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ON THE CONVERGENCE RATES
OF THE PAIRS OF ADJACENT SEQUENCES

DOREL I. DUCA∗ and ANDREI VERNESCU†

Abstract. In this paper we give a suitable definition for the pairs of adjacent
(convergent) sequences of real numbers, we present some two-sided estimations
which characterize the order of convergence to its limits of some of these se-
quences and we give certain general explanations for its similar orders of conver-
gence.
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1. INTRODUCTION

In the mathematical literature (e.g., [12, p. 112]) some of the most usual
pairs of adjacent sequences are the following:

(a) an = en
def==

(
1 + 1

n

)n
↗ e;1) bn = fn

def==
(
1 + 1

n

)n+1
↘ e;

(b) an = En
def== 1 + 1

1! + 1
2! + . . .+ 1

n! ↗ e; bn = En + 1
n!n ↘ e;

(c) an = 1 + 1√
2 + 1√

3 + . . .+ 1√
n
− 2
√
n+ 1↗ l;

bn = 1 + 1√
2 + 1√

3 + . . .+ 1√
n
− 2
√
n↘ l

(where we have denoted by l the common limit of these last two sequences);
(d) an =

(
1 + 1

n

)n (
1 + x

n

)
↗ e; bn =

(
1 + 1

n

)n (
1 + y

n

)
↘ e (with

x < 1
2 ≤ y) (also see [16, p. 38]).

To these we can also add some other pairs deduced from [16, pp. 181–185]:
(e) an =

(
1 + 1

n

)n+α
↗ e; bn =

(
1 + 1

n

)n+β
↘ e (with α < 1

2 ≤ β),

(f) an = n!n−n−1/2en/ exp
(

1
12n

)
↗
√

2π;

bn = n!n−n−1/2en/ exp
(

1
12n+1/4

)
↘
√

2π (see [11]),
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1) The oblique arrows show that the sequences tend increasing respectively decreasing to
its limits. (N.A.)
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(g) an = 1
n+1 + 1

n+2 + . . .+ 1
2n ↗ ln 2;

bn = 1
n+1 + 1

n+2 + . . .+ 1
2n + 1

2n+1 ↘ ln 2,

(h) an =
(
1− 1

n

)n+1
↗ 1/e; bn =

(
1− 1

n

)n
↘ 1/e;

(i) an = Hn − ln(n+ 1)↗ γ; bn = γn
def== Hn − lnn↘ γ

(where Hn = 1 + 1
1 + 1

2 + 1
3 + . . .+ 1

n is the harmonic sum of order n and γ is
the constant of Euler), see also [18, pp. 31–32, item 2.10];

(j) an(s) = ζn(s)− (n+1)1−s

1−s ↗ a(s);
bn(s) = ζn(s)− n1−s

1−s ↘ a(s) (with 0 < s < 1),
(where for s > 0 we note ζn(s) = 1+ 1

2s + 1
3s +. . .+ 1

ns , for s ∈ (0, 1), ζn(s)→∞
and a(s) = lim

n→∞
an(s) = lim

n→∞
bn(s)).

(k) an(s) = ζn(s) + 1
(s−1)(n+1)s−1 ↗ ζ(s);

bn(s) = ζn(s) + 1
(s−1)ns−1 ↘ ζ(s) (with s > 1).

For s > 1, ζ(s) = lim
n→∞

ζn(s) is the zeta-function of Riemann. For 0 < s < 1
the sequence (bn(s))n of (j) was considered by L. Euler (see [6], [7, pp. 112–
113]). The sequences of (k) appear in the proof of [29] of the known inequality:

1
(s− 1)(n+ 1)s−1 < ζn − ζn(s) < 1

(s− 1)ns−1

(see [8, vol. II, pp. 262–263] and [29]).
We must add now a basic standard pair of adjacent sequences namely
(l) an = l − εn ↗ l; bn = l + εn ↘ l,

(where l is a fixed real number and (εn)n is a given sequence of positive num-
bers which tends strictly decreasing to 0).

2. THE DEFINITION OF PAIRS OF ADJACENT SEQUENCES AND SOME

EXPLANATIONS

All the pairs of convergent sequences previously mentioned satisfy, related
to a given limit l, the conditions of Cantor Dedekind type in a strict form:

(1) a1 < a2 < a3 < . . . < an < . . . < bn < . . . < b3 < b2 < b1 (C-D1)

(which express simultaneously two monotonicities and two boundednesses)
and also the condition:

(2) lim
n→∞

an = lim
n→∞

bn = l.

[Of course, if we have the hypothesis (1) satisfied, the second condition of
Cantor-Dedekind:

(3) lim
n→∞

(bn − an) = 0 (C-D2)

implies that it exists an unique real number l, such that we have the equality
(2).]
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But these conditions are not sufficient to assure that is suitable to call that
the sequences (an)n and (bn)n constitute a pair of adjacent sequences. We see
a necessity to impose a certain condition of analytic relationship between the
two sequences. Moreover, we also must put a condition of equal ,,velocity“ of
tending to its common limit of the two sequences.

So we formulate the following

Definition 1. Two sequences (an)n and (bn)n are called to be adjacent
related to a given limit l if its satisfy the conditions (1) and (2) and, moreover,
it exists a nondegenerate interval I ⊂ R and a function f : I × N → R, such
that:

(i) For any t ∈ I, we have lim
n→∞

f(t, n) = l;
(ii) It exists α, β ∈ I, α < β, such that f(α, n) = an and f(β, n) = bn, for

any n ∈ N;
(iii) We have lim

n→∞
bn−l
l−an

= 1.
In the case of the pairs of sequences which were previous mentioned, we can

take I = R and the functions f : I ×N→ R together with the values α and β
can be obtained without difficulties. So, as example:

for (a): f(t, n) = (1 + 1
n)n+t; α = 0, β = 1;

for (b): f(t, n) = En + t
n!n ; α = 0, β = 1;

for (c); f(t, n) = 1 + 1√
2 + 1√

3 + . . .+ 1√
n
− 2

√
n+ (1− t); α = 0, β = 1;

for (d): f(t, n) = en
(
1 + t

n

)
; α = x < 1

2 ≤ y = β;
for (e): f(t, n) =

(
1 + 1

n

)n+t
; α < 1

2 ≤ β;
for (f): f(t, n) = n!n−n−1/2 exp

(
n− 1

12n+t
)
; α = 0, β = 1

4 ;
for (g): f(t, n) = 1

n+1 + 1
n+2 + . . .+ 1

2n + t
2n+1 ; α = 0, β = 1;

for (h): f(t, n) =
(
1− 1

n

)n+(1−t)
; α = 0, β = 1;

for (i): f(t, n) = Hn − ln(n+ (1− t)); α = 0, β = 1;
for (j): f(t, n) = 1 + 1

2s + 1
3s + . . .+ 1

ns − (n+(1−t))1−s

1−s ; α = 0, β = 1;
for (k): f(t, n) = 1 + 1

2s + 1
3s + . . .+ 1

ns − 1
(s−1)(n+(1−t))s−1 ; α = 0, β = 1;

for (l): f(t, n) = l + εn · t; α = −1, β = 1.
For x = 0 and y = 1 in (d) we obtain (a); For α = 0 and β = 1 in (e) we

obtain again (a). (So we see that, for a given pair of adjacent sequences, the
function f can be not unique.) For s = 1

2 in (j) we obtain (c).
Also a certain convergent and monotonic sequence admits no an unique

adjacent pair; if (an)n and (bn)n are as in the definition, then, for any β1 > β
(β1 ∈ I), the sequence n 7→ f(β1, n) is a pair of (an)n; also, for any α1 < α
(α1 ∈ I), the sequence n 7→ f(α1, n) is a pair of (bn)n. To illustrate the
necessity of the condition (iii) of our definition, consider the sequences of
general term:

xn = 1 + 1
2 + 1

3 + . . .+ 1
n− 1 + 1

3n − lnn;
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yn = 1 + 1
2 + 1

3 + . . .+ 1
n− 1 + 1

2n − lnn (see [30]).

Both these sequences converge to the Euler’s constant γ; they are obtained
modifying not the logarithm (as in [4], [13]), but the last term of the harmonic
sum Hn. The sequence (xn)n is strictly increasing and the sequence (yn)n
is strictly decreasing. Also, we can choose the function f : R × N → R,
f(t, n) = Hn−1 + t

n − lnn and the values α = 1
3 and β = 1

2 . But the sequences
(xn)n and (yn)n are not adjacent because the condition (iii) from definition
is not satisfyied; we have: lim

n→∞
yn−γ
γ−xn

= 0. [More precisely, we observe that
lim
n→∞

n2(γ − yn) = 1
12 and lim

n→∞
n(γ − xn) = 1

6 . All the three last results can
be obtained using the so called lemma of Stolz-Cesàro for the case 0

0 (see [9,
p. 54] and [17]). In [30] the two-estimate 1

12(n+1)2 < γ − yn < 1
12n2 is proved.

The explanation consists in the asymptotic expansion of Hn, namely:

Hn = lnn+ γ + 1
2n + 1

12n2 + . . .]

3. A SPECIAL CASE

For some strictly monotonic, convergent sequences the finding of an adjacent
pair may appear sometime unexpected. So, the sequence (bn)n of general term
bn = n

√
n, which tends to 1 and is strictly decreasing (for n ≥ 3) can not have as

adjacent pair the sequence of general term an = n+1
√
n, because this, although

tends to 1, is also strictly decreasing (for n ≥ 3). A possible adjacent pair of
(bn)n is the sequence an = 1

n√n , (n ≥ 3) which tends strictly increasing to 1;
in this case I = R and f(t, n) = ( n

√
n)t with the values α = −1, β = 1; the

conditiion (iii) is also satisfyied.

4. SOME TWO-SIDED ESTIMATIONS WHICH DESCRIBE THE FIRST ORDER OF

CONVERGENCE

The order of convergence of the majority of the sequences of the Section 1
can be described by certain pairs of two-sided estimations. So, we have:
• for (a):

(4) e
2n+ 2 < e−

(
1 + 1

n

)n
<

e
2n+ 1; (see [16, p. 38], [27])

(4′) e
2n+ 1 <

(
1 + 1

n

)n+1
− e < e

2n ; (see [25])

• for (c):

(5) 1
2
√
n+ 1

< a− an <
1

2
√
n

;
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(5′) 1
2
√
n+ 1

< bn − a <
1

2
√
n
, (see [28])

• for (g):

(6) 1
4n+ α

< ln 2− an <
1

4n+ 1 (α > 1); (see [31])

(6′) 1
4n+ β

< bn − ln 2 < 1
4n+ 3 (β > 3);

• for (h):

(7) 1
2ne <

1
e −

(
1− 1

n

)n+1
<

1
(2n− 1)e ; (see [14], [15])

(7′) 1
(2n− 1)e <

(
1− 1

n

)n
− 1

e <
1

(2n− 2)e (n ≥ 2) (see [14], [15]),

• for (i):

(8) 1
2n+ 1 < (Hn − lnn)− γ < 1

2n ; (see [26])

(8′) 1
2n+ 2 < γ − (Hn − ln(n+ 1)) < 1

2n+ 1 .

So, for the examples (5) and (5′), we have a−an = O( 1√
n

), bn−a = O( 1√
n

),
and for all the other the median term of the two sided estimations is O( 1

n)
(recall that αn = O(βn) if it exists a constant C > 0 and n0 ∈ N such that
|αn| ≤ C|βn|, for all n ≥ n0).

5. THE FIRST ITERATED LIMIT

We recall now some basic facts of the asymptotic analysis; we present its
directly for the sequences, i.e. for the functions of natural variable, in a
neighborhood of the unique accumulation point of the domain of definition N,
of the sequences, namely ∞.

If (xn)n and (yn)n are two sequences we call that these are asymptotic
equivalent (and we write xn ∼ yn) if lim

n→∞
xn/yn exists and is a finite and

different of 0 number.
Consider now a convergent sequence (xn)n = (x(n))n with the limit l. A

sequence (uk)k of functions of natural variable n, uk = uk(n), k = 0, 1, 2, . . .,
with n ∈ N is called to be an asymptotic scale for the given sequence (xn)n
if it exists a sequence of real numbers (lk)k, where l0 = l, such that, for any
k ∈ N, we have:

xn ∼ l0 + l1u1(n) + l2u2(n) + . . .+ lkuk(n),
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where, for every j = 0, 1, . . . , k−1, we have uj+1 = o(uj), i.e. lim
n→∞

uj+1(n)
uj(n) = 0.

The coefficients l1, l2, l3,. . . , are also called the iterated limits of sequence
(xn)n (with respect to the asymptotic scale (uk)k). (See the expository books
of Copson [2], De Bruijn [3], Erdely [5], van der Corput [19]–[24].)

All our inequalities of the section 3 implies that, for two adjacent sequences,
the first iterated limit (related to the same function n 7→ u1(n) of a given
asymptotic scale of functions of natural variable uk = uk(n), k = 0, 1, 2, . . .)
is the same. So, we have:
• for (a):

(9) lim
n→∞

n
(
e−

(
1 + 1

n

)n) = e
2 ;

(9′) lim
n→∞

n
((

1 + 1
n

)n+1 − e
)

= e
2 ;

• for (c):
(10) lim

n→∞

√
n(l − an) = 1

2 ; (10′) lim
n→∞

√
n(bn − l) = 1

2 ;

• for (g):
(11) lim

n→∞
n(ln 2− an) = 1

4 ; (11′) lim
n→∞

n(bn − ln 2) = 1
4 ;

• for (h):

(12) lim
n→∞

n

(
1
e −

(
1− 1

n

)n+1
)

= 1
2e ;

(12′) lim
n→∞

n
((

1− 1
n

)n
− 1

e

)
= 1

2e ;

• for (i):
(13) lim

n→∞
n (γ − (Hn − ln(n+ 1))) = 1

2 ;

(13′) lim
n→∞

n ((Hn − lnn)− γ) = 1
2 .

We can present an explanation of this fact.

Proposition 2. If (an)n and (bn)n are two adjacent sequences, then, for
any asymptotic scale (uk)k (the same for both the sequences), its first iterated
limits are equal.

Proof. Let l1 and λ1 be the first iterated limits of (an)n and (bn)n. Suppose,
ad absurdum, that l1 6= λ1. Then we have:

lim
n→∞

bn − l
l − an

=
lim
n→∞

u1(n)(bn − l)
lim
n→∞

u1(n)(l − an) = λ1
l1
6= 1,

a contradiction! Therefore l1 = λ1.



7 Pairs of adjacent sequences 51

This shows for what, in all the previous two-sided estimations, the principal
coefficient must be the same. �

6. SOME RESULTS

We can give now some general results concerning the order of convergence
of the sequences of adjacent pairs.

Proposition 3. Let (an)n and (bn)n be two adjacent sequences. If f admits
a partial derivative respecting the variable t and, for any n ∈ N, it exists
mn,Mn ∈ R, mn < Mn such that:

mn ≤
∂f

∂t
(t, n) ≤Mn (for any t ∈ I).

Then:
(β − α)mn ≤ bn − an ≤ (β − α)Mn (for any n ∈ N).

Proof. Let n ∈ N be fixed. So we can consider the function t 7→ f(t, n) as
a function of one variable t and f ′(t, n) = ∂f

∂t (t, n). In view of the mean value
theorem of Lagrange, there exists τ ∈ (α, β) such that:

bn − an = f(β, n)− f(α, n) = ∂f

∂t
(τ, n)(β − α),

which gives our conclusion. �

Corollary 4. In the same hypotesis we have:
l − an < (β − α)Mn, bn − l < (β − α)Mn

(because l − an < bn − an and bn − l < bn − an).

7. THE CASE OF CONTINUATION

For many sequences of real numbers (an)n≥1 it is possible to find a function
g : [1,∞) → R such that g(n) = an, for any n ∈ N, called a continuation of
the sequence on the positive real axis.

Two of nontrivial examples are the factorial and the harmonic sum.
So, for an = n!, the continuation to [0,∞) is made by the Γ function of

Euler,
Γ(x) =

∫ ∞
0

tx−1e−tdt, x ≥ 1.

As Γ(x + 1) = xΓ(x) and Γ(1) = 1, we have Γ(n + 1) = n!. Therefore the
function g : [0,∞)→ R, g(x) =

∫∞
0 txe−tdt is the continuation of the factorial

on the positive axis [0,∞).
The functiom Γ is also logarithmically-convex. A beautiful theorem of Bohr

and Mollerup characterizes completely the function: if f : [0,∞) → [0,∞)
satisfies the functional equation f(x + 1) = xf(x), is logarithmically-convex
and f(1) = 1, then f = Γ.
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For the sequence (Hn)n≥1 of the harmonic sums, the continuation function
is H : (0,∞) → R, defined by the equality H(x) = ψ(x + 1) − γ, where ψ is
the logarithmic derivative of Γ, ψ(x) = Γ′(x)/Γ(x), and γ is the constant of
Euler.

Suppose now that the adjacent sequences (an)n and (bn)n admits continu-
ations on [1,∞). In this case the function f : I × N → R admits a natural
continuation on I × [1,∞).

Proposition 5. Let (an)n≥1 and (bn)n≥1 be two sequences which admit
continuations to [1,∞) and for which it exists a function f which satisfies the
conditions (i) and (ii) of the definition. If f admits a partial derivative and it
exists in R lim

x→x0

∂f
∂x (α, x) = lim

x→x0

∂f
∂x (β, x) 6= 0, then the sequences (an)n and

(bn)n are adjacent.

Proof. The sequences of general term bn− l, respectively l− an has strictly
positive terms and tend decreasing to zero. We obtain:

lim
x→x0

(bn+1−l)−(bn−l)
(an+1−l)−(an−l) = lim

x→x0

f(β,n+1)−f(β,n)
f(α,n+1)−f(α,n) = lim

x→x0

∂f
∂x (β, ν1)
∂f
∂x (α, ν2)

where ν1 and ν2 are contained in the interval (n, n+ 1) and tend to ∞ when
n → ∞. From the hypotesis, the last limit is equal to 1. According to
the lemma of Stolz-Cesàro for the case 0

0 (see [9, p. 56], [17]) we have the
conclusion. �
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