JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY

J. Numer. Anal. Approx. Theory, vol. 49 (2020) no. 2, pp. 95-99 ictp.acad.ro/jnaat

POINTWISE BEST COAPPROXIMATION IN THE SPACE OF BOCHNER INTEGRABLE FUNCTIONS

EYAD ABU-SIRHAN*

Abstract. Let X be a Banach space, G be a closed subset of X, and (Ω, Σ, μ) be a σ -finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of $L^p(\mu, G)$, $1 \le p \le \infty$, in $L^p(\mu, X)$.

MSC 2010. 41A50, 41A52, 41A65. Keywords. best coapproximation, coproximinal, Banach space.

1. INTRODUCTION

Let G be a nonempty subset of a Banach space X and let $x \in X$. An element g_0 in G satisfying

$$||x - g_0|| \le ||x - g||$$
, for every $g \in G$

is called a best approximation to x from G. The set G is called proximinal in X if every element x in X has a best approximation from G.

Another kind of approximation, called best coapproximation was introduced by Franchetti and Furi [1], who considered those elements $g_0 \in G$, for which

(1)
$$\|g - g_0\| \le \|x - g\|, \text{ for every } g \in G.$$

An element g_0 in G satisfying (1) is called a best coapproximation to x from G. G is called coproximinal in X if every element x in X has a best coapproximation from G.

Several papers have been devoted for studying when the space $L^p(\mu, G)$ is proximinal in $L^p(\mu, X)$ see for example [5], [9]–[12]. As a counter part of this problem is the problem of coproximinality of $L^p(\mu, G)$ in $L^p(\mu, X)$, which has been recently studied by some authors [2]–[4], [7], and it will be the object of this paper.

Throughout the whole paper, we always suppose that $(X, \|\cdot\|)$ is a Banach space and (Ω, Σ, μ) is a given non trivial $(\mu(\Omega) \neq \{0, \infty\})$ σ -finite measure space. We write $L(\mu, X)$ to denote the space of all X-valued strongly measurable functions, $L^p(\mu, X)$, $1 \leq p < \infty$, to denote the space of p-Bochner integrable functions defined on Ω with values in X and, for $p = \infty$, $L^{\infty}(\mu, X)$

^{*}Math. Department, Tafila Technical University, Jordan, e-mail: abu-sirhan2@ttu.edu.jo, eyadabusirhan@gmail.com.

to denote the Banach space of all essentially bounded strongly measurable functions on Ω with values in X, endowed with the usual norm

 $\|f\|_{\infty} = \operatorname{ess-sup} \|f(s)\|.$

Finally, \mathbb{N} stands for the set of natural numbers.

Finite measure spaces (Ω, Σ, μ) in [3], [4], [7] played an important role in obtaining results on the coproximinality of $L^p(\mu, G)$ in $L^p(\mu, X)$. The purpose of the present paper to further the topics using any σ -finite measure space (Ω, Σ, μ) . The obtained results improve those in [3], [4], [7] and our methods are not only distinct but also seem to be simpler.

We start by recalling a few definitions.

Let $f: \Omega \to X$ be a functions. Then

- (1) f is called simple if its range contains only finitely many points x_1, x_2, \ldots, x_n in X and $f^{-1}(x_i)$ is measurable for $i = 1, 2, \ldots, n$. In this case we write $f = \sum_{i=1}^n x_i \chi_{E_i}$, where χ_{E_i} is the characteristic function of the set $E_i = f^{-1}(x_i)$.
- (2) f is called strongly measurable if there exists a sequence (f_n) of simple functions with $\lim ||f_n(s) f(s)|| = 0$ for almost all $s \in \Omega$.

2. BEST COAPPROXIMATION IN $L^p(\mu, X), 1 \le p \le \infty$.

DEFINITION 1. Let $f \in L(\mu, X)$ and $D \subset L(\mu, X)$. An element h in D is called a pointwise best coapproximation to f from D if for all $\varphi \in D$, we have

$$||h(s) - \varphi(s)|| \le ||f(s) - \varphi(s)||, \text{ for almost all } s \in \Omega.$$

The notation of "pointwise coproximinal" is defined accordingly.

PROPOSITION 2. Let G be a closed subspace of X, $1 \le p \le \infty$, $f \in L^p(\mu, X)$, and $h \in L(\mu, G)$. If h is a pointwise best coapproximation to f, then h belongs to $L^p(\mu, G)$ and it is a best coapproximation to f from $L^p(\mu, G)$.

Proof. Since h(s) is a best coapproximation to f(s) for almost all $s \in \Omega$, we have $||h(s)|| \leq ||f(s)||$ for almost all $s \in \Omega$. Then $||h||_p \leq ||f||_p$ and so $h \in L^p(\mu, G)$. It is clear that $||h - \varphi||_p \leq ||f - \varphi||_p$ for all $\varphi \in L^p(\mu, G)$. \Box

REMARK 3. Let f be an element of $L^{\infty}(\mu, G)$. We recall that

$$\|f\|_{\infty} = \operatorname{ess-sup} \|f(s)\|$$

where

ess-sup
$$||f(s)|| = \inf_{E \in \aleph} \sup_{s \in E^c} ||f(s)||$$
.

Here we put

$$\aleph = \{ E \in \Sigma : \mu(E) = 0 \}$$

and for $A \subset \Omega$ we let $A^c = \Omega \setminus A$. If f is essentially bounded, one can show that there exists $E \in \aleph$ such that $||f||_{\infty} = \sup_{s \in E^c} ||f(s)||$.

In [4, Th.2.2], It was shown that for a closed subspace G of X, the coproximinality of $L^{\infty}(\mu, G)$ in $L^{\infty}(\mu, X)$ implies the coproximinality of G in X. In fact there was a flaw in the proof given as follows:

For $x \in X$ put $f_x(s) = x, s \in \Omega$. Assume that for some $h \in L^{\infty}(\mu, G)$ and $x \in X$ we have $||h - f_g||_{\infty} \leq ||f_x - f_g||_{\infty}$ for all $g \in G$. The author considered the existence of $s_0 \in \Omega$ such that $||h(s_0) - g|| \leq ||x - g||$ for all $g \in G$. However, it does not follow automatically from the assumption. The author should have proved the existence of such an s_0 . So the theorem may need more conditions to be correct as shown in the following Proposition.

PROPOSITION 4. Let G be a separable subspace of X. if $L^{\infty}(\mu, G)$ is coproximinal in $L^{\infty}(\mu, X)$, then G is coproximinal in X.

Proof. For $x \in X$ put $f_x(s) = x, s \in \Omega$. Then $f_x \in L^{\infty}(\mu, X)$, so there exists $h \in L^{\infty}(\mu, G)$ such that

$$\|\varphi - h\|_{\infty} \le \|f_x - \varphi\|_{\infty}$$

for all $\varphi \in L^{\infty}(\mu, G)$. Taking $\varphi = f_g$, it follows

$$||h - f_g||_{\infty} \le ||f_x - f_g||_{\infty} = ||x - g||$$

for all $g \in G$. That is, for every $g \in G$

$$\inf_{E \in \aleph} \sup_{s \in E^c} \left\| h\left(s\right) - g \right\| \le \left\| x - g \right\|$$

Taking $E_g \in \aleph$ such that

$$\left\|h - f_g\right\|_{\infty} = \sup_{s \in E_q^c} \left\|h\left(s\right) - g\right\|,$$

it follows that

$$\|h(s) - g\| \le \|x - g\|$$
 for all $s \in E_q^c$

Thus for all $g \in G$, there exists $E_g \in \aleph$, $||h(s) - g|| \leq ||x - g||$ for all $s \in E_g^c$. Let G' be a countable dense subset of G. Then for every $g' \in G'$, there exists $E_{g'} \in \aleph$ such that $||h(s) - g'|| \leq ||x - g'||$ for all $s \in E_{g'}^c$. If $\cap \{E_{g'}^c : g' \in G'\}$ is empty, then $\cup \{E_{g'} : g' \in G'\} = \Omega$ and so $\mu(\Omega) = 0$ which is false, since we have supposed the measure space is non-trivial. Thus there exists $s_0 \in \cap \{E_{g'}^c : g' \in G'\}$ such that $||h(s_0) - g'|| \leq ||x - g'||$ for all $g' \in G'$. Therefore $||h(s_0) - g|| \leq ||x - g||$ for all $g \in G$ as G' is dense in G.

PROPOSITION 5. Let (Ω, Σ, μ) be a measure space such that there exists $A \in \Sigma$ with $0 < \mu(A) < \infty$, X be a Banach space, G be a closed subspace of X and $1 \leq p < \infty$. If $L^p(\mu, G)$ is coproximinal in $L^p(\mu, X)$, then G is coproximinal in X.

Proof. Let $x \in X$. Define $f_x \in L^p(\mu, X)$ by $f_x = \mu(A)^{\frac{1}{2}-1} x^{-1} x^{-1}$

$$f_x = \mu(A)^{\frac{-1}{p}-1} x \ \chi_A$$

By hypothesis, there exists $h \in L^{p}(\mu, G)$ such that

(2) $\|h - \varphi\|_p \le \|f_x - \varphi\|_p$ for all $\varphi \in L^p(\mu, G)$. For $g \in G$ let $\varphi_g \in L^p(\mu, G)$ be given by

$$\varphi_g = \mu(A)^{\frac{1}{p}-1}g \ \chi_A.$$

Then

(3)
$$\|f_{x} - \varphi_{g}\|_{p} = \left(\int_{\Omega} \|f_{x}(s) - \varphi_{g}(s)\|^{p} d\mu(s)\right)^{1/p}$$
$$= \mu(A)^{\frac{1}{p}-1} \left(\int_{\Omega} \|(x-g)\|^{p} \chi_{A}(s) d\mu(s)\right)^{1/p}$$
$$= \mu(A)^{\frac{2}{p}-1} \|(x-g)\|.$$

Now, let

$$g_0 = \int_{\Omega} h(s) \chi_A(s) d\mu(s) \in G.$$

If
$$1 , then$$

$$\begin{split} \left\| g - \mu(A)^{-1/p} g_0 \right\| &= \\ &= \left\| \mu(A_{k_0})^{-1} \int_{\Omega} g \, \chi_A(s) d\mu(s) - \mu(A)^{-1/p} \int_{\Omega} h(s) \, d\mu(s) \right\| \\ &= \left\| \mu(A)^{-1/p} \int_{\Omega} \left(\varphi_g(s) - h(s) \right) \chi_A(s) d\mu(s) \right\| \\ &\leq \mu(A)^{-1/p} \int_{\Omega} \left\| \varphi_g(s) - h(s) \right\| \chi_A(s) d\mu(s) \\ &\leq \mu(A)^{-1/p} \left(\int_{\Omega} \left\| \varphi_g(s) - h(s) \right\|^p d\mu(s) \right)^{1/p} \mu(A)^{1-1/p} \quad \text{(Hölder Inequality)} \\ &= \mu(A)^{1-2/p} \left\| \varphi_g - h \right\| \\ &\leq \mu(A)^{1-2/p} \left\| \varphi_g - f_x \right\| \quad \text{(by (2))} \\ &= \left\| x - g \right\|, \quad \text{(by (3))} \end{split}$$

which show that $\mu(A)^{-1/p}g_0$ is a best coapproximation element to x in G. If p = 1, then, instead of Hőlder Inequality, the following inequality ca be used:

$$\begin{split} \left\| g - \mu(A)^{-1} g_0 \right\| &\leq \mu(A)^{-1} \int_{\Omega} \|\varphi_g(s) - h(s)\| \chi_A(s) d\mu(s) \\ &\leq \mu(A)^{-1} \int_{\Omega} \|\varphi_g(s) - h(s)\| d\mu(s) \\ &= \mu(A)^{-1} \|\varphi_g - h\| \leq \mu(A)^{-1} \|\varphi_g - f_x\| \\ &= \|x - g\|. \end{split}$$

4

REMARK 6. If by a trivial space one understands that $\mu(\Sigma) \neq \{0, \infty\}$, *i.e.* μ takes only the values 0 and ∞ , then in a non-trivial measure space (Ω, Σ, μ) there exists always $A \in \Sigma$ with $0 < \mu(A) < \infty$.

COROLLARY 7. Let G be a separable subspace of X and $1 \leq p \leq \infty$. If $L^{p}(\mu, G)$ is coproximinal in $L^{p}(\mu, X)$, then G is coproximinal in X.

Proof. The proof follows from Proposition 4 and Proposition 5. \Box

REFERENCES

- C. FRANCHETTI, M. FURI, Some characteristic properties of real Hilbert spaces, Rev. Romaine Math. Pures Appl., 17 (1972), pp. 1045–1048.
- [2] E. ABU-SIRHAN, A remark on best coapproximation in L[∞](μ, X), Intern. J. Math. Anal.,
 13 (2019) no. 9, pp. 449–458.
- [3] H. MAZAHERI, S. JAVAD JESMANI, Some results on best coapproximation in $L^1(\mu, X)$, Mediterr. J. Math., 4 (2007) no. 4, pp. 497–503.
- [4] J. JAWDAT, Best coapproximation in L[∞](μ, X), TWMS J. App. Eng. Math., 8 (2018) no. 2, pp. 448–453.
- [5] J. MENDOZA, *Proximinality in* $L^{p}(\mu, X)$, J. Approx. Theory, **93** (1998), pp. 331–343.
- [6] K. KURATOWISKI, C. RYLL-NARDZEWSKI, A general theorem on selector, Bull. Acad. Polonaise Science, Series Math. Astr. Phys., 13 (1965), pp. 379–403.
- [7] M. R. HADDADI, N. HEJAZJPOOR, H. MAZAHERI, Some result about best coapproximation in L^p(S, X), Anal. Theory Appl., 26 (2010) no. 1, pp. 69–75.
- [8] P.L. PAPINI, I. SINGER, Best coapproximation in normed linear spaces, Mh. Math., 88 (1979), pp. 27–44.
- [9] R. KHALIL, Best approximation in $L^p(\mu, X)$, Math. Proc. Cambridge Philos. Soc., 94 (1983), pp. 277–279.
- [10] R. KHALIL, W. DEEB, Best approximation in $L^{p}(\mu, X)$, II, J. Approx. Theory, **59** (1989), pp. 296–299.
- [11] W.A. LIGHT, Proximinality in $L^{p}(\mu, X)$, Rocky Mountain J. Math., **19** (1989), pp. 251–259.
- [12] Y. ZHAO-YONG, G. TIE-XIN, Pointwise best approximation in the space of strongly measurable functions with applications to best approximation in $L^p(\mu, X)$, J. Approx. Theory, **78** (1994), pp. 314–320.

Received by the editors: November 27, 2019; accepted: September 17, 2020; published online: February 15, 2021.