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QUANTITATIVE APPROXIMATION BY NONLINEAR
ANGHELUŢĂ-CHOQUET SINGULAR INTEGRALS
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Abstract. By using the concept of nonlinear Choquet integral with respect to
a capacity and as a generalization of the Poisson-Cauchy-Choquet operators,
we introduce the nonlinear Angheluţă-Choquet singular integrals with respect
to a family of submodular set functions. Quantitative approximation results in
terms of the modulus of continuity are obtained with respect to some particular
possibility measures and with respect to the Choquet measure µ(A) =

√
M(A),

where M represents the Lebesgue measure. For some subclasses of functions
we prove that these Choquet type operators can have essentially better approx-
imation properties than their classical correspondents. The paper ends with
the important, independent remark that for Choquet-type operators which are
comonotone additive too, like Kantorovich-Choquet operators, Szász-Mirakjan-
Kantorovich-Choquet operators and Baskakov-Kantorovich-Choquet operators
studied in previous papers, the approximation results remain identically valid
not only for non-negative functions, but also for all functions which take nega-
tive values too, if they are lower bounded.
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1. INTRODUCTION

In a very old paper [3], Th. Angheluţă has introduced the following singular
integral by (with his notations)

Ar(f)(x) = 2
π

∫
R
f
(
x+ u log(1

r )
)
· du

(1+u2)2

and proves that for r ↘ 1, Ar(f)(x) approximates f(x) with the rate of the
modulus of continuity ω1(f ; log(1/r)). Denoting log(1/r) = t, r ↘ 1 with
t↘ 0 and changing the variable x+ u log(1/r) := x+ ut = v under the above
integral, one obtains the following singular integral of Poisson-Cauchy-type
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sităţii no. 1, 410087 Oradea, Romania, e-mail: galso@uoradea.ro, galsorin23@gmail.com,
ionutz.tudor.iancu@gmail.com.

www.ictp.acad.ro/jnaat
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given by

Qt(f)(x) = 2
tπ

∫
R

f(v)
(1+(x−v)2/t2)2dv = 2t3

π

∫
R

f(v)
[t2+(x−v)2]2dv, x ∈ R,

which approximates f with the rate ω1(f ; t), t↘ 0.
It is worth noting that quantitative results in approximation by the classical

Poisson-Cauchy singular integral can be found in, e.g., the paper [5], the books
[2], [4] and in the correspondent references therein.

On the other hand, the well-known Feller’s probabilistic scheme in con-
structing linear and positive approximation operators (see, e.g., [1], or [9,
ch. 7], or, [2, §5.2, pp. 283–319]), was extended in [10] by replacing the clas-
sical linear integral with respect to a measure, with the nonlinear Choquet
integral with respect to a monotone set-valued function (capacity). Also,
in the papers [10]–[19], approximation results for various nonlinear approx-
imation operators based on the Choquet integral with respect to a family of
submodular set functions were obtained.

In this paper, these ideas will be applied to the above Angheluţă integral
operators, namely replacing the usual integral with the nonlinear Choquet inte-
gral, the corresponding Angheluţă-Choquet nonlinear operators are introduced
and quantitative approximation results in terms of the modulus of continuity
ω1(f ; ·) are obtained with respect to some particular possibility measures and
with respect to the Choquet measure µ(A) =

√
M(A) where M represents

the Lebesgue measure. For some subclasses of functions we prove that these
Choquet type operators have essentially better approximation properties than
their classical correspondents. The paper ends with the important, indepen-
dent remark that for classes of Choquet-type operators which are comonotone
additive too, like the Kantorovich-Choquet operators, Szász-Mirakjan-Kanto-
rovich-Choquet operators and Baskakov-Kantorovich-Choquet operators stud-
ied in previous papers, the approximation results remain identically valid not
only for non-negative functions, but also for all functions which take negative
values too, if they are lower bounded.

2. PRELIMINARIES

In order to give the reader a flavor on the topic, firstly in this section we
present some concepts and results concerning the Choquet integral.

Definition 1. Let (Ω, C) be a measurable space, i.e. Ω is a nonempty set
and C be a σ-ring (or σ-algebra) of subsets in Ω with ∅ ∈ C.

(i) (see, e.g., [20], p. 63) The set function µ : C → [0,+∞] is called a
monotone measure (or capacity) if µ(∅) = 0 and A,B ∈ C, with A ⊂ B,
implies µ(A) ≤ µ(B). The monotone measure µ is called normalized if Ω ∈ C
and µ(Ω) = 1.

(ii) (see [6], or, e.g., [20, p. 179]) Let µ be a normalized monotone measure
and consider G = {X : Ω → R+;X is measurable on (Ω, C)}. Recall that
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X : Ω → R is measurable (or more precisely C-measurable), if for any B,
Borelian subset in R, we have X−1(B) ∈ C.

For A ∈ C and X ∈ G, the Choquet integral of X on A with respect to a
monotone measure µ is defined by

(C)
∫
A
Xdµ =

∫ ∞
0

µ(Fα(X)
⋂
A)dα,

where Fα(X) = {ω ∈ Ω;X(ω) ≥ α}. If (C)
∫
AXdµ < +∞ then X is called

Choquet integrable on A.
If X : Ω → R is of arbitrary sign, then the Choquet integral is defined by

(see [20, p. 233])

(C)
∫
A
Xdµ =

∫ +∞

0
µ(Fα(X)

⋂
A)dα+

∫ 0

−∞
[µ(Fα(X)

⋂
A)− µ(A)]dα.

When µ is the Lebesgue measure, then the Choquet integral (C)
∫
AXdµ reduces

to the Lebesgue integral.
(iii) A possibility measure is a set function P : P(Ω) → [0, 1], satisfying

the axioms P (∅) = 0, P (Ω) = 1 and P (⋃i∈I Ai) = sup{P (Ai); i ∈ I} for
all Ai ⊂ Ω, and any I, an at most countable family of indices. Note that if
A,B ⊂ Ω, A ⊂ B, then the last property easily implies that P (A) ≤ P (B) and
that P (A⋃B) ≤ P (A) + P (B).

A function λ : Ω → [0, 1] is called possibility distribution if sup{λ(ω);ω ∈
Ω} = 1. Any possibility distribution λ on Ω, induces the possibility measure
Pλ : P(Ω) → [0, 1], given by the formula Pλ(A) = sup{λ(s); s ∈ A}, for all
A ⊂ Ω (see, e.g., [8, ch. 1]).

Some known properties of the Choquet integral are expressed by the follow-
ing.

Remark 2. Let us suppose that µ is a monotone measure. Then, the
following properties hold :

(i) (C)
∫
A is non-additive (i.e. (C)

∫
A(f + g)dµ 6= (C)

∫
A fdµ+ (C)

∫
A gdµ)

but it is positive homogeneous, i.e. for all a ≥ 0 we have (C)
∫
A afdµ =

a · (C)
∫
A fdµ (for f ≥ 0 see, e.g., [20], Theorem 11.2, (5), p. 228 and for f of

arbitrary sign, see, e.g., [7], p. 64, Proposition 5.1, (ii)).
The Choquet integral is comonotone additive, that is, if f and g are comono-

tone on A (i.e., (f(x) − f(y))(g(x) − g(y)) ≥ 0 for all x, y ∈ A), then
(C)

∫
A(f + g)dµ = (C)

∫
A fdµ+ (C)

∫
A gdµ.

If f ≤ g on A then the Choquet integral is monotone, that is (C)
∫
A fdµ ≤

(C)
∫
A gdµ (see, e.g., [20], p. 228, Theorem 11.2, (3) for f, g ≥ 0 and p. 232

for f, g of arbitrary sign).
If µ is submodular too (i.e. µ(A⋃B) + µ(A⋂B) ≤ µ(A) + µ(B) for all

A,B) then the Choquet integral is subadditive, that is (C)
∫
A(f + g)dµ ≤

(C)
∫
A fdµ + (C)

∫
A gdµ, for all f, g of arbitrary sign (see, e.g., [7], p. 75,

Theorem 6.3).
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If µ denotes the dual measure of µ (that is µ(A) = µ(Ω)− µ(Ω \A), for all
A ∈ C), then for all f of arbitrary sign we have (C)

∫
A(−f)dµ = −(C)

∫
A fd µ

(see, e.g., [20], Theorem 11.7, p. 233).
If c ∈ R and f is of arbitrary sign, then (C)

∫
A(f + c)dµ = (C)

∫
A fdµ+ c ·

µ(A) (see, e.g., [20], pp. 232-233, or [7], p. 65).
By the definition of the Choquet integral, if F ≥ 0 and µ is subadditive,

then it is immediate that

(C)
∫
A
⋃
B
Fdµ ≤ (C)

∫
A
Fdµ+ (C)

∫
B
Fdµ.

Note that if µ is submodular then it is clear that it is subadditive too.
(ii) Simple concrete examples of monotone and submodular set functions

µ, can be obtained from a probability measure M on P(X) (i.e. M(∅) = 0,
M(X) = 1 and M is countable additive), by the formula µ(A) = γ(M(A)),
where γ : [0, 1] → [0, 1] is an increasing and concave function, with γ(0) = 0,
γ(1) = 1 (see, e.g., [7], pp. 16-17, Example 2.1).

Also, any possibility measure µ is monotone and submodular. While the
monotonicity is immediate from the axiom µ(A⋃B) = max{µ(A), µ(B)}, the
submodularity is immediate from the property µ(A⋂B) ≤ min{µ(A), µ(B)}.

(iii) Many other properties of the Choquet integral can be found in, e.g.,
Chapter 11 in [20], or in [7]. �

Now, we present the following general approximation result which will be
used in the next sections.

Theorem 3. ([10], Theorem 3.3 and Remark 3.5) Denoting by P(R) the
class of all subsets of R, let (R, C) be a measurable space with C ⊂ P(R) and
µn,x : C → [0,+∞), be a monotone and submodular family of set functions.

For λn,x : R → R+, n ∈ N, x ∈ R, Choquet densities with respect to µn,x,
(that is, (C)

∫
R λn,x(t)dµn,x(t) = 1), let us define by UC(R), the class of all

functions f : R → R+, uniformly continuous on R, such that f · λn,x are
C-measurable and Tn(f)(x) < +∞, for all n ∈ N, x ∈ R, where

Tn(f)(x) = (C)
∫
R
f(t) · λn,x(t)dµn,x(t).

Then, denoting ϕx(t) = |t− x|, for all x ∈ R, n ∈ N and δ > 0 we have

|Tn(f)(x)− f(x)| ≤
[
1 + Tn(ϕx)(x)

δ

]
· ω1(f ; δ)R.

Also, choosing above δ = Tn(ϕx)(x), it follows

|Tn(f)(x)− f(x)| ≤ 2ω1(f ;Tn(ϕx)(x))R.

Remark 4. An important problem in Theorem 3 is to determine the func-
tions f with Tn(f)(x) < +∞, for all n ∈ N, x ∈ R. Since Tn(e0)(x) = 1, from
the positive homogeneity of Tn it easily follows that for f0(t) = c > 0 for all
t ∈ R, we have Tn(f0)(x) = c, for all x ∈ R, n ∈ R. Then, for any bounded
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f : R → R+ and α ≥ 0, denoting ‖f‖ = sup{f(x);x ∈ R} < +∞, we get
{t ∈ R; f(t) · λn,x(t) ≥ α} ⊂ {t ∈ R; ‖f‖ · λn,x(t) ≥ α}, which implies

µ({t ∈ R; f(t) · λn,x(t) ≥ α}) ≤ µ({t ∈ R; ‖f‖ · λn,x(t) ≥ α})
and therefore

Tn(f)(x) =
∫ +∞

0
µ({t ∈ R; f(t) · λn,x(t) ≥ α})dα

≤
∫ +∞

0
µ({t ∈ R; ‖f‖ · λn,x(t) ≥ α})dα

=‖f‖ · Tn(e0)(x) = ‖f‖ < +∞.
Also, from these reasonings, it follows that if for an unbounded function
F0 : R → R+ we have Tn(F0)(x) < +∞, for all x ∈ R, n ∈ N, then for
any unbounded function f satisfying f(t) ≤ F0(t), for all t ∈ R, we have
Tn(f)(x) < +∞, for all x ∈ R, n ∈ N. �

Remark 5. The above Theorem 3 remains valid for functions and operators
defined on compact intervals too. Indeed, analysing the proof of Theorem 3.3
in [10], it is easily seen that it remains valid for λn,x : I → R+, f : I → R+ and
Tn(f)(x) = (C)

∫
I f(t) ·λn,x(t)dµn,x(t), where I ⊂ R is a compact subinterval.

In fact, for I = [0, 1], Theorem 3.3 in [10] was implicitly used in the case
of Bernstein-Durrmeyer-Choquet operators (see the proof of Theorem 3.1, (i)
in [18]) and in the case of Bernstein-Kantorovich-Choquet operators (see the
proof of Theorem 3.3 in [11]). �

3. ANGHELUŢĂ-CHOQUET OPERATORS

The linear Angheluţă operators defined in Introduction can be generalized
to the nonlinear Angheluţă-Choquet operators with respect to a family of
monotone and submodular set functions (µt,x), t > 0, x ∈ R, by the formula

Qt,µt,x(f)(x) = 1
c(t,x,µt,x) · (C)

∫
R

f(s)
(|s−x|2/t2+1)2dµt,x(s),

with c(t, x, µt,x) = (C)
∫
R

1
(|s−x|2/t2+1)2dµt,x(s).

In this section we deal with the approximation properties of Qt,µt,x(f)(x)
for some particular choices of the set functions µt,x, t > 0, x ∈ R.

The first main result of this section is the following :

Theorem 6. Let µt,x(A) := µ(A) =
√
M(A) for all t > 0, x ∈ R, where

M(A) denotes the Lebesgue measure of A. If f : R → R+ is uniformly con-
tinuous on R, such that Qt,µ(f)(x) < +∞, for all t > 0, x ∈ R, then for all
t > 0 and x ∈ R we have

|Qt,µ(f)(x)− f(x)| ≤ 4ω1 (f ; t)R .

Proof. By Theorem 3 (replacing there n by 1
t ), we get

(1) |Qn,µ(f)(x)− f(x)| ≤ 2ω1(f ;Qt,µ(ϕx)(x))R,
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where ϕx(s) = |s − x|. Therefore, the convergence of Qt,µ(f) to f one relies
on the convergence to zero, as t↘ 0, of the quantity

Qt,µ(ϕx)(x) = 1
c(t,x,µ) · (C)

∫
R

|x−s|
(|s−x|2/t2+1)2dµ(s)

= 1
c(t,x,µ) ·

∫ ∞
0

µ[{s ∈ R; |s−x|
(|s−x|2/t2+1)2 ≥ α}]dα.

Denoting

Fα
(

1
((x−·)2/t2+1)2

)
= {s ∈ R; 1

((x−s)2/t2+1)2 ≥ α},

by simple calculation we get Fα
(

1
((x−·)2/t2+1)2

)
= ∅ for α > 1 and if α ≤ 1,

then

Fα
(

1
((x−·)2/t2+1)2

)
=
[
x− t

√
(1−

√
α)/
√
α, x+ t

√
(1−

√
α)/
√
α

]
,

which for µ(A) =
√
M(A), leads us to

c(t, x, µ) = (C)
∫
R

1
((x−s)2/t2+1)2dµ(s)

=
∫ 1

0
µ

([
x− t

√
(1−

√
α)/
√
α, x+ t

√
(1−

√
α)/
√
α

])
dα

=
√

2
√
t ·
∫ 1

0

(
1√
α
− 1

)1/4
dα.

By the substitution 1√
α
− 1 = s, it easily follows α = 1

(s+1)2 , dα = − 2
(s+1)3ds

and

c(t, x, µ) = 2
√

2
√
t ·
∫ +∞

0
s1/4

(s+1)3ds

= 8
√

2
√
t ·
∫ +∞

0
v4

(1+v4)3dv = 8
√

2
√
t · 3π

√
2

128 = 3π
√
t

8 .

Therefore, the convergence of Qt,µ(f) to f one relies on the convergence to
zero of the quantity Qt,µ(ϕx)(x) = 1

c(t,x,µ) · (C)
∫
R

|x−s|
((x−s)2/t2+1)2dµ(s).

Now, denoting F (v) = v
(v2/t2+1)2 , v ≥ 0, we have F ′(v) = 1−4v2/t2

(v2/t2+1)3 , which
immediately implies that v = t

2 is a maximum point for F on [0,+∞) and
F (t) = 8t

25 is the maximum value for F .
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This implies that for α > 8t
25 we have {s ∈ R; |s− x|/((|s− x|2/t2 + 1)2) ≥

α} = ∅ and therefore

Qt,µ(ϕx)(x) = 1
c(t,x,µ) ·

∫ ∞
0

µ[{s ∈ R; |s−x|
(|s−x|2/t2+1)2 ≥ α}]dα

= 8
3π
√
t
·
∫ 8t/25

0
µ[{s ∈ R; |s−x|

(|s−x|2/t2+1)2 ≥ α}]dα

≤ 8
3π
√
t
·
∫ 8t/25

0
µ[{s ∈ R; |s−x|

|s−x|2/t2+1 ≥ α}]dα

= 8
3π
√
t
·
∫ 8t/25

0
µ[{s ∈ R;α(|s− x|)2/t2 + 1)− |s− x| ≤ 0}]dα.

But in the proof of Theorem 5.1 in [12], we have obtained

µ[{s ∈ R;α(|s− x|)2/t2 + 1)− |s− x| ≤ 0}] ≤ 2 (1−4α2/t2)1/4
√
α/t

,

which implies

Qt,µ(ϕx)(x) ≤ 8
3π
√
t
·
∫ 8t/25

0

[
2 (1−4α2/t2)1/4

√
α/t

]
dα

≤ 8
3π
√
t
·
∫ t/2

0

[
2 (1−4α2/t2)1/4

√
α/t

]
dα

≤ 16
√
t

3π ·
∫ t/2

0

(
1
α2 − 4/t2

)1/4
dα,

where by the calculations in the proof of Theorem 5.1 in [12], we easily get∫ t/2

0

(
1
α2 − 4/t2

)1/4
dα ≤

√
t

2
√

2 · Beta(5/4, 1/4),

with the Euler’s Beta function satisfying Beta(5/4, 1/4) < 2.
Therefore, it follows

Qt,µ(ϕx)(x) ≤ 16
√
t

3π ·
√
t

2
√

2 · Beta(5/4, 1/4) ≤ 16
3π
√

2 t < 2t.

Concluding, by (1), it follows
|Qt,µ(f)(x)− f(x)| ≤ 4ω1 (f ; t)R ,

which ends the proof. �

Remark 7. For µ(A) = M(A) in Theorem 6 we recapture the Angheluţă
operator and the order of approximation in [3] mentioned in Introduction. �

The second main result is for another choice for the family of set functions.

Theorem 8. Let us consider the measures of possibility (depending on t
and x too) defined by µt,x(A) = sup{ 1

((s−x)2/t2+1)2 ; s ∈ A} and define the
Angheluţă-Choquet operators

Qt,µt,x(f)(x) = 1
c(t,x,µt,x) · (C)

∫
R

f(s)
(|s−x|2/t2+1)2dµt,x(s),
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with c(t, x, µt,x) = (C)
∫
R

1
(|s−x|2/t2+1)2dµt,x(s).

If f : R→ R+ is uniformly continuous on R, such that Qt,µt,x(f)(x) < +∞,
for all t > 0, x ∈ R, then

|Qt,µt,x(f)(x)− f(x)| ≤ 2ω1
(
f ; t3

)
R ,

for all t ∈ [0, 1] and x ∈ R. Here ω1 (f ; δ)R = sup{|f(x) − f(y)|;x, y ∈
R, |x− y| ≤ δ}.

Proof. Firstly, it is easy to see that any possibility measure µn,x is bounded,
monotone and submodular, therefore we are under the hypothesis of Theo-
rem 3.

Denoting ϕs(t) = |s − x|, by Theorem 3 (replacing there n by 1
t ), we need

to estimate the quantity

Qt,µt,x(ϕx)(x) = 1
c(t,x,µt,x) · (C)

∫
R
|s− x| · 1

(|s−x|2/t2+1)2dµt,x(s).

Firstly, we have

c(t, x, µt,x) =
∫ +∞

0
µt,x({s ∈ R; 1

(|s−x|2/t2+1)2 ≥ α})dα

=
∫ 1

0
µt,x({s ∈ R; 1

(|s−x|2/t2+1)2 ≥ α})dα

=
∫ 1

0
sup{ 1

(|s−x|2/t2+1)2 ; s ∈ R, 1
(|s−x|2/t2+1)2 ≥ α}dα

=
∫ 1

0
1dα = 1,

since 1
(|s−x|2/t2+1)2 ≤ 1 for all x, s ∈ R and that its supremum is equal to 1

and is attained for s = x.
On the other hand, it follows

sup{ 1
(|s−x|2/t2+1)2 ; s ∈ R, |s−x|

(|s−x|2/t2+1)2 ≥ α} =

= sup{ 1
(v2/t2+1)2 ; v ∈ R+,

v
(v2/t2+1)2 ≥ α}.

Also, denoting F (v) = v
(v2/t2+1)2 , v ∈ R+, the equation F ′(v) = 0 implies

that v = t√
3 is a maximum point for F , with the maximum value F (t/

√
3) =

9t
16
√

3 ≤
t
3 < 1, for all t ∈ [0, 1].

Therefore, we get

Qt,µt,x(ϕx)(x) =
∫ ∞

0
sup{ 1

(|s−x|2/t2+1)2 ; s ∈ R, |s−x|
(|s−x|2/t2+1)2 ≥ α}dα

≤
∫ t/3

0
sup

{
1

(v2/t2+1)2 ; v ∈ R+
}
dα ≤

∫ t/3

0
1 · dα = t

3 .

Concluding, by Theorem 3 we immediately get the approximation estimate
|Qt,µt,x(f)(x)− f(x)| ≤ 2ω1

(
f ; t3

)
R ,
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which proves the theorem. �

Remark 9. There are classes of functions for which Qt,µt,x(f)(x) gives an
essentially better estimate than in Theorem 6 and than that given by the
Angheluţă operators.

In this sense, firstly we prove here that for any f : R → R+, with the
properties 1 ≤ f(x) ≤ 2, for all x ∈ R, f is nondecreasing on R and ln(f(x))
is a Lipschitz function on R with the Lipschitz constant 2, we have f(x) ≤
Qt,µt,x(f)(x) ≤ f(x+ t2), for all x ∈ R. Then, for the order of approximation
we get
(2) 0 ≤ Qt,µt,x(f)(x)− f(x) ≤ f(x+ t2)− f(x) ≤ ω1(f ; t2)R,
which for t ∈ (0, 1) is essentially better than the order O(ω1(f ; t)R) given by
Theorem 6.

Indeed, let x ∈ R be fixed. Since evidently that c(t, x, µt,x) = 1, we easily
obtain

Qt,µt,x(f)(x) =
∫ +∞

0
sup{ 1

(|t−x|2/t2+1)2 ; s ∈ R, f(s) · 1
(|s−x|2/t2+1)2 ≥ α}dα.

We firstly show that for all s ∈ R and t > 0, we have f(s) · 1
(|s−x|2/t2+1)2 ≤

f(x+ t2).
If s ≤ x then f(s) ≤ f(x) ≤ f(x + t2), which immediately implies

f(s) · 1
(|s−x|2/t2+1)2 ≤ f(x + t2). Also, when s > x, let us denote s = x + h,

with h > 0. We have two cases : (i) h ≤ t2 ; (ii) h > t2.
In the case (i), since f(x + h) ≤ f(x + t2), we immediately get

f(s) · 1
(|s−x|2/t2+1)2 ≤ f(x+ t2).

Let us consider now the case (ii). The inequality required to be proved is
evidently equivalent to
0 ≤ ln(f(x+ h))− ln(f(x+ t2)) ≤ 2 ln(h2/t2 + 1), for all x ∈ R, h > t2, t > 0.

But by the boundedness hypothesis we get
0 ≤ ln(f(x+ h))− ln(f(x+ t2)) ≤ ln(2) ≤ ln(h2/t2 + 1) ≤ 2 ln(h2/t2 + 1),

for all h ≥ 1, x ∈ R, t > 0. Therefore, it remains to settle the case when
t2 < h < 1.

By hypothesis, we also have 0 ≤ ln(f(x+h))−ln(f(x+t2)) ≤ 2(h−t2), which
combined with the inequality h− t2 ≤ ln(h2/t2 + 1), valid for all t2 ≤ h < 1,
leads again to the above required inequality.

Therefore, it remains to prove that h − t2 ≤ ln
(
h2/t2 + 1

)
, for all t2 ≤

h < 1. For that purpose, denoting G(h) = ln
(
h2/t2 + 1

)
− (h − t2), we get

G(t2) = ln(t2 + 1) > 0 and

G′(h) = 2h
h2+t2 − 1 = (h−h2)+(h−t2)

h2+t2 > 0,

for all t2 ≤ h < 1. This implies the required inequality.
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In continuation, we easily get

Qt,µt,x(f)(x) =
∫ +∞

0
sup{ 1

(|t−x|2/t2+1)2 ; s ∈ R, f(s) · 1
(|s−x|2/t2+1)2 ≥ α}dα

=
∫ f(x+t2)

0
sup{ 1

(|t−x|2/t2+1)2 ; s ∈ R, f(s) · 1
(|s−x|2/t2+1)2 ≥ α}dα

+
∫ +∞

f(x+t2)
sup{ 1

(|t−x|2/t2+1)2 ;s∈ R, f(s) · 1
(|s−x|2/t2+1)2 ≥α}dα

=
∫ f(x+t2)

0
sup{ 1

(|t−x|2/t2+1)2 ; s ∈ R, f(s) · 1
(|s−x|2/t2+1)2 ≥ α}dα

≤
∫ f(x+t2)

0
1dα = f(x+ t2).

Then, ∫ f(x+t2)

0
sup{ 1

(|t−x|2/t2+1)2 ; s ∈ R, f(s) · 1
(|s−x|2/t2+1)2 ≥ α}dα ≥

≥
∫ f(x)

0
sup{ 1

(|t−x|2/t2+1)2 ; s ∈ R, f(s) · 1
(|s−x|2/t2+1)2 ≥ α}dα

=
∫ f(x)

0
1dα = f(x).

Secondly, in order to compare the order of approximation given byQt,µt,x(f)(x)
with that obtained by the classical Poisson-Cauchy singular integral, suppose
that in addition to the hypothesis from the beginning of this remark, f is also
a α-Lipschitz function on R, with 0 < α < 1. From (2) it follows that the
order of approximation of f by Qt,µt,x(f) is O(t2α).

Now, if the order O(hα) of ω1(f ;h)R is the best possible, then combining
this with Exercise 5, p. 150 in [4], it follows that the order of approximation of
such f by the classical Poisson-Cauchy singular integral is only O(tα), which
for t ∈ (0, 1) is essentially worst than O(t2α). �

Remark 10. Suppose that f may have negative values too on R but is lower
bounded on R, that is f(x) ≥ c, for all x ∈ R, with c < 0. We can use the
trick in [17], [18], [11], [15] and [12], to construct slightly modified operators
for approximation of functions which take negative values too and maintain
the same order of approximation. Indeed, since f(x)− c ≥ 0, where c < 0, i.e.
−c > 0, it follows that for Rt,µ(f) = Qt,µ(f − c) + c we get (for example in the
Theorem 6 case)

|Rt,µ(f)(x)− f(x)| =|Qt,µ(f − c)(x)− (f(x)− c)|
≤4ω1(f − c; t)R = 4ω1(f ; t)R.

It is worth mentioning here that we have applied the above construction
to [17], [18] for the Bernstein-Durrmeyer-Choquet operators, to [11] for the
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Kantorovich-Choquet operators, to [15] for the Stancu-Durrmeyer-Choquet-
Šipoš operators, to [12] for the Picard-Choquet, Gauss-Weierstrass-Choquet
and Poisson-Cauchy-Choquet singular integrals and to [11] for the Szász-Mi-
rakjan-Kantorovich-Choquet and Baskakov-Kantorovich-Choquet opera tors.

But in the case of Kantorovich-Choquet operators, Szász-Mirakjan-Kanto-
rovich-Choquet operators and Baskakov-Kantorovich-Choquet operators, since
these operators obviously are comonotonic additive and a constant function
is always comonotone additive with an arbitrary function, denoting any from
these operators with Ln, we easily get that Ln(f−c)+c = Ln(f)+Ln(−c)+c =
Ln(f)− c+ c = Ln(f), Therefore, in these cases, we have the convergence of
Ln(f) to f not only for positive functions too, but also for lower bounded
functions which takes negative values too.

For example, in the case of Kantorovich-Choquet operator

Kn,µ(f)(x) =
n∑
k=0

pn,k(x) ·
(C)
∫ (k+1)/(n+1)

k/(n+1) f(t)dµ(t)
µ([k/(n+1),(k+1)/(n+1)]) ,

with pn,k(x) =
(n)xk(1−x)n−k, µ(A) =

√
m(A), m(A)-the Lebesgue measure,

by Corollary 3.6 in [11] we have

|Kn,µ(f)(x)− f(x)| ≤ 2ω1

(
f ;
√
x(1− x)/

√
n+ 1/n

)
[0,1]

,

for all f continuous and nonnegative on [0, 1], n ∈ N, x ∈ [0, 1].
Therefore, since each Kn, n ∈ N, is comonotone additive too, by the above

considerations, the previous quantitative estimate remain valid if f takes neg-
ative values too. �
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