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INFINITELY HOMOCLINIC SOLUTIONS
IN DISCRETE HAMILTONIAN SYSTEMS

WITHOUT COERCIVE CONDITIONS

FATHI KHELIFI∗

Abstract. In this paper, we investigate the existence of infinitely many solutions
for the second-order self-adjoint discrete Hamiltonian system

∆ [p(n)∆u(n− 1)]− L(n)u(n) +∇W (n, u(n)) = 0, (∗)
where n ∈ Z, u ∈ RN , p, L : Z→ RN×N and W : Z× RN → R are no periodic in
n. The novelty of this paper is that L(n) is bounded in the sense that there two
constants 0 < τ1 < τ2 <∞ such that

τ1 |u|2 < (L(n)u, u) < τ2 |u|2 , ∀n ∈ Z, u ∈ RN ,
W (t, u) satisfies Ambrosetti-Rabinowitz condition and some other reasonable
hypotheses, we show that (∗) has infinitely many homoclinic solutions via the
Symmetric Mountain Pass Theorem. Recent results in the literature are gener-
alized and significantly improved.
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1. INTRODUCTION

Consider the second−order self-adjoint discrete Hamiltonian system
(1) ∆ [p(n)∆u(n− 1)]− L(n)u(n) +∇W (n, u(n)) = 0
where n ∈ Z, u ∈ RN , p, L : Z → RN×N and W : Z × RN → R is continuous
differentiable in x, the forward difference operator ∆ is defined by ∆u(n) =
u(n+ 1)−u(n). As usual, we say a solution u(n) of (1) is homoclinic (to 0) if
u(n)→ 0 as n→ ±∞. In addition, if u(n) 6= 0 then u(n) is called a nontrivial
homoclinic solution. It is clear that (1) can be written as an equivalent first
order nonlinear nonautonomous discrete Hamiltonian system
(2) ∆X(t) = J∇HX(t, u(t+ 1), z(t)),
where X(t) = (u(t), z(t))T ; z(t) is a discrete momentum variable defined by
z(t) = p(t)×∆u(t−1); H(t,X(t)) = 1

2p(t)z
2 + 1

2q(t)u
2(t)−W (t, u(t)) is called
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the Hamiltonian function, where J is the normal symplectic matrix. Moreover,
(1) is a discretization of the following second order differential equation:
(3) (p(t)u′(t))′ − L(t)u(t) +∇W (t, u(t)) = 0,
which is also equivalent to a first order nonlinear Hamiltonian system.

Variational methods for difference equations, which allow one to achieve
multiplicity results, were introduced by R.P. Agarwal, K. Perera, D. O’Regan
see [3]. Recently, such methods received considerable attention. We mention
here the works of M. Migda, J. Migda, M. Zdanowicz see [16], A. Pankov see
[18], S. Stevic see [23]. Moreover, a lot of attention has been devoted in recent
years to find periodic solutions of discrete dynamic models, for example, see
[2, 3, 4, 5, 9, 10, 11, 19], other authors studied the existence of positive solu-
tions of discrete fractional systems see [6, 12]. It is our purpose in the present
work to find other types of solutions, namely the doubly asymptotic solutions,
first discovered by Poincaré [20] in continuous Hamiltonian systems. In the
past 40 years, system (3) has bee widely investigated, see [1, 13, 17, 22, 24] and
references therein. System (3) is the special form of the Emden-Fowler equa-
tion, appearing in the study of astrophysics, gas dynamics, fluid mechanics,
relativistic mechanics, nuclear physics and chemically reacting systems, and
many well-known results concerning properties of solutions of (3) are collected
in [25]. When W (n, x) is an even function on x, there are few result on ex-
istence of infinitely many homoclinic orbits for discrete Hamiltonian systems,
because it is often very difficult to verify the last condition of the Symmetric
Mountain Pass Theorem, different from the Mountain Pass Theorem.

In this paper we show that the Palais-Smale condition is satisfied on the
unbounded domain and we use the usual Mountain Pass Theorem to prove
the existence of a homoclinic orbit of (1). Moreover, if W (n, .) is an even
function, we prove that (1) possesses an unbounded sequence of homoclinic
orbits emanating from 0 by invoking the Symmetric Mountain Pass Theorem.

For the statement of our main result, the potential W (t, x) is supposed to
satisfy the following conditions:

(P ) p(n) is symmetric and positive definite matrix for all n ∈ Z.
(L) L(n) is symmetric and positive definite matrix for all n ∈ Z and there

are two constants 0 < τ1 < τ2 <∞ such that
τ1 |x|2 < (L(n)x, x) < τ2 |x|2 , ∀n ∈ Z, x ∈ RN .

(W1) there exists a constant µ > 2 such that
0 < µW (n, x) ≤ (∇W (n, x), x), ∀n ∈ Z, x ∈ RN\{0}.

(W2) there exists some positive function a : Z→ R with:
lim
|n|→∞

a(n) = 0,(4)

such that
|∇W (n, x), x)| ≤ a(n) |x|µ−1 , ∀ (n, x) ∈ Z× Rn.
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(W3) % = sup {W (n, x) : n ∈ Z, |x| = 1} < 1
2C2

2
, where C2 is defined in (5).

Remark 1. (i) From (L), we assume that L(n) is bounded. Therefore, the
smallest eigenvalue of L(n) does not tend to ∞ as |n| → ∞, i.e., L(n) need
not satisfy the various coercive conditions in the above mentioned papers.

(ii) As mentioned above, the coercive conditions are used to establish some
compact embedding theorems to guarantee that (PS) condition holds, which
is the essential step to obtain the existence of homoclinic solutions of (1) via
Mountain Pass Theorem. In present paper, we assume that L(n) is bounded
and could not obtain some compact embedding theorem. Therefore, one diffi-
culty is to adapt some new technique to overcome this difficulty and test that
(PS) condition is verified. �

In this paper, we will prove the following Theorems.

Theorem 2. Suppose that (P ), (L), (W1), (W2) and (W3) hold. Then (1)
possesses at least one nontrivial homoclinic solution.

Theorem 3. Assume that (P ),(L), (W1), (W2) and (W3) are satisfied. More-
over, assume that W (t, x) is even in x, that is,

(W4) W (n,−x) = W (n, x) for all n ∈ Z, and x ∈ RN ,
then (1) has infinitely many nontrivial homoclinic solutions.

2. PRELIMINARIES

Let
S =

{
{u(n)}n∈Z , u(n) ∈ R, n ∈ Z

}
,

E =
{
u ∈ S;

∑
n∈Z

[(p(n+ 1)∆u(n),∆u(n)) + (L(n)u(n), u(n))] <∞
}
,

for u, v ∈ E, let

〈u, v〉 =
∑
n∈Z

[(p(n+ 1)∆u(n),∆v(n)) + (L(n)u(n), v(n))] .

Then E is a Hilbert space with the above inner product, and the corresponding
norm is:

‖u‖ =
∑
n∈Z

[(p(n+ 1)∆u(n),∆u(n)) + (L(n)u(n), u(n))] , u ∈ E.

As usual, for 1 ≤ p ≤ +∞, let

lp(Z,RN ) =
{
u ∈ S;

∑
n∈Z
|u(n)|p <∞

}
,

l∞(Z,RN ) =
{
u ∈ S; sup

n∈Z
|u(n)| <∞

}
,



-3 Infinitely homoclinic solutions 69

and their norms are defined by

‖u‖q =
(∑
n∈Z
|u(n)|q

) 1
q

, ∀u ∈ lq(Z,RN );

‖u‖∞ = sup
n∈Z
|u(n)| , ∀u ∈ l∞(Z,RN );

respectively. Obviously, E is continuously embedded into lq(Z,RN ) for 2 ≤
q ≤ +∞ , i.e., there exists Cq > 0 such that

‖u‖q ≤ Cq ‖u‖ , ∀u ∈ E.(5)
For any n1, n2 ∈ Z with n1 < n2, we let Z(n1, n2) = [n1, n2] ∩ Z, and for

function f : Z→ R and a ∈ R, we set
Z(f(n) ≥ a) = {n ∈ Z : f(n) ≥ a} , Z(f(n) ≤ a) = {n ∈ Z : f(n) ≤ a} .

Define the functional I : E → R by
I(u) = 1

2‖u‖
2 −

∑
n∈Z

W (n, u(n)).(6)

Under the conditions of Theorem 2, we have

I ′(u)v =
(7)

=
∑
n∈Z

[(p(n+ 1)∆u(n),∆v(n)) + (L(n)u(n), v(n))− (∇W (n, u(n)), v(n))]

for all u, v ∈ E. Moreover, I is a continuously Fréchet- differentiable functional
defined on E, i.e., I ∈ C1(E,R).

Observe that for all u, v ∈ E

∑
n∈Z

[(p(n+ 1)∆u(n),∆v(n)) + (L(n)u(n), v(n))− (∇W (n, u(n)), v(n))] =
(8)

=
∑
n∈Z

[(−∆(p(n)∆u(n− 1)) + L(n)u(n) +∇W (n, u(n)), v(n))] .

It follows from (7) and (8) that 〈I ′(u), v〉 = 0 for all v ∈ E if only if
∆ [p(n)∆u(n− 1)]− L(n)u(n) +∇W (n, u(n)) = 0, ∀n ∈ Z.

So, the critical points of I in E are the solutions of system (1) with u(±∞) = 0.
We will obtain the critical points of I by the Mountain Pass Theorem and

the Symmetric Mountain Pass Theorem. Therefore, we state the theorems
precisely.

Lemma 4 ([21]). Let E be a real Banach space and I ∈ C1(E,R) satisfying
the Palais-Smale condition. If I satisfies the following conditions:

(i) I(0) = 0,
(ii) there exist constants ρ, β > 0 such that I/∂Bρ(0) ≥ β,
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(iii) there exist e ∈ E\Bρ(0) such that I(e) ≤ 0.
Then I possesses a critical value c ≥ β given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Lemma 5 ([21]). Let E be a real Banach space and I ∈ C1(E,R) satisfying
the Palais-Smale condition. If I is even and satisfies the following conditions:

(i) I(0) = 0,
(ii) there exist constants ρ, β > 0 such that I/∂Bρ(0) ≥ β,

(iii) For each finite dimensional Ẽ ⊂ E there is γ = γ(Ẽ) such that I(0) ≤
0 on Ẽ\ργ.

Then I possesses an unbounded sequence of critical values.

3. PROOF OF THEOREMS

For the Proof of our Theorems we need some technical Lemmas.

Lemma 6. Under the conditions of Theorem 2, ϕ′ is compact, i.e., ϕ′(uk)→
ϕ′(u) if uk ⇀ u in E, where ϕ : E → R is defined by

ϕ(u) =
∑
n∈Z

W (n, u).(9)

Proof. Assume that uk ⇀ u in E. Then there exists a constant M > 0 such
that

‖uk‖ ≤M and ‖u‖ ≤M
for k ∈ N. In addition, from (W2), for any ε > 0, we can choose T0 > 0 such
that
(10) |∇W (n, u)| ≤ ε |u|µ−1 , and |∇W (n, uk)| ≤ ε |uk|µ−1 , ∀ |n| ≥ T0.

Consequently, for k large enough, and using Young inequality we have∣∣(φ′(uk)− φ′(u)
)
v
∣∣ ≤

≤
∑
n∈Z
|∇W (n, uk(n))−∇W (n, u(n))| |v(n)|

≤
∑
|n|≤T0

|∇W (n, uk(n))−∇W (n, u(n))| |v(n)|

+
∑
|n|>T0

|∇W (n, uk(n))| |v(n)|+
∑
|n|>T0

|∇W (n, u(n))| |v(n)|

≤ ε ‖v‖∞ + ε
∑
|n|>T0

|uk(n)|µ−1 |v|+ ε
∑
|n|>T0

|u(n)|µ−1 |v|

≤ εγ∞ ‖v‖+ ε
∑
|n|>T0

(
µ−1
µ |uk(n)|µ + 1

µ |v|
µ
)

+ ε
∑
|n|>T0

(
µ−1
µ |u(n)|µ + 1

µ |v|
µ
)
≤
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≤ εγ∞ ‖v‖+ εµ−1
µ

∑
|n|>T0

(|uk|µ + |u|µ) + ε 2
µ |v|

µ .(11)

Consequently, we obtain that∥∥ϕ′(uk)− ϕ′(u)
∥∥ = sup

‖v‖=1

∣∣∣∣∣∑
Z

(∇W (n, uk(n))−∇W (n, u(n)), v(n))
∣∣∣∣∣

≤ εC∞ + 2ε (CµM)µ µ−1
µ + εCµµ

2
µ ,(12)

which yields ϕ′(uk)→ ϕ′(u) as uk ⇀ u, that is, ϕ′ is compact. �

Lemma 7. [14] Under the assumption of (W1), there exist two constants
d1 > 0, d2 > 0 such that

(i) W (n, u) ≤ d1 |u|µ for n ∈ Z and 0 < |u| < 1,
(ii) W (n, u) ≥ d2 |u|µ for n ∈ Z and |u| ≥ 1.

Lemma 8. Under the condition of Theorem 2, I satisfies the Palais-Smale
condition.

Proof. Assume that (uk)k∈N ∈ E is a sequence such that (I(uk)) is bounded
and I ′(uk)→ 0 as k →∞. Then there exists a constant C1 > 0 such that

|I(uk)| ≤ C1 and
∥∥I ′(uk)∥∥ ≤ C1(13)

for every k ∈ N. We first prove that (uk) is bounded in E. By (6), (7), (W1)
and(W2) , we obtain

C1 + C1
µ ‖uk‖ ≥

≥I(uk)− 1
µ

∥∥I ′(uk)∥∥uk
=(1

2 −
1
µ) ‖uk‖2 +

∑
n∈Z

[
W (n, uk(n))− 1

µ(∇W (n, uk(n)), uk(n))
]

≥(1
2 −

1
µ) ‖uk‖2 , k ∈ N.(14)

Since µ > 2, the inequality (14) shows that (uk) is bounded in E. So passing
to a subsequence if necessary, it can be assumed that uk ⇀ u in E, which
yields that (

I ′(uk)− I ′(u)
)

(uk − u)→ 0, as k →∞.(15)
Moreover, according to Lemma 6, we have

φ′(uk)→ φ′(u), as k →∞.(16)
It follows from the definition of I that

(I ′(uk)− I ′(u))(uk − u) =
= ‖uk − u‖2 −

∑
n∈Z

(∇W (n, uk(n))−∇W (n, u(n)), uk − u) .(17)

combining (15), (16) with (17) we obtain that uk → u in E. So the proof is
complete. �
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Proof of Theorem 2.
We will prove the existence of a nontrivial critical point of I.We have already

shown that I ∈ C1(E,R), I(0) = 0 and I satisfies the Palais-Smale condition.
Hence it suffices to prove that I satisfies (ii) and (iii) of Lemma 4.

Let ρ = 1
C2

, where C2 is defined in (5). Assume that u ∈ E with ‖u‖ ≤ ρ, we
have ‖u‖∞ ≤

1
C2
.C2 = 1. In consequence, combining this with (i) of Lemma 6,

we obtain that
I(u) = 1

2‖u‖
2 −

∑
n∈Z

W (n, u(n))

≥ 1
2‖u‖

2 −
∑
n∈Z

W (n, u(n)
|u(n)|) |u(n)|µ

≥ 1
2 ‖u‖

2 − %
∑
Z
|u(n)|2

≥
(

1
2 − %C

2
2

)
‖u‖2 , ‖u‖ ≤ ρ,(18)

where % = sup {W (n, u) : n ∈ Z, |u| = 1}. Since % < 1
2C2

2
, then we get

I/∂Bρ(0) ≥ 1
C2

2
− 2% = α > 0.

It remains to prove that there exists e ∈ E such that ‖e‖ > ρ and I(e) ≤ 0,
where ρ is defined above. Take some u ∈ E such that ‖u‖ = 1. Then there
exists a nonempty integer interval I ⊂ Z such that u(n) 6= 0 for n ∈ I. take
σ > 0 such that σ |u(n)| ≥ 1 for n ∈ I. Then, we obtain

I(σu) = σ2

2 ‖u‖
2 −

∑
n∈Z

W (n, σu(n))

≤ σ2

2 ‖u‖
2 − σµ

∑
n∈I

W
(
n, u(n)
|u(n)|

)
|u(n)|µ

≤ σ2

2 ‖u‖
2 −mσµ

∑
n∈I
|u(n)|µ ,(19)

where m = min {W (n, u) : n ∈ I, |u| = 1}. Since µ > 2, (19) implies that
I(σu) < 0 for some σ > 0 with σ |u(n)| ≥ 1 for n ∈ I and ‖σu‖ > ρ. By
Lemma 4, I possesses a critical value c ≥ β > 0 given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Hence there is u ∈ E such that I(u) = c, I ′(u) = 0. �
Proof of Theorem 3.
We have already known that I ∈ C1(E,R), I(0) = 0, I satisfies the Palais-

Smale condition and we have I is even. To apply the Symmetric mountain Pass
Theorem, it suffices to prove that I satisfies the conditions (iii) of Lemma 5.
(ii) is identically the same as in Theorem 2, so it is already proved.
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Let Ẽ be a finite dimensional subspace of E. Since all norms of a finite
dimensional normed space are equivalent, so there is a constant c > 0 such
that

‖u‖ < c ‖u‖∞ , for u ∈ Ẽ.(20)

Assume that dim Ẽ = m and u1, u2, . . . , um is the basis of Ẽ such that

〈ui, uj〉 =
{
c2 if i = j,

0 if i 6= j, i, j = 1, 2, ...,m.

Since ui ∈ E, we can choose an integer T̄ such that

|ui(n)| < 1
m , |n| > T̄ , i = 1, 2, ...,m.(21)

Set Σ =
{
u ∈ Ẽ, ‖u‖ = c

}
. Then for u ∈ Σ, there exist λi ∈ R, i = 1, 2, ...,m

such that

u(n) =
m∑
i=1

λiui(n), for n ∈ Z,(22)

it follows that

c2 = ‖u‖2 =
m∑
i=1

λi
2〈ui, ui〉 = c2

m∑
i=1

λi
2,(23)

which implies that |λi| ≤ 1 for i = 1, 2, ...,m. Hence, for u ∈ Σ, let |u(n0)| =
‖u‖∞, then by (20) and (22) we have

1 ≤ ‖u‖∞ = |u(n0)| ≤
m∑
i=1
|λi| |ui(n0)| , u ∈ Σ.(24)

This shows that there exists i0 ∈ {1, 2, ...,m} such that |ui0(n0)| ≥ 1
m , which

together with (21), implies that |n0| ≤ T . For any u ∈ E, it follows from (21),
(22), (24) and (W2), we have for u ∈

∑
and σ > 1

I(σu) = σ2

2 ‖u‖
2 −

∑
n∈Z

W (n, σu(n))

≤ σ2

2 ‖u‖
2 − σµ

∑
n∈Z

W (n, u(n))

= σ2

2 ‖u‖
2 − σµ

∑
|n|>T

W (n, u(n))− σµ
∑
|n|≤T

W (n, u(n))

≤ σ2

2 ‖u‖
2 − d2σ

µ |u(n0)| .(25)

Since µ > 2, we deduce that there is σ0 = σ(Ẽ) > 1 such that

I(σu) < 0, for u ∈
∑

and σ ≥ σ0.



74 Fathi Khelifi 2

That is

I(u) < 0, for u ∈ Ẽ and ‖u‖ ≥ cσ0.

This shows that (iii) of Lemma 5 holds. By Lemma 5, I possesses an un-
bounded sequence {dk}k∈N of critical values with dk = I(uk), where uk is such
that I ′(uk) = 0 for k = 1, 2, ...

From (6), we have
1
2 ‖uk‖

2 = dk +
∑
n∈Z

W (n, uk(n))

≥ dk,(26)

since {dk}k∈N is unbounded, then {‖uk‖}k∈N is unbounded. The proof is
complete. �
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