖2F .

In the next section we will use this observation to compute the nearest rank-k
matrix on B.

3. LOW-RANK APPROXIMATIONS OVER CANONICAL SUBSPACES

In this section we solve low-rank approximations problems of the form (1.6).
Using (2.26) it is possible to rewrite (1.6) in the form

(3.1)
minimize f(H) = ‖B̂ −H‖2F
subject to H ∈ B and rank(H) ≤ k.

The key for solving this problem lies in the following observations.
Let B be a given matrix in Rm×n and let r denote the rank of B. Then it

is well known that B has a “compact” SVD of the form
(3.2) B = UΣV T ,

where the matrices U and V have r orthonormal columns and
(3.3) Σ = diag{σ1, σ2, . . . , σr}
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is a diagonal r× r matrix. The diagonal entries of Σ are the nonzero singular
values of B. These entries are assumed to be positive and sorted to satisfy
(3.4) σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Theorem 3.1. Assume that B ∈ B. In this case the matrices U and V
satisfy the following conditions:

a) If B ∈ X then V T X̂ = 0.
b) If B ∈ Y then Ŷ TU = 0.
c) If B ∈ Z then Ŷ TU = 0 and V T X̂ = 0.

Proof. Assume first that B ∈ X, which means that

(3.5) UΣV T X̂ = O.

Let wj ∈ Rr denote the jth column of the matrix V T X̂. Then (3.5) implies
that
(3.6) UΣwj = o for j = 1, . . . , p.
Therefore, since UΣ is an m× r matrix that has full column rank, the linear
system (3.6) has a unique solution wj = o. This proves the first claim. The
other claims are proved in similar ways. �

An equivalent way to write (3.2) is

(3.7) B =
r∑
j=1

σjujv
T
j

where uj and vj denote the jth columns of U and V , respectively. Let k be
a positive integer that is smaller than r, and let the matrices Uk ∈ Rm×k and
Vk ∈ Rn×k be composed from the first k columns of U and V , respectively.
Similarly, Σk = diag{σ1, σ2, . . . , σk} denote the related k× k diagonal matrix.
Then the matrix

(3.8) Tk(B) = UkΣkV
T
k =

k∑
j=1

σjujv
T
j

is called a rank-k truncated SVD of B. The importance of this matrix lies in
the following observations. As before ‖ · ‖ denote a unitarily invariant norm
on Rm×n, A is some matrix in Rm×n, and Tk(A) denotes a rank-k truncated
SVD of A. Then Tk(A) solves the least norm problem

(3.9)
minimize f(H) = ‖A−H‖
subject to H ∈ Rm×n and rank(H) ≤ k.

This is the well known Eckart-Young-Mirsky theorem [14, 26]. For recent
discussion of this observation see [12]. The next theorem sharpens this result
by forcing A and H to stay in B.
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Theorem 3.2. Assume that B ∈ B. In this case Tk(B) ∈ B. Consequently
Tk(B) solves the least norm problem

(3.10)
minimize f(H) = ‖B −H‖
subject to H ∈ B and rank(H) ≤ k.

Proof. It is sufficient to show that Tk(B) ∈ B. Assume first that B ∈
X. Then Theorem 3.1 says that V T X̂ = O, which implies V T

k X̂ = O and
Tk(B)X̂ = O. That is, Tk(B) ∈ X. Similar arguments show that B ∈ Y
implies Tk(B) ∈ Y, and that B ∈ Z implies Tk(B) ∈ Z. �

Stronger results are obtained when using the Frobenius matrix norm. In this
case A can be any matrix in Rm×n.

Theorem 3.3. Let A,B, and B̂ be as in Lemma 2.5. Then the matrix Tk(B̂)
solves the least norm problem

(3.11)
minimize f(H) = ‖A−H‖2F
subject to H ∈ B and rank(H) ≤ k,

which leads to the following conclusions:
a) The matrix Tk(AX̃X̃T ) solves the problem

(3.12)
minimize f(H) = ‖A−H‖2F
subject to H ∈ X and rank(H) ≤ k.

b) The matrix Tk(Ỹ Ỹ TA) solves the problem

(3.13)
minimize f(H) = ‖A−H‖2F
subject to H ∈ Y and rank(H) ≤ k.

c) The matrix Tk(Ỹ Ỹ TAX̃X̃T ) solves the problem

(3.14)
minimize f(H) = ‖A−H‖2F
subject to H ∈ Z and rank(H) ≤ k.

Proof. From Corollary 2.6 we see that problem (3.11) can be replaced with
problem (3.10), using B̂ instead of B. �

4. SYMMETRIC MATRICES OVER A SUBSPACE

In this section we turn to consider matrix approximations over the subspace
S, which is defined in (1.4). As before, there is no loss of generality in replacing
X with an n × p orthonormal matrix, X̂, such that Range(X̂) = Range(X).
This convention enables us to present S in the form:
(4.1) S = {S

∣∣S ∈ Sn and SX̂ = 0},
where Sn denotes the set of all real symmetric matrices of order n. That is:
(4.2) Sn = {S

∣∣S ∈ Rn×n and S = ST }.
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Let the n × (n − p) matrix X̃ be obtained from X̂ as in Section 2, satisfying
(2.4)–(2.7). Then, as we have seen, S has equivalent presentation in the form

(4.3) S = {X̃RX̃T
∣∣R ∈ Sn−p}.

Moreover, following the proofs of Theorem 2.4 and Lemma 2.5 we obtain the
following results.

Theorem 4.1. Let S be some matrix in Sn and consider the problem

(4.4)
minimize f(H) = ‖S −H‖2F
subject to H ∈ S.

Then the matrix

(4.5) Ŝ = X̃X̃TSX̃X̃T = (I − X̂X̂T )S(I − X̂X̂T )

solves this problem. In other words, Ŝ is the orthogonal projection of S onto S.

Corollary 4.2. The matrix S − Ŝ is orthogonal to any matrix H ∈ S.
That is,

(4.6) 〈S − Ŝ,H〉 = 0 ∀H ∈ S.

Consequently the equality

(4.7) ‖S −H‖2F = ‖S − Ŝ‖2F + ‖Ŝ −H‖2F
holds for any matrix H ∈ S.

The last equality enables us to compute low-rank approximations over S.
Following the proofs of Theorems 3.1 and 3.2 we obtain analogous results for
S.

Theorem 4.3. Let S and Ŝ be as above, and let Tk(Ŝ) be a rank-k truncated
SVD of Ŝ. Then Tk(Ŝ) ∈ S and this matrix solves the least norm problem

(4.8)
minimize f(H) = ‖S −H‖2F
subject to H ∈ S and rank(H) ≤ k.

The results of this section can be extended by replacing S with an arbitrary
matrix A ∈ Rn×n. In this case problem (4.4) takes the form

(4.9)
minimize f(H) = ‖A−H‖2F
subject to H ∈ S,

where A is a given matrix in Rn×n. The solution of the last problem is based
on the following well known observations. Recall that A has a unique cartesian
decomposition of the form A = S+T where S = (A+AT )/2 is symmetric and
T = (A−AT )/2 is skew-symmetric. It is also easy to verify that the equality

(4.10) ‖S + T‖2F = ‖S‖2F + ‖T‖2F
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holds for any sum of a symmetric matrix, S, plus a skew-symmetric matrix,
T . Hence for any symmetric matrix, H ∈ Sn, we have the equality
(4.11) ‖A−H‖2F = ‖S −H + T‖2F = ‖S −H‖2F + ‖T‖2F .
Therefore a solution for (4.4) provides a solution for (4.9).

5. LOW-RANK POSITIVE APPROXIMANTS

In this section we derive explicit solutions for problems (1.9) and (1.10).
We start by introducing the tools for solving these problems. Let Ŝ ∈ Sn be a
given symmetric matrix, and let r denote its rank. Then Ŝ has a “compact”
spectral decomposition of the form
(5.1) Ŝ = V DV T ,

where V ∈ Rn×r has orthonormal columns, and
D = diag{λ1, . . . , λr}

is a diagonal matrix. The diagonal entries of D are the non-zero eigenvalues of
Ŝ. It is assumed for simplicity that these eigenvalues are sorted in decreasing
order. That is,
(5.2) λ1 ≥ λ2 ≥ · · · ≥ λr.
In addition to r we use a non-negative integer, `, that counts the number of
positive eigenvalues of Ŝ. The definition of ` implies that 0 ≤ ` ≤ r, and if
1 ≤ ` < r then the non-zero eigenvalues satisfy
(5.3) λj > 0 for j = 1, . . . , ` and λj < 0 for j = `+ 1, . . . , r.
Moreover, if 1 < ` < r then (5.2) and (5.3) imply
(5.4) λ1 ≥ · · · ≥ λ` > 0 > λ`+1 ≥ · · · ≥ λr.
Recall also that (5.1) can be rewritten in the form

(5.5) Ŝ =
r∑
j=1

λjvjv
T
j ,

where v1, . . . ,vr, are the columns of V . These notations enable us to split
between the “positive” part of Ŝ and its “negative” part. Let the matrix

(5.6) P (Ŝ) =
∑̀
i=1

λiviv
T
i

denote the positive definite part of Ŝ, and let the matrix

(5.7) N(Ŝ) =
r∑

j=`+1
λjvjv

T
j

denote its negative definite part. Then, clearly,
(5.8) Ŝ = P (Ŝ) +N(Ŝ).
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This decomposition is sometimes called the Jordan decomposition of Ŝ. (If
` = 0 then P (Ŝ) = O and N(Ŝ) = Ŝ. Similarly, if ` = r then P (Ŝ) = Ŝ and
N(Ŝ) = O.) Another useful matrix operator is

(5.9) Pk(Ŝ) =
ν∑
i=1

λiviv
T
i

where k is a positive integer and ν = min{k, `}. (If ` = 0 then Pk(Ŝ) = O.)
Note also that

(5.10) Pk(Ŝ) = Tk(P (Ŝ))

where, as before, Tk(·) is the rank-k truncated SVD operator. The importance
of P (Ŝ) and Pk(Ŝ) emerges from the following observations. As before, ‖ · ‖
denotes a unitarily invariant norm on Rn×n, and H ≥ 0 means that H is a
symmetric positive semidefinite matrix.

Theorem 5.1. Let Ŝ be some matrix in Sn. Then P (Ŝ) solves the problem

(5.11)
minimize ρ(H) = ‖Ŝ −H‖
subject to H ≥ 0.

Theorem 5.2. Let Ŝ be some matrix in Sn. Then Pk(Ŝ) solves the problem

(5.12)
minimize ρ(H) = ‖Ŝ −H‖
subject to H ≥ 0 and rank(H) ≤ k.

A matrix that solves (5.11) is called “positive approximant”, e.g., [7,
13, 19, 21, 22, 28]. The current interest in this problem was initiated by
Halmos’ paper [19], which considers the solution of (5.11) in the spectral norm.
Rogers and Ward [28] consider the Schatten p-norm, Ando [2] considers the
trace norm, and Higham [21] solves (5.11) in the Frobenius norm. Later the
solution was extended to any unitarily invariant norm by Bhatia and Kittaneh
[5]. See [4, p. 277] and [13] for alternative proofs. Several results on this
topic were obtained in the context of linear operators on a Hilbert space, e.g.,
[4, 5, 7, 19, 28]. The term “low-rank positive approximants” refers to
matrices that solve (5.12). The last problem was first solved by Mathar [25]
for Schatten-p norms, and recently by Dax [13] for every unitarily invariant
norm. The next assertion enables us to apply these results for solving (1.9)
and (1.10).

Theorem 5.3. Let the matrix Ŝ ∈ Sn have a compact spectral decomposition
of the form (5.1). If Ŝ ∈ S then

(5.13) V T X̂ = 0.

In other words, let v be an eigenvector of Ŝ that corresponds to a non-zero
eigenvalue, then vT X̂ = o.
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Proof. Since Ŝ ∈ X we have the equality

(5.14) ŜX̂ = V DV T X̂ = O.

Let wj , j = 1, . . . , p, denote the jth column of the r × p matrix W = V T X̂.
Then an equivalent way to write (5.14) is

(5.15) V Dwj = o for j = 1, . . . , p.

Therefore, since the matrix VD has full column rank,

�(5.16) wj = o for j = 1, . . . , p.

Theorem 5.3 allows the use of Theorems 5.1 and 5.2 on S. This gives the
following stronger results.

Theorem 5.4. If Ŝ ∈ S then P (Ŝ) ∈ S+, where S+ is defined in (1.7).
Consequently P (Ŝ) solves the least norm problem

(5.17)
minimize ρ(H) = ‖Ŝ −H‖
subject to H ∈ S+.

�

Theorem 5.5. If Ŝ ∈ S then Pk(Ŝ) ∈ S+. Consequently Pk(Ŝ) solves the
least norm problem

(5.18)
minimize ρ(H) = ‖Ŝ −H‖
subject to H ∈ S+ and rank(H) ≤ k.

When using the Frobenius norm it is possible to extend these results to any
matrix A ∈ Rn×n.

Theorem 5.6. Let A be some matrix in Rn×n. Define S = (A+AT )/2 and
let Ŝ be obtained from S by the rule (4.5). Then P (Ŝ) solves the problem

(5.19)
minimize f(H) = ‖A−H‖2F
subject to H ∈ S+,

while Pk(Ŝ) solves the problem

(5.20)
minimize f(H) = ‖A−H‖2F
subject to H ∈ S+ and rank(H) ≤ k.

Proof. The proof is concluded by combining Theorems 5.4 and 5.5 with
equalities (4.7) and (4.11). �
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6. POLAR CONES AND POLAR DECOMPOSITIONS

Another feature that distinguishes S is that the subsets S+ and S− constitute
a polar decomposition of S. To clarify this statement we give a brief overview
of the necessary background.

Let H be a real Hilbert space with a scalar product, 〈u,v〉, and related
norm ‖u‖ = (〈u,u〉)1/2. Recall that a subset K of H is called “convex cone”
if it has the following property: Let u and v be two points in K and let α and
β be two nonnegative scalars. Then the point αu + βv belongs to K. Given
a convex cone, K, the set
(6.1) K∗ = {u

∣∣u ∈ H and 〈u,v〉 ≤ 0 ∀v ∈ K}
is called the polar cone of K. It is well known that K∗ is a closed convex cone,
and that (K∗)∗ is the closure of K, e.g., [3]. Thus, if K is a closed convex
cone then (K∗)∗ = K. An important feature that characterizes polar cones
is Moreau’s Polar Decomposition [27]: Let K be a closed convex cone in
H and let K∗ be its polar cone. Then any vector w ∈ H has a unique polar
decomposition of the form
(6.2) w = u + v, u ∈ K, v ∈ K∗, and 〈u,v〉 = 0.
Moreover, u is the projection of w onto K, and v is the projection of w onto
K∗. (The term “projection” means that these vectors solve the related least
norm problems.) The above relations are often summarized by saying that K
and K∗ constitute a polar decomposition on H.

Below we will show that (S+)∗ = S− and (S−)∗ = S+. For this purpose we
prove the following lemma.

Lemma 6.1. Let H,K and K∗ be as above, and let the convex cone K̃ be
contained in K∗. That is, 〈u,v〉 ≤ 0 whenever u ∈ K and v ∈ K̃. If any
vector w ∈ H satisfies
(6.3) w = u + v, u ∈ K, v ∈ K̃, and 〈u,v〉 = 0,
then K̃ = K∗.

Proof. The proof is by contradiction. Assume for a moment the existence
of a vector w ∈ K∗ such that w /∈ K̃. In this case w satisfies (6.3) with
u 6= 0. This implies 〈u,w〉 = ‖u‖2 > 0, which contradicts the assumption
that w ∈ K∗. �

Let us return now to consider the sets S+ and S−. It is easy to verify that
these sets are convex cones in S. Moreover, as we now show, these cones con-
stitute a polar decomposition of S. The tools for proving this observation are
the matrix operators P (Ŝ) and N(Ŝ) which were introduced in (5.6) and (5.7).

Theorem 6.2. Every matrix Ŝ ∈ S has a unique polar decomposition of the
form:
(6.4) Ŝ = P (Ŝ) +N(Ŝ), P (Ŝ) ∈ S+, N(Ŝ) ∈ S−
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and

(6.5) 〈P (Ŝ), N(Ŝ)〉 = 0.

Furthermore, S− is the polar cone of S+ and S+ is the polar cone of S−.

Proof. We have already seen that (6.4) holds. The proof of (6.5) is based
on the following equalities:

〈P (Ŝ), N(Ŝ)〉 =
〈∑̀
i=1

λiviv
T
i ,

r∑
j=`+1

λjvjv
T
j

〉

=
∑̀
i=1

r∑
j=`+1

〈λivivTi , λjvjv
T
j 〉

=
∑̀
i=1

r∑
j=`+1

λiλj(vTi vj)2 = 0,(6.6)

where the last equality holds since vTi vj = 0 whenever λi 6= λj .
Next we show that S− is contained in (S+)∗, and that S+ is contained in

(S−)∗. Let H+ be any matrix in S+, and let H− be any matrix in S−. Then
it is sufficient to show that

(6.7) 〈H+, H−〉 ≤ 0.

Let η1, . . . , ηt, denote the nonzero eigenvalues of H−, and let h1, . . . ,ht, denote
the corresponding eigenvectors of H−. That is:

(6.8) H− =
t∑

j=1
ηjhjh

T
j

where

(6.9) ηj < 0 for j = 1, . . . , t.

From this presentation we see that:

〈H+, H−〉 =〈H+,
t∑

j=1
ηjhjh

T
j 〉

=
t∑

j=1
ηj〈H+,hjh

T
j 〉 =

t∑
j=1

ηjh
T
j H+hj ≤ 0,(6.10)

where the last inequality is concluded from (6.9) and the fact that H+ is a
positive semidefinite matrix. Now Lemma 6.1 implies that S− is the polar
cone of S+, and that S+ is the polar cone of S−. �
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7. PRINCIPAL COMPONENT ANALYSIS (PCA) AND THE NEAREST RANK-k
CENTERED MATRIX

Let A ∈ Rm×n, m ≥ n, be a given data matrix. In this section we derive
new observations about the principal component analysis (PCA) of A. The
first step in constructing the PCA is to “center” the columns of A. Hence we
shall start by explaining this concept and showing how to compute a rank-k
centered matrix that is nearest to A.

A matrixB ∈ Rm×n is called row-centered ifBê = o where ê = (1, . . . , 1)T
∈ Rn. Similarly B is called column-centered if ẽTB = o where ẽ =
(1, 1, . . . , 1)T ∈ Rm. If B satisfies both Bê = o and ẽTB = 0 then it is called
doubly-centered. Observe that the corresponding canonical subspaces have
the following forms.

(7.1) X = {B |B ∈ Rm×n and Bê = o},

(7.2) Y = {B |B ∈ Rm×n and ẽTB = o},

(7.3) Z = {B |B ∈ Rm×n, Bê = o and ẽTB = o}.

Now from Theorem 3.1 we obtain the following somewhat surprising results.

Theorem 7.1. Let the matrix B ∈ Rm×n have the compact SVD (3.2)–(3.4).
a) If B ∈ X then V T ê = o. That is, the right singular vectors are cen-

tered.
b) If B ∈ Y then ẽTU = o. That is, the left singular vectors are centered.
c) If B ∈ Z then ẽTU = o and V T ê = o. In other words, in this case

both the left singular vectors and the right singular are centered.

The centering of a matrix, or vector is done by applying the following ma-
trices.

(7.4) C̃ = I − ẽẽT /m ∈ Rm×m and Ĉ = I − êêT /n.

With these notations at hand it is easy to verify that the matrix C̃A is column-
centered. That is, the mean of each column equals zero. Similarly, the ma-
trix AĈ is row-centered and the mean of each row equals zero. Now from
Theorems 2.2 to 2.4, Lemma 2.5, and Corollary 2.6 we obtain the following
conclusions.

Theorem 7.2. The matrix AĈ is an orthogonal projection of A on X. The
matrix C̃A is an orthogonal projection of A on Y. The matrix C̃AĈ is an
orthogonal projection of A on Z. Moreover, let B be some matrix in Y, then
equality (2.26) gives

(7.5) ‖A−B‖2F = ‖A− C̃A‖2F + ‖C̃A−B‖2F .

(Similar equalities hold in X and Z.)
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The norm equalities that we obtained enable us to derive the following
conclusions.

Theorem 7.3 (The nearest rank-k centered matrix). Let Tk(B) denote
the truncated SVD operator (3.8).

a) The matrix Tk(AĈ) solves (3.12) and the right singular vectors of this
matrix are centered.

b) The matrix Tk(C̃A) solves (3.13) and the left singular vectors of this
matrix are centered.

c) The matrix Tk(C̃AĈ) solves (3.14) and the singular vectors of this
matrix are centered.

Let us turn now to inspect the effect of these results on the PCA of A. For
detailed description of the PCA and its properties, see [1] and the references
therein. As noted in [1], usually the data matrix, A, is pre-processed before the
analysis. This is done by centering the columns of A. That is, A is replaced
by C̃A. Then the SVD of C̃A is computed. In other words, the PCA of A is
the SVD of C̃A. Now Theorems 7.1 to 7.3 lead to the following conclusions.

Theorem 7.4. The matrix C̃A is the orthogonal projection of A on the
subspace

(7.6) X = {B |B ∈ Rm×n and ẽTB = o}.

Moreover, let r denote the rank of C̃A. Then for each k, k = 1, . . . , r, the
matrix Tk(C̃A) solves the problem

(7.7)
minimize f(B) = ‖A−B‖F
subject to B ∈ X and rank(B) ≤ k,

and the left singular vectors of Tk(C̃A) are centered.

The last theorem brings two innovations about the PCA. It is well known
that Tk(C̃A) is a rank-k matrix that is nearest to C̃A in any unitarily invariant
norm. The results of Theorem 7.4 extend this observation in the following
way. Here Tk(C̃A) is nearest to A when using the Frobenius matrix norm.
The second innovation is the fact that the left singular vectors of the matrices
Tk(C̃A) are centered.

Another way to carry out PCA is called covariance PCA. In this case one
computes the SVD of the matrix C̃A/

√
m (or C̃A/

√
m− 1). The name comes

from the fact that the matrix (C̃A/
√
m)T (C̃A/

√
m) is a covariance matrix.

Note that Theorem 7.4 is easily modified to include this case.
A third way to compute PCA is called correlation PCA. In this version

the columns of the centered matrix C̃A are normalized to have unit length.
Let the columns of C̃A be denoted as cj , j = 1, . . . , n, and let the diagonal
matrix

D = diag{d1, . . . , dn}
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be defined by the equalities dj = ‖cj‖2, j = 1, . . . , n. Then here one com-
putes the SVD of the matrix C̃AD−1. The name comes from the fact that
(C̃AD−1)T (C̃AD−1) is a correlation matrix. As before, since C̃AD−1 is a
column-centered matrix, the left singular vectors of this matrix are also cen-
tered.

8. EUCLIDEAN DISTANCE MATRICES: THE NEAREST RANK-k SOURCE MATRIX

In this section we briefly describe an application that arises in Euclidean
Distance (ED) matrices. A matrix A = (aij) ∈ Rn×n is said to be a k-
dimensional Euclidean distance (ED) matrix if there exist n points in Rk, say
x1,x2, . . . ,xn, such that
(8.1) aij = ‖xi − xj‖22, i = 1, . . . , n, j = 1, . . . , n.

Let X = [x1, . . . ,xn] ∈ Rk×n denote the related positions matrix, and let
the column vector g ∈ Rn be obtained from the diagonal entries of the matrix
XTX. That is,

(8.2) g = (‖x1‖22, . . . , ‖xn‖22)T .
Let the matrix operator G(X) be defined as

(8.3) G(X) = geT + egT − 2XTX,

where
e = (1, 1, . . . , 1)T ∈ Rn.

Then (8.1) can be rewritten as
(8.4) A = G(X).

Note that for any orthonormal matrix Q ∈ Rk×k, the matrices X and QX
generate the same ED matrix, and ‖X‖F = ‖QX‖F . The Frobenius norm of
the positions matrix can be reduced by considering the least squares problem

(8.5)
minimize η(u) =

n∑
j=1
‖xj − u‖22

subject to u ∈ Rn,

which has a unique minimizer at the centroid point
û = (x1 + · · ·+ xn)/n.

The replacement of xj with xj − û is carried out by introducing the centering
matrix
(8.6) C = I − eeT /n,

which shifts the origin of Rk to the centroid point. The matrix XC is row-
centered and ‖XC‖2F ≤ ‖X‖2F . Furthermore, since shifting the origin does
not change Euclidean distances, the matrices X and XC generate the same
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ED matrix. Hence there is no loss of generality in assuming that the position
matrix is row-centered. That is,

(8.7) Xe = o and XC = X.

Note also that any other matrix, X̂, that satisfies X̂T X̂ = XTX generates the
same ED matrix as X.

The use of ED matrices occurs in various applications. One example comes
from multidimensional scaling problems in psychometrics and statistics. Here
the matrix entries represent similarities (or dissimilarities) between objects
and we want to produce geometric representation of these objects, e.g., [6,
9]. A second example comes from computational chemistry, in which it is
desired to determine the structure of a molecule (“molecule conformation”)
from information about interatomic distances, e.g., [8, 10, 11, 17, 18]. Other
important applications arise in the fields of sensor network localization and
distance geometry, e.g., [11, 23, 24]. In these applications the ED matrix, A,
is obtained from empirical observations, but the position matrix is not known.
Hence it is desired to compute a position matrix, X, that “fits” the observed
ED matrix. Note also that in many cases k is known in advance.

If A is an “exact” k-dimensional ED matrix then X can be obtained in the
following way. From (8.3) we see that:

(8.8) C(−A/2)C = (XC)T (XC),

which means that the symmetric matrix:

(8.9) S = C(−A/2)C

is positive semidefinite, and rank(S) ≤ k. Consequently it is possible to com-
pute a square root of S, say X, such that:

(8.10) S = XTX,

X ∈ Rk×n, and X = XC. That is, X is a centered position matrix of A.
The properties of S can be summarized by saying that it is the source matrix

of A. More precisely, a matrix S that satisfies:

(8.11) S = ST , S ≥ 0, S = CSC, and rank(S) ≤ k,

is called a rank-k source matrix. As we have seen, any matrix of this kind,
S, can be used to generate a k×n centered positions matrix, X, and a related
ED matrix, A = G(X), such that:

(8.12) C(−A/2)C = S = XTX.

Recall, however, that in practice the entries of A are obtained from empirical
observations, such as physical measurements. Consequently these entries may
contain some error, and A may differ from an “exact” ED matrix. In this
case the matrix C(−A/2)C may fail to be a rank-k source matrix, and the
recovering of X needs some amendments.
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The problem that we have to solve is, therefore, the following. Given an
erroneous ED matrix, A, compute a positions matrix, X, that “fits” A in a
“reasonable” way. Usually the solution process starts by replacing A with
the nearest predistance matrix, Â. Recall that a predistance matrix is a
hollow symmetric matrix with nonnegative entries. The term “hollow” refers
to matrices with zero diagonal entries. The converting of A into a predistance
matrix starts by setting to zero all the negative entries and all the diagonal
entries. Then A is replaced by (AT + A)/2. Now it is easy to verify that the
resulting predistance matrix, Â, is the nearest to A with respect to Frobenius
norm. Yet it is still possible that Â is not an ED matrix, which means that
the matrix C(−Â/2)C is not a rank-k source matrix.

A common way to compute a positions matrix X that “fits” Â is by solving
the problem

(8.13)
minimize F (X) = ‖Â−G(X)‖2F
subject to X ∈ Rk×n.

The last problem has no explicit solution, and usually it is solved by applying
some iterative method, e.g., [8, 17, 24]. In this section we propose a different
approach. Let S be a rank-k source matrix that is nearest to C(−Â/2)C with
respect to Frobenius norm. Then X is defined to be the square roof of S. That
is, a matrix that satisfies XTX = S. The derivation of S and the motivation
behind the proposed solution are explained below.

Let S ∈ Sn be a given symmetric matrix. Than it is easy to verify that the
following three equalities, S = CSC, Se = o, and eTS = oT , are equivalent
in the sense that one equality implies the others. These relations show that
the subspace

Sc = {S |S ∈ Sn and S = CSC}

equals the canonical subspace

Se = {S |S ∈ Sn and Se = o}.

Note also that the matrix C(−Â/2)C is the orthogonal projection of −Â/2
onto Se. Similarly, using the results of Section 5 with S = Se shows that
Pk(C(−Â/2)C) is a rank-k source matrix which is nearest to C(−Â/2)C with
regards to any unitarily invariant norm. Moreover, when using the Frobenius
norm we obtain that Pk(C(−Â/2)C) is a rank-k source matrix that is nearest
to −Â/2.

The motivation behind the proposed solution is clarified by considering the
following two cases. If Â is an “exact” ED matrix, then the nearest rank-k
source matrix is C(−Â/2)C, and the related positions matrix, X ∈ Rk×n, is a
square root of this matrix. That is:

(8.14) C(−Â/2)C = XTX.
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Otherwise, when Â is not an “exact” ED matrix, the nearest rank-k source
matrix is given by Pk(C(−Â)C), and the related positions matrix, X, is defined
as the square root of this matrix. That is:

(8.15) Pk(C(−Â/2)C) = XTX.

Similar semidefinite programming problems were considered in some earlier
works, e.g., [17, 20, 25], but these methods compute the positions matrix, X,
in entirely different ways. The majority of the former methods compute X
by solving (8.13) via an iterative method. In contrast, our method computes
X by using a closed form solution. Recall that least squares solutions are
sensitive to large errors in the data. Hence the fact that our solution is not
aimed at solving (8.13) does not necessarily mean that we have an “inferior”
solution.

9. CONCLUDING REMARKS

In this paper we study four types of canonical subspaces. The first one, X,
contains m × n matrices whose rows belong to a certain vector space in Rn.
The second type, Y, contains all the m × n matrices whose columns belong
to a certain vector space in Rm. The third type, Z, contains matrices that
satisfy both conditions, while the fourth type, S, is a symmetric version of
X. Equipping the subspaces with orthonormal bases enables the derivation of
orthogonal projections on these subspaces. Let A be a given matrix and let Â
denote the orthogonal projection of A on one of these subspaces. That is, Â
is nearest to A with regard to Frobenius norm. The subspaces X and Y have
the unique property that Â is also nearest to A with respect to every other
unitarily invariant norm. Yet, as we have seen, orthogonal projections on Z
and S don’t share this feature.

The ability to obtain low-rank approximations of a matrix A ∈ Rm×n on
canonical subspaces is based on three key observations. The first is an explicit
expression for the orthogonal projection of A onto the canonical subspace.
The second observation is about the singular vectors of a matrix B that be-
longs to a certain canonical subspace. Third, the observation that a low-rank
approximation of B belongs to the same canonical subspace as B. It is the
combination of these three features that enables us to derive the desired low-
rank approximations.

The derivation of rank-k positive approximants is based on the matrix op-
erator Pk(·). Let S be some matrix in Sn and let Ŝ denote the orthogonal
projection of S onto S. Then, as we have seen, Pk(Ŝ) belongs to S, and Pk(Ŝ)
is a rank-k positive approximant of Ŝ with regard to every unitarily invariant
norm. Moreover, when using the Frobenius norm we obtain that Pk(Ŝ) is a
rank-k positive approximant of S on the subspace S.

The study of symmetric canonical subspaces reveals a rich geometry which
resembles that of Sn. The computation of positive approximants in Sn is closely
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related to orthogonal projections on the cone of positive semidefinite matrices
in Sn. Similarly, the computation of positive approximants in S is equiva-
lent to orthogonal projections on the cone of positive semidefinite matrices in
S. The picture is completed by establishing the related polar decomposition
on S.

The applications described in the last sections illustrate the usefulness of
the new results. Let A be a given data matrix. The first example derives
explicit expression for a rank-k centered matrix that is nearest to A. The
properties of this matrix illuminate the PCA of A in a new light.

The second example comes from the field of Euclidean distance matrices.
The fact that we have an explicit formula for Pk(Ŝ) enables us to derive an
explicit formula for the nearest source matrix. This provides an effective way
for calculating the positions matrix of an erroneous Euclidean distance matrix.
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