POINTWISE BEST COAPPROXIMATION
IN THE SPACE OF BOCHNER INTEGRABLE FUNCTIONS

EYAD ABU-SIRHAN

Abstract. Let X be a Banach space, G be a closed subset of X, and (Ω, Σ, μ) be a σ-finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of $L^p(\mu, G)$, $1 \leq p \leq \infty$, in $L^p(\mu, X)$.

MSC 2010. 41A50, 41A52, 41A65.

Keywords. best coapproximation, coproximinal, Banach space.

1. INTRODUCTION

Let G be a nonempty subset of a Banach space X and let $x \in X$. An element g_0 in G satisfying

$$\|x - g_0\| \leq \|x - g\|, \text{ for every } g \in G$$

is called a best approximation to x from G. The set G is called proximinal in X if every element x in X has a best approximation from G.

Another kind of approximation, called best coapproximation was introduced by Franchetti and Furi [1], who considered those elements $g_0 \in G$, for which

$$\|g - g_0\| \leq \|x - g\|, \text{ for every } g \in G.$$ (1)

An element g_0 in G satisfying (1) is called a best coapproximation to x from G. G is called coproximinal in X if every element x in X has a best coapproximation from G.

Several papers have been devoted for studying when the space $L^p(\mu, G)$ is proximinal in $L^p(\mu, X)$ see for example [5], [9]–[12]. As a counter part of this problem is the problem of coproximinality of $L^p(\mu, G)$ in $L^p(\mu, X)$, which has been recently studied by some authors [2]–[4], [7], and it will be the object of this paper.

Throughout the whole paper, we always suppose that $(X, \|\cdot\|)$ is a Banach space and (Ω, Σ, μ) is a given non trivial $\mu(\Omega) \neq \{0, \infty\}$ σ-finite measure space. We write $L(\mu, X)$ to denote the space of all X-valued strongly measurable functions, $L^p(\mu, X)$, $1 \leq p < \infty$, to denote the space of p-Bochner integrable functions defined on Ω with values in X and, for $p = \infty$, $L^\infty(\mu, X)$.

*Math. Department, Tafila Technical University, Jordan, e-mail: abu-sirhan2@ttu.edu.jo, eyadabusirhan@gmail.com.
to denote the Banach space of all essentially bounded strongly measurable functions on Ω with values in X, endowed with the usual norm

$$\|f\|_{\infty} = \text{ess-sup} \|f(s)\|.$$

Finally, \mathbb{N} stands for the set of natural numbers.

Finite measure spaces (Ω, Σ, μ) in [3], [4], [7] played an important role in obtaining results on the coproximinality of $L^p(\mu, G)$ in $L^p(\mu, X)$. The purpose of the present paper is to further the topics using any σ-finite measure space (Ω, Σ, μ). The obtained results improve those in [3], [4], [7] and our methods are not only distinct but also seem to be simpler.

We start by recalling a few definitions.

Let $f : \Omega \to X$ be a function. Then

1. f is called simple if its range contains only finitely many points x_1, x_2, \ldots, x_n in X and $f^{-1}(x_i)$ is measurable for $i = 1, 2, \ldots, n$. In this case we write $f = \sum_{i=1}^{n} x_i \chi_{E_i}$, where χ_{E_i} is the characteristic function of the set $E_i = f^{-1}(x_i)$.

2. f is called strongly measurable if there exists a sequence (f_n) of simple functions with $\lim \|f_n(s) - f(s)\| = 0$ for almost all $s \in \Omega$.

2. BEST COAPPROXIMATION IN $L^p(\mu, X), 1 \leq p \leq \infty$.

Definition 1. Let $f \in L(\mu, X)$ and $D \subset L(\mu, X)$. An element h in D is called a pointwise best coapproximation to f from D if for all $\varphi \in D$, we have

$$\|h(s) - \varphi(s)\| \leq \|f(s) - \varphi(s)\|, \text{ for almost all } s \in \Omega.$$

The notation of “pointwise coproximinal” is defined accordingly.

Proposition 2. Let G be a closed subspace of X, $1 \leq p \leq \infty$, $f \in L^p(\mu, X)$, and $h \in L(\mu, G)$. If h is a pointwise best coapproximation to f, then h belongs to $L^p(\mu, G)$ and it is a best coapproximation to f from $L^p(\mu, G)$.

Proof. Since $h(s)$ is a best coapproximation to $f(s)$ for almost all $s \in \Omega$, we have $\|h(s)\| \leq \|f(s)\|$ for almost all $s \in \Omega$. Then $\|h\|_p \leq \|f\|_p$ and so $h \in L^p(\mu, G)$. It is clear that $\|h - \varphi\|_p \leq \|f - \varphi\|_p$ for all $\varphi \in L^p(\mu, G)$.

Remark 3. Let f be an element of $L^\infty(\mu, G)$. We recall that

$$\|f\|_{\infty} = \text{ess-sup} \|f(s)\|$$

where

$$\text{ess-sup} \|f(s)\| = \inf_{E \in \mathcal{E}} \sup_{s \in E^c} \|f(s)\|.$$

Here we put

$$\mathcal{E} = \{E \in \Sigma : \mu(E) = 0\}$$

and for $A \subset \Omega$ we let $A^c = \Omega \setminus A$. If f is essentially bounded, one can show that there exists $E \in \mathcal{E}$ such that $\|f\|_{\infty} = \sup_{s \in E^c} \|f(s)\|$.
In [4, Th.2.2], It was shown that for a closed subspace \(G \) of \(X \), the coproximinality of \(L^\infty(\mu, G) \) in \(L^\infty(\mu, X) \) implies the coproximinality of \(G \) in \(X \). In fact there was a flaw in the proof given as follows:

For \(x \in X \) put \(f_x(s) = x, s \in \Omega \). Assume that for some \(h \in L^\infty(\mu, G) \) and \(x \in X \) we have \(\|h - f_g\|_\infty \leq \|f_x - f_g\|_\infty \) for all \(g \in G \). The author considered the existence of \(s_0 \in \Omega \) such that \(\|h(s_0) - g\| \leq \|x - g\| \) for all \(g \in G \). However, it does not follow automatically from the assumption. The author should have proved the existence of such an \(s_0 \). So the theorem may need more conditions to be correct as shown in the following Proposition.

Proposition 4. Let \(G \) be a separable subspace of \(X \). If \(L^\infty(\mu, G) \) is coproximinal in \(L^\infty(\mu, X) \) , then \(G \) is coproximinal in \(X \).

Proof. For \(x \in X \) put \(f_x(s) = x, s \in \Omega \). Then \(f_x \in L^\infty(\mu, X) \), so there exists \(h \in L^\infty(\mu, G) \) such that

\[
\|\varphi - h\|_\infty \leq \|f_x - \varphi\|_\infty
\]

for all \(\varphi \in L^\infty(\mu, G) \). Taking \(\varphi = f_g \), it follows

\[
\|h - f_g\|_\infty \leq \|f_x - f_g\|_\infty = \|x - g\|
\]

for all \(g \in G \). That is, for every \(g \in G \)

\[
\inf_{E \in \mathcal{K}} \sup_{s \in E} \|h(s) - g\| \leq \|x - g\|.
\]

Taking \(E_g \in \mathcal{K} \) such that

\[
\|h - f_g\|_\infty = \sup_{s \in E_g} \|h(s) - g\|
\]

it follows that

\[
\|h(s) - g\| \leq \|x - g\| \quad \text{for all} \quad s \in E_g^c.
\]

Thus for all \(g \in G \), there exists \(E_g \in \mathcal{K} \), \(\|h(s) - g\| \leq \|x - g\| \) for all \(s \in E_g^c \). Let \(G' \) be a countable dense subset of \(G \). Then for every \(g' \in G' \), there exists \(E_{g'} \in \mathcal{K} \) such that \(\|h(s) - g'\| \leq \|x - g'\| \) for all \(s \in E_{g'}^c \). If \(\cap \{ E_{g'} : g' \in G' \} \) is empty, then \(\cup \{ E_{g'} : g' \in G' \} = \Omega \) and so \(\mu(\Omega) = 0 \) which is false, since we have supposed the measure space is non-trivial. Thus there exists \(s_0 \in \cap \{ E_{g'} : g' \in G' \} \) such that \(\|h(s_0) - g'\| \leq \|x - g'\| \) for all \(g' \in G' \). Therefore \(\|h(s_0) - g\| \leq \|x - g\| \) for all \(g \in G \) as \(G' \) is dense in \(G \). \(\square \)

Proposition 5. Let \((\Omega, \Sigma, \mu) \) be a measure space such that there exists \(A \in \Sigma \) with \(0 < \mu(A) < \infty \), \(X \) be a Banach space, \(G \) be a closed subspace of \(X \) and \(1 \leq p < \infty \). If \(L^p(\mu, G) \) is coproximinal in \(L^p(\mu, X) \), then \(G \) is coproximinal in \(X \).

Proof. Let \(x \in X \). Define \(f_x \in L^p(\mu, X) \) by

\[
f_x = \mu(A)^{\frac{1}{p} - 1} x \chi_A.
\]
By hypothesis, there exists \(h \in L^p(\mu, G) \) such that
\[
\|h - \varphi\|_p \leq \|f_x - \varphi\|_p \quad \text{for all } \varphi \in L^p(\mu, G).
\]
For \(g \in G \) let \(\varphi_g \in L^p(\mu, G) \) be given by
\[
\varphi_g = \mu(A)^{1/p - 1} g \chi_A.
\]
Then
\[
\|f_x - \varphi_g\|_p = \left(\int_{\Omega} \| f_x(s) - \varphi_g(s) \|^p \, d\mu(s) \right)^{1/p}
\]
(3)
\[
= \mu(A)^{1/p - 1} \left(\int_{\Omega} \| (x - g) \|^p \chi_A(s) \, d\mu(s) \right)^{1/p}
\]
\[
= \mu(A)^{1/p - 1} \| (x - g) \|.
\]
Now, let
\[
g_0 = \int_{\Omega} h(s) \chi_A(s) \, d\mu(s) \in G.
\]
If \(1 < p < \infty \), then
\[
\|g - \mu(A)^{-1/p} g_0\| =
\]
\[
= \left\| \mu(A_{k_0})^{-1} \int_{\Omega} g \chi_A(s) \, d\mu(s) - \mu(A)^{-1/p} \int_{\Omega} h(s) \, d\mu(s) \right\|
\]
\[
= \left\| \mu(A)^{-1/p} \int_{\Omega} (\varphi_g(s) - h(s)) \chi_A(s) \, d\mu(s) \right\|
\]
\[
\leq \mu(A)^{-1/p} \int_{\Omega} \| \varphi_g(s) - h(s) \| \chi_A(s) \, d\mu(s)
\]
\[
\leq \mu(A)^{-1/p} \left(\int_{\Omega} \| \varphi_g(s) - h(s) \|^p \, d\mu(s) \right)^{1/p} \mu(A)^{1-1/p} \quad \text{(Hölder Inequality)}
\]
\[
= \mu(A)^{1-2/p} \| \varphi_g - h \|
\]
\[
\leq \mu(A)^{1-2/p} \| \varphi_g - f_x \| \quad \text{(by (2))}
\]
\[
= \|x - g\|, \quad \text{(by (3))}
\]
which show that \(\mu(A)^{-1/p} g_0 \) is a best coapproximation element to \(x \) in \(G \).

If \(p = 1 \), then, instead of Hölder Inequality, the following inequality ca be used:
\[
\|g - \mu(A)^{-1} g_0\| \leq \mu(A)^{-1} \int_{\Omega} \| \varphi_g(s) - h(s) \| \chi_A(s) \, d\mu(s)
\]
\[
\leq \mu(A)^{-1} \int_{\Omega} \| \varphi_g(s) - h(s) \| \, d\mu(s)
\]
\[
= \mu(A)^{-1} \| \varphi_g - h \| \leq \mu(A)^{-1} \| \varphi_g - f_x \|
\]
\[
= \|x - g\|. \quad \square
\]
Remark 6. If by a trivial space one understands that \(\mu(\Sigma) \neq \{0, \infty\} \), i.e., \(\mu \) takes only the values 0 and \(\infty \), then in a non-trivial measure space \((\Omega, \Sigma, \mu)\) there exists always \(A \in \Sigma \) with \(0 < \mu(A) < \infty \).

Corollary 7. Let \(G \) be a separable subspace of \(X \) and \(1 \leq p \leq \infty \). If \(L^p(\mu, G) \) is coproximinal in \(L^p(\mu, X) \), then \(G \) is coproximinal in \(X \).

Proof. The proof follows from Proposition 4 and Proposition 5. \(\Box \)

REFERENCES

Received by the editors: November 27, 2019; accepted: September 17, 2020; published online: February 15, 2021.