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Abstract. An elliptic one-dimensional second order boundary value problem
involving discontinuous coefficients, with or without transmission conditions, is
considered. For the former case by a direct sum spaces method we show that the
eigenvalues are real, geometrically simple and the eigenfunctions are orthogonal.

Then the eigenpairs are computed numerically by a local linear finite ele-
ment method (FEM ) and by some global spectral collocation methods. The
spectral collocation is based on Chebyshev polynomials (ChC ) for problems on
bounded intervals respectively on Fourier system (FsC ) for periodic problems.
The numerical stability in computing eigenvalues is investigated by estimating
their (relative) drift with respect to the order of approximation. The accuracy
in computing the eigenvectors is addressed by estimating their departure from
orthogonality as well as by the asymptotic order of convergence. The discon-
tinuity of coefficients in the problems at hand reduces the exponential order
of convergence, usual for any well designed spectral algorithm, to an algebraic
one. As expected, the accuracy of ChC outcomes overpasses by far that of FEM
outcomes.

1. INTRODUCTION

The aim of this paper is twofold. We investigate analytically as well as
numerically an elliptic one-dimensional second order eigenvalue problem with
interior transmission conditions. The problem is a Dirichlet one, self-adjoint,
involving a discontinuous coefficient. Thus we first show that eigenvalues are
real and geometrically simple and the eigenvectors are orthogonal.

Then, using the FEM with linear test and trial bases (the so called lin-
ear hat functions), we find out the whole spectrum of the problem i.e. the
set of all eigenpairs (eigenvalues and eigenvectors). The method is local and
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produces some generalised eigenvalue problems (GEP) containing pencils of
sparse (tridiagonal) and possibly symmetric matrices. We also investigate the
accuracy of numerical eigenpairs. The accuracy of the first (smallest) eigen-
values is estimated by computing their relative drift with respect to the order
of approximation as well as with respect to the physical parameter involved
in the definition of transmission conditions. As we could not find in litera-
ture numerical result for the problem at hand, we have tried to back them by
some results obtained using a higher order method. Thus we use a colloca-
tion method based in Chebyshev polynomials. This is a very efficient global
method which works equally well when the transmission conditions are not
taken into account. In order to show robustness of spectral collocation, we
solve an additional periodic SL problem with divergence coefficient exhibiting
two discontinuities. This time periodicity requires a spectral collocation based
on classical Fourier system (FsC ).

Whenever the coefficient in the divergence form of the problem is continu-
ous, the spectral method fairly works, i.e., the eigenvalues are obtained close
to the machine precision (32 digits) and the convergence in computing eigen-
vectors is super-geometric. Due to the discontinuity of divergence coefficient,
this convergence reduces to an algebraic one.

Actually we observe that our numerical results are in accordance with the
theoretical (analytic) ones. Moreover, we try to make them more precise, for
instance, to observe to what extent the discontinuity of coefficients influences
the smoothness of eigenmodes.

Differential equations of the elliptic type involving discontinuous coefficients
arise in many fields of science and engineering (see for instance [6], [10], [13],
[21] and [22] to quote but a few). For example, they model the dependence
of the electrostatic potential on the electric charge in a conductor. They also
model static deformation in elastic solids. The coefficients appearing in the
equations are material parameters. Real materials are often composite and
the material parameters then exhibit jumps across internal surfaces. These
surfaces are often called interfaces. When interfaces are present, solutions to
the PDEs must satisfy extra conditions, called transmission conditions. The
presence of jumps at interior interfaces can cause scattering of waves, such
as in a vibrating string made of two different types of materials. Transmis-
sion problems arise often in optics as well as various physics and electrical
engineering problems.

Studying PDEs with jumps in the coefficients are challenging and the cor-
responding numerical methods used to solve them are more complex, than in
the case of continuous coefficients (see for instance [2]). We solve in this paper
a model transmission problem in one dimension on a finite interval, imposing
Dirichlet boundary conditions at the ends of the interval, as well as a periodic
Sturm-Liouville problem involving discontinuous coefficients.

We can trace back the direct sum spaces method to the old paper of Zettl
[24] as well as to a more recent paper [9]. We are perfectly conscious that in
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spite of the fact that the divergence coefficient p (x) is discontinuous its inverse
1/p is locally integrable and thus the classical theory of existence for Sturm-
Liouville eigenproblem is applicable (see for instance the Pryce’s monograph
[20] and that of Zettl [25]). Using the above mentioned method, we want to
open another perspective for the class of problems at hand.

In [1] (see also [17]) Aydemir and Mukhtarov investigate various qualita-
tive properties of eigenvalues and corresponding eigenfunctions of a Sturm-
Liouville problem with an interior singular point. They introduce a special
Hilbert space along with a Rayleigh-Ritz formulation. We will introduce
in Section 3 a slightly more general and useful weak formulation than this
Rayleigh-Ritz formulation. However, Yserentant in [26] shows that for such
formulation the computed eigenvalues as well as the corresponding eigenvec-
tors converge to their continuous counterparts.

The organisation of the paper is as follows: In Section 2, we find out the
most important analytic results concerning the eigenvalue problem at hand.
In Section 3, we provide the weak (variational) formulation of the second order
elliptic eigenproblem with transmission conditions. In Section 4, we summarise
the simplex FEM as well as ChC for our problem. In Section 5, we provide the
extensive numerical results obtained, i.e., the set of the first six eigenvalues
and of the first six eigenvectors. We also advocate on the accuracy of our
outcomes and comment on the dependence of the spectrum on the magnitude
of jump. In addition, we solve a periodic eigenproblem with discontinuous
coefficients in Subsection 5.1 using FsC. Consequently we observe that both
spectral schemes, ChC as well as FsC, can be some serious competitors for the
well established codes devoted to the eigenvalue problems. Section 6, ends up
the paper with some conclusions and open problems.

2. EIGENVALUES AND EIGENFUNCTIONS

We consider the Sturm-Liouville (SL) equation,

(1) τ(u) := −(α(x)u′(x))′ = λu(x), x ∈ [0, 1/2) ∪ (1/2, 1],

where

α(x) :=
{

1, if 0 ≤ x ≤ 1/2,
c2, if 1/2 < x ≤ 1, c ∈ R, c 6= 0, c 6= 1.

With the differential equation (1), we consider the boundary conditions

l1(u) := u(0) = 0,(2)
l2(u) := u(1) = 0.(3)

together with the transmission conditions

t1(u) := u(1/2−)− u(1/2+) = 0,(4)
t2(u) := u′(1/2−)− c2u′(1/2+) = 0.(5)
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The Hilbert spaces L2([0, 1/2)) and L2((1/2, 1]) are the spaces of all classes of
complex-valued measurable functions f and g such that

(f, f) =
∫ 1/2

0
|f(x)|2dx <∞ and (g, g) =

∫ 1

1/2
|g(x)|2dx <∞.

Define
(6) H := L2([0, 1/2))⊕ L2((1/2, 1]),
and the inner product

(7) (f, g) =
∫ 1/2

0
f(x)g(x)dx+ c2

∫ 1

1/2
f(x)g(x)dx,

for all f, g ∈ H. Then H is a Hilbert space with respect to the inner
product (7).

Lemma 1. Let u and v be eigenfunctions of the problem (1)–(5) correspond-
ing to distinct eigenvalues λ and µ, respectively. If λ 6= µ, then u and v are
orthogonal in the Hilbert space H.

Proof. Since τ(u) = λu and τ(v) = µv, then it follows from the Lagrange
identity and Green’s formula that

(λ− µ)(u, v) = (λu, v)− (u, µv)
= (τ(u), v)− (u, τ(v))

= [u, v]1/2−

0 + c2[u, v]11/2+ .(8)

The boundary conditions (2) and (3) give [u, v](0) = [u, v](1) = 0, while
the transmission conditions yield [u, v](1/2−) = c2[u, v](1/2+). Hence (λ −
µ)(u, v) = 0; so if λ 6= µ, then (u, v) = 0. �

Theorem 2. All the eigenvalues of the problem (1)–(5) are real.
Proof. Let (λ0, u0) be any eigenpair of the problem (1)–(5). The pair

(λ0, u0) is an eigenpair of the complex-conjugate of the problem (1)–(5). Thus
(9) [u0, u0](0) = [u0, u0](1) = 0
and
(10) [u0, u0](1/2−) = c2[u0, u0](1/2+).
Putting (9) and (10) into (8), we get (λ0 − λ0)||u0||2 = 0. Hence λ0 = λ0 and
the proof is complete. �

Remark 3. Let λ0 be an eigenvalue of the problem (1)–(5) with correspond-
ing eigenfunction u0 = v0 + iw0, where v0 and w0 are real-valued functions.
Then both v0 and w0 are also eigenfunctions corresponding to the same eigen-
value λ0. Indeed, putting u0 = v0 + iw0 and λ0 in (1)–(5), we get

τ(v0) + iτ(w0) = (λ0v0) + i(λ0w0),
lj(v0) + ilj(w0) = 0 and itj(v0) + itj(w0) = 0, j = 1, 2.
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Hence both v0 and w0 are eigenfunctions corresponding to the same eigen-
value λ0.

Theorem 4. Each eigenvalue of the problem (1)–(5) is geometrically sim-
ple.

Proof. Assume that there exist two linearly independent eigenfunctions u0
and v0 for the same eigenvalue λ0. The boundary condition (2) implies that
[u0, v0](0) = 0. Thus [u0, v0](x) = 0 for all x ∈ [0, 1/2). Since u0 and v0
are solutions of (1), then there exists α1 such that u0(x) = α1v0(x) for all
x ∈ [0, 1/2). Similarly, it follows from the boundary condition (2), that there
exists α2 6= 0 such that u0(x) = α2v0(x) for all x ∈ (1/2, 1]. Hence

u0(x) =
{
α1v0(x) if x ∈ [0, 1/2),
α2v0(x) if x ∈ (1/2, 1].

(11)

Substituting (11) in the transmission conditions (4)–(5), we get

(α1 − α2)v0(1/2+) = 0,(12)
(α1 − α2)c2v0(1/2+) = 0.(13)

It follows that α1 − α2 = 0. Therefore u0 and v0 are linearly dependent on
[0, 1/2) ∪ (1/2, 1]. This completes the proof. �

Remark 5. Note that the eigenfunctions of the problem (1)–(5) can be
chosen to be real-valued. Indeed, let λ0 be an eigenvalue with the eigenfunction
u0 = v0 + iw0. By Remark 3 u0 and v0 are also eigenfunctions corresponding
to the same eigenvalue λ0. By Theorem 4, there exists a complex number α0
such that w0 = α0v0. Hence u0 = (1+iα0)v0, i.e. there is only one real-valued
eigenfunction, except for a constant factor, corresponding to each eigenvalue.
From now we can assume that all eigenfunctions of the problem (1)–(5) are
real-valued. �

Lemma 1, Theorem 2 and Remark 5 lead to

Corollary 6. Let u and v be eigenfunctions of the problem (1)–(5) cor-
responding respectively to distinct eigenvalues λ and µ. Then u and v are
orthogonal in the Hilbert space H.

3. VARIATIONAL (WEAK) FORMULATION

From the definition of coefficient α (see Section 2) there exists a positive
constant γ such that α (x) > γ > 0, i.e., the problem is elliptic. To justify the
transmission conditions, we begin with the so-called weak formulation of the
problem (1)–(3), namely:

(14)
∫ 1

0
α (x)u′ (x) v′ (x) dx = λ

∫ 1

0
uvdx.
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Such formulations for elliptic problems are the starting point for the most
modern numerical methods (see the classic texts of Brenner and Scott [7] or
Ciarlet [8]).

In order to obtain the equation (14), in the unknown u, we multiply the
equation (1) with another suitable function v, called a test function, and then
integrate over [0, 1]. Thus we simply have

(15)
∫ 1

0

(
α (x)u′ (x)

)′
v (x) dx = λ

∫ 1

0
uvdx.

The function v is chosen to satisfy the same Dirichlet boundary conditions
as u, namely:

v(0) = 0 = v(1),

so that there are no extra terms coming from the integration by parts.
Then, we split up the integral on the left hand side of (15), given that

(α (x)u′ (x))′ has a jump at x = 1/2 and get

(16) −
∫ 1/2

0

(
u′
)′
vdx−

∫ 1

1/2

(
c2u′

)′
vdx = λ

∫ 1

0
uvdx.

This allows us to have continuous functions in each integrand. We can then
integrate by parts each integral, obtaining the following:

(17) −
[
u′v
]x=1/2
x=0 −

[
c2u′v

]x=1

x=1/2
+
∫ 1

0
α (x)u′ (x) v′ (x) dx = λ

∫ 1

0
uvdx.

We can see given the boundary conditions that [u′v]x=0 and similarly [u′v]x=1

will vanish. In order to obtain the weak formulation (14), we need to impose
some conditions at the jump site x = 1/2. More exactly we must apply first
the continuity of the solution u at this site. Thus, we need to enforce the
transmission condition (4). Hence we have to impose just the transmission
condition for the first derivative (5). Thus, we obtain (14) which is the weak
formulation of the transmission eigenproblem (1)–(5). However, in this formu-
lation the coefficient α is not differentiated and the integral is well defined as
long as the test (shape) function u and the trial function v are differentiable
in some sense.

The formal variational (weak) formulation (14) now reads:
Find u ∈ H1

0 (0, 1) and λ ∈ R such that

(18)
∫ 1

0
α (x)u′ (x) v′ (x) dx = λ

∫ 1

0
uvdx, ∀ v ∈ H1

0 (0, 1) .

This weak solution u with some supplementary assumptions is also the
strong (classical) solution to (1)–(5) (see for instance the classical monographs
of Brenner and Scott [7], Ciarlet [8] or Nec̆as [18] for rigorous aspects of vari-
ational calculus in Sobolev spaces).
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4. THE SIMPLEX FEM AND ChC

Let now P1 be the space of polynomials of degree at most 1. We define the
space of piecewise linear polynomial functions

(19) X1 :=
{
u ∈ H1

0 (0, 1) | u ∈ P1
}
.

We will use the FEM in its simplest form, i.e., simplex where the basis for
test as well as trial functions, contains only piecewise linear functions, the so
called linear hat functions. All these functions belong to the above defined
space X1.

In order to define these functions we start by partitioning the interval [0, 1]
into N equal subintervals, where N is a positive integer called the approxima-
tion order. This gives rise toN+1 nodes of the form xj := j/N, j = 0, 1, . . . , N .
Later on, we will choose N := 2k for some integer k, so that 1/2 is a node and
the jump in the coefficient α occurs at that node. This simplifies our analysis
as we discuss more later on.

For each 1 ≤ j ≤ N − 1 we construct a hat function φj as follows. Each
φj is a hat function of height 1, which is non zero and piecewise linear on the
interval j−1

N < x < j+1
N . Thus,

(20) φj (x) :=
{

Nx− j + 1, j−1
N < x < j

N ,

−Nx+ j + 1, j
N < x < j+1

N ,

and its derivative reads

φ′j (x) =
{

N, j−1
N < x < j

N ,

−N, j
N < x < j+1

N .

We will seek a solution to our problem (16) in the form:

(21) uN (x) :=
N−1∑
j=1

ujφj (x) .

The stiffness matrix A has the entries

Ai,j =
∫ 1

0

(
α (x)φ′i (x)φ′j (x)

)
dx, i, j = 1, 2, . . . , N − 1,

and thus it is a tridiagonal one.
The mass matrix M is defined by the entries

Mi,j =
∫ 1

0
(α (x)φi (x)φj (x)) dx, i, j = 1, 2, . . . , N − 1.

This matrix is also tridiagonal and additionally symmetric. Thus, the non
zero entries in the stiffness matrix A and in the mass matrix M have the
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following numerical values:

Aj,j =


2N, 1 < j ≤ k,(
1 + c2)N, j = k,

2c2N, k < j ≤ N,

Aj,j−1 =
{
−N, 2 ≤ j ≤ k,
−Nc2, k ≤ j ≤ N,

Aj,j+1 =
{
−N, 1 ≤ j ≤ k − 1,
−Nc2, k ≤ j < N,

and
Mi,i = 2

3N , i = 1, N, Mi,i−1 = 1
6N , i = 2, N, Mi,i+1 = 1

6N , i = 1, N − 1.
We plug in the computed entries Ai,j and Mi,j to get the following sparse GEP
(22) A Ψ = λM Ψ.

Being sparse and tridiagonal, both matrices in GEP (22) can be efficiently
implemented in MATLAB using the routine diag.

The analytic results from Sect. 2 and Sect. 3 concerning the continuity of
u, i.e., u ∈ H1

0 (0, 1) enable us to use alternatively the strong ChC method in
order to solve the SL transmission problem. Thus in the finite dimensional
representation of solution u in (21) instead of linear hat functions we use
the Chebyshev polynomials (see for instance our text [12] and the seminal
paper [23]).

Thus, we have to find out the eigenpairs of the matrix
(23) AChC = −2DChC (diag (α (X)) 2DChC) ,
the vector X contains Chebyshev nodes of the second kind xk, k = 1, . . . , N
and the N dimensional vector α (X) is defined as

α (X) :=
{

1, xk ≤ 0,
c2, xk > 0.

The matrix DChC is the Chebyshev collocation differentiation matrix on the
above Chebyshev nodes (see [23] for its implementation). Actually we search
the eigenvalues of

AChC (2 : N − 1, 2 : N − 1)
as we have enforced the homogeneous Dirichlet boundary conditions. The
MATLAB code eig and another real variant of the Jacobi-Davidson method
(see our contribution [11]) are used consecutively in order to mutually confirm
the numerical values obtained. We have to mention that the matrix

AChC

is fully populated and rather non normal. Its Henrici’s number equals
9.894 186 · 10−1.

For the importance of non normality and its numerical measure provided by
Henrici’s number in context of eigenvalue problems we refer to our
contribution [12].
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5. NUMERICAL RESULTS

A banded FEM (Galerkin) discretization matrix saves us nothing over a
dense matrix in pseudospectral method if the linear algebra is to be handed
off by QZ (QR) algorithm. Its main drawback is the cost. Because it uses
iteration, rather than a finite set of steps, a precise estimate of cost is impos-
sible but experience has shown that the QZ cost is O(10N3) floating point
operations. Alternatively, we use the MATLAB built in eigs which takes
into account the sparsity of matrices in (22) and finds out the left column in
Table 1.

j λj by FEM λj by ChC
1 3.411 088 898 673 702 · 101 3.396 501 355 308 654 · 101

2 1.174 894 885 648 361 · 102 1.176 505 678 703 875 · 102

3 2.032 466 402 800 039 · 102 2.035 256 809 867 868 · 102

4 3.718 608 801 372 172 · 102 3.702 317 567 915 067 · 102

5 6.314 830 763 202 506 · 102 6.281 735 372 981 834 · 102

6 9.590 081 140 041 984 · 102 9.546 429 550 360 057 · 102

Table 1. The first six eigenvalues computed by FEM when N = 500
(left column) and by ChC with the same N (right column). In both
cases c := 4.

For a specified eigenvalue j the relative drift is defined by J. P. Boyd in [5]
with the quotient

(24) δj,rel :=
∣∣∣λN1

j − λ
N2
j

∣∣∣ / ∣∣∣λN1
j

∣∣∣ , N1 6= N2,

where N1 and N2 are two distinct orders of approximation. The relative drift
for the first 25 eigenvalues computed by FEM and by ChC is displayed in Fig. 1
panels A) and respectively B). It signifies a reasonable numerical stability of
computing eigenvalue process in FEM case and an excellent stability in case
of ChC.

Fairly interesting is also the relative drift of eigenvalues with respect to the
exact ones, i.e., when c := 1. In this case, we know that the exact eigenvalues
of (1)–(3) are (πk)2, k = 1, 2, .... The drift in this case is depicted in Fig. 2. It
is clear from panel B) of Fig. 2 that ChC computes the first few eigenvalues
close to the machine precision.

The accuracy of FEM is clearly much worse, i.e., of O(h) (see panels A) of
Fig. 1 and 2).

Moreover, using a multi-precision computing toolbox [15], our numerical
experiments show that the accuracy of ChC increases with the number of
digits in multi-precision approximation. As it is apparent from panel A) of
Fig. 2 for FEM, this does not happen.

Actually, working with 100 digits precision the first eigenvalue is computed
by FEM with an accuracy better that O(10−80).
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Fig. 1. Relative drift of the first 25 eigenvalues of pencil (22), panel
A) and of the matrix (23), panel B). In both cases the order of ap-
proximation are N1 := 500, and N2 := 380 and parameter c equals 4.
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Fig. 2. Relative drift of the first 25 eigenvalues of pencil (22), panel
A) and of the matrix (23), panel B) with respect to the exact eigen-
values, i.e., the parameter c equals 1. In both cases the order of
approximation are N1 := 500, and N2 := 380.

It is also interesting to observe the asymptotic behaviour of the computed
eigenvalues. In the Zettl’s monograph [25, p. 73], it is known that

λn

n2 →
( 2πc

1 + c

)2
, as n→∞.
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Fig. 4. The first six eigenvectors of (23), when N := 512, and c = 4.

When we try to verify this statement we get Fig. 3. This picture confirms
the Boyd’s RULE-of-THUMB for eigenvalues, i.e., for a spectral method using
N + 1 terms the lowest N/2 eigenvalues are usually accurate within a few
percent while the larger N/2 are useless (see [5], p.132).

Fortunately, but less expectantly, a fairly similar conclusion holds for the
set of eigenvalues computed by FEM.

The first six eigenmodes computed by ChC are displayed in Fig. 4. We
observe that they are continuous at the transmission point but their derivatives
are not. In order to evaluate the asymptotic order of convergence of ChC
method in computing eigenmodes, we use the fast Chebyshev transform. Thus,
we get the coefficients of Chebyshev expansion and then plot their absolute
values in a log-linear plot. The behaviour of these coefficients for the first
four vectors is depicted in Fig. 5. Using the strategy from Boyd [5] we can
imagine the so called envelope, i.e., a curve which bounds these coefficient
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Fig. 6. In a log-linear plot the departure from orthogonality of the
first eigenvector with respect to the rest of eigenvectors of (23).

from above. This indicates an algebraic convergence, i.e., the coefficients ûk

satisfy ûk ∼ k−2 for large k.
As we compute a large set of eigenfunctions, Corollary 6 from Sect. 2 pro-

vides us an excellent tool to assess the accuracy in their computing. Thus,
in order to measure the departure from orthogonality of the computed eigen-
modes in a log-linear plot, we depict the numerical values of discrete scalar
product of eigenvectors, namely∣∣∣〈ψN

1 , ψ
N
j

〉∣∣∣ , j = 2, . . . , N.
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j λj computed by FC
1 6.701 527 713 088 252 · 10−1

2 2.394 498 604 043 928 · 100

3 4.509 167 504 521 964 · 100

4 6.936 215 700 690 266 · 100

5 1.080 609 289 192 399 · 101

6 1.653 717 304 938 433 · 101

Table 2. The first six eigenvalues of periodic problem (1) with (25)
computed by FC when N = 500 and a := 5.

5.1. SL problem with discontinuous coefficients. In order to underline
the versatility of spectral collocation methods we briefly compute the eigen-
spectrum of a SL problem with discontinuous coefficients from the paper of
Babus̆ka and Osborn [2]. They consider a 2π periodic boundary value problem
attached to equation (1) when the divergence coefficient α is measurable. The
problem is factorised and a variational formulation is used. Some convergence
results and error estimates for a mixed FEM are derived. These error esti-
mates are based on the application of Sobolev spaces with variable constant
order. Unfortunately no numerical results are provided.

However, the coefficient α is defined by

α(x) :=
{

1, if π/2 ≤ x ≤ 3π/2,
a, if 0 ≤ x < π/2 or 3π/2 < x ≤ 2π, a ∈ R, a > 1.

(25)

We solve this periodic problem by Fourier collocation. It means that we have
to use for the discretization the first order Fourier collocation differentiation
matrix on the equispaced nodes

xk := (k − 1)h, h := 2π/N, k = 1, . . . , N,

(see again [23] Sect. 3.5). This differentiation matrix is now a circulant one
and thus normal. The first six eigenvalues are displayed in Table 2.

We did not find similar results in the literature in order to validate the ones
in the Table 2.

In order to evaluate the asymptotic order of convergence of FC method in
computing eigenmodes, we use the discrete FFT (fft from MATLAB). Thus,
we find out the coefficients of Fourier expansions. A fairly similar analysis
with that for ChC method shows the same order of convergence, i.e. algebraic
(see lower panels in Fig. 7).

It is worth noting at this moment that in [2] the authors solve only theoret-
ically this problem and prove that the rate of convergence in approximation
by FEM based on trigonometric polynomials is of order N−2 and this esti-
mate cannot, in general, be improved. Our numerical outcomes reported in
the lower panels of Fig. 7 confirm this statement.
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Fig. 7. First three eigenvectors (upper panel). Absolute values of the
coefficients of Fourier expansions of the first three eigenvectors of the
periodic problem (1) with coefficient (25) when a := 5, N := 500
(from left to right lower panels).

Eventually, we have to observe that the sets of numerical eigenvalues com-
puted by FEM, as well as spectral collocation methods, satisfy by far the
estimations for lower bounds provided in [14].

6. BRIEF CONCLUSIONS AND SOME OPEN PROBLEMS

On completely different analytical considerations than the classical ones,
we have proved three essential properties for the SL transmission eigenprob-
lem, namely: all the eigenvalues of the problem are real, each eigenvalue is
geometrically simple and eigenfunctions corresponding to distinct eigenvalues
are orthogonal. To solve the problem numerically we have resorted to two dis-
tinct methods. The results obtained with their help are reasonably mutually
closed. Additionally we remark that the global ChC method is by far much
more precise than FEM despite the fact that it is based on full populated
and non normal matrices compared to the sparse (even symmetric) matrices
produced by the FEM.

It is also important to underline that the global collocation method operates
without considering the transmission conditions. It is robust, efficient and easy
to extend to higher-order problems.
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The Fourier collocation worked with the same convergence order for a peri-
odic problem. Last but not least important, both spectral collocation methods
offer challenging alternatives for older codes devoted to solve various SL prob-
lems (see for instance [3], [4] and [19]). Finally, we must also note the reciprocal
confirmation of the analytical and numerical outcomes.
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