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ASYMPTOTIC PROPERTIES AND BEHAVIOR
OF SOME NONTRIVIAL SEQUENCES

PAUL BRACKEN∗

Abstract. Convergence properties and asymptotic behavior of several real se-
quences are investigated analytically. Some remarkable properties of these se-
quences are established including their limits.
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1. INTRODUCTION.

The investigation of the general properties and behavior of sequences is a
subject that is always of interest and makes use of many tools and ideas from
analysis. It is the objective here to study some related sequences none of which
is easy to study analytically [1, 2]. These sequences are defined on the natural
numbers by an analytic formula and lead to many interesting consequences.
Asymptotic analysis is very effective, for example as a method of determining
limiting behavior [2, 3].

Let us start by defining the two main sequences discussed here at the outset.
The first sequence to be studied here is referred to as (zn) and is defined for
all n ∈ N by the equation

zn = (n+ 1)
1

n+1 − 1− log(n)
n .(1)

There is another sequence somewhat more untractable than (1) and it is de-
fined for n ∈ N by the formula

xn =
n∑
k=1

k
1
k − n− 1

2 log(n)2.(2)

There is also a version similar to (2) that is involves a definite integral to define
it and it is considered last. This sequence is defined for n ∈ N as follows

βn =
∫ n

1

(
x

1
x − 1− log(x)

x

)
dx.(3)
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These sequences will now be studied in turn. It will be seen that infinite series
also play a major role here [4, 5, 6]. There has been interest recently in the
study of various kinds of sequences [7, 8]. It is also worth mentioning that
the asymptotic expansions that appear in Theorem 1, for example, can be
generated by means of symbolic manipulation.

2. DISCRETE SEQUENCES.

Theorem 1. The sequence (zn) consists of terms which are strictly positive
and which decrease monotonically from above. The limit of sequence (zn) as
n→∞ is zero.

Proof. The claim can be verified numerically to n = 100 with z100
.=

0.00070262816 . . . quite easily. Using Maple, the accuracy of numerical cal-
culations can be augmented by setting digits accordingly. For values of n
larger than this, (zn) admits the following asymptotic expansion,

zn = 1
n2

[
(1

2 log(n)− 1) log(n) + 1
n(1

6(log(n)− 6) log(n)2 + 3(4 log(n)− 3))
]

+ 1
24n4

[
(log(n)− 12) log(n)3 + 48(log(n)− 7

2) log(n) + 56
]

+O( log(n)5

n5 ).(4)

For n > 100, the first term inside the brackets is positive and behaves
like log(n)2. In comparison with the first term, the second and third terms
approach zero as n grows. More over, the second term is positive for log(n) >
6, and the third term as well once log(n) > 12. Combining the numerical work
with (4), since (log(n)/n)5 < 2 · 10−7 for all n > 100, it can be concluded that
the sequence zn > 0 for all n ∈ N.

To show that (zn) is a decreasing sequence, define the function

g(x) = (x+ 1)
1

x+1 − 1− log(x)
x .(5)

The sequence (zn) is recovered by putting x = n in (5). Since g(x) has a
derivative when x ∈ (0,∞), the derivative is found to be

g′(x) = −(x+ 1)
1

x+1
( log(x+1)−1

(x+1)2
)

+ log(x)−1
x .(6)

It can be verified that g′(n) < 0 for 1 ≤ n ≤ 100. Moreover, g′(n) admits the
following asymptotic expansion,

g′(n) =− 1
n3
[
(log(n)− 3) log(n) + 3 + 1

2n((log(n)− 7) log(n)2 + 16 log(n)− 13)

+ 1
6n2 ((log(n)− 13) log(n)3 + (5 log(n)− 108) log(n)

]
+O( log(n)5

n6 ).(7)

The first terms inside the first bracket grows like log(n)2 whereas the second
and third terms become positive too and continue to approach zero as n grows.
This implies that the derivative of g(x) is negative, and therefore zn is a
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decreasing sequence. From the definition (1), it is clear that in (1) the first
two terms and the last approach zero as n gets large and in fact

lim
n→∞

zn = 0.

This proves the claim. �

The sequence (xn) is somewhat more challenging and the next theorem
begins the study of this sequence.

Theorem 2. The sequence (xn) defined in (2) has positive values and is
strictly increasing for all n ∈ N.

Proof. Consider the difference xn+1 − xn. It is calculated from (2) to be
exactly

xn+1 − xn = (n+ 1)
1

n+1 − 1− 1
2
(

log(n+ 1)2 − log(n)2)(8)

By the mean value theorem, there exists a τn ∈ (n, n+ 1) such that

log(n+ 1)2 − log(n)2 = 2 log(τn)
τn

.(9)

Since the function log(x)/x is strictly decreasing for x > 3, there are the
inequalities

log(n+1)
n+1 < log(τn)

τn
< log(n)

n .(10)

Using (9) and (10) in (8), it is concluded that

xn+1 − xn > (n+ 1)
1

n+1 − 1− log(n)
n .(11)

The right-hand side of (11) is exactly (1), the sequence (zn). By Theorem 1,
it is known that zn > 0 for all natural numbers. Applying Theorem 1 to (11),
it follows that xn+1−xn > 0 or xn+1 > xn. This is stating that sequence (xn)
is strictly increasing. Since x1 > 0 and (xn) is strictly increasing, it has to be
that xn > 0 for all n ∈ N. �

From (8) it follows that

xn+1 < xn + (n+ 1)
1

n+1 − 1.(12)

The last two terms on the right of (12) approach zero as n gets large. If all xn
can be bounded by a large constant for all n up to n = N , then (12) implies
that xN+1 can be bounded by the same constant. Therefore, (xn) is strictly
increasing and bounded, so it has to converge by the monotone convergence
theorem.

In order to obtain the limit, it is necessary to be able to place bounds
on certain sums in what follows. To do this it is useful to recall the Euler
summation formula.
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Theorem 3 (Euler Summation Formula). For m ≤ n,

(13)
n∑

k=m
f(k) =

∫ n

m
f(x) dx+ 1

2 [f(m)+f(n)]+ 1
12 [f ′(n)−f ′(m)]+ρ(f ;m,n),

with

|ρ(f ;m,n)| ≤ 1
120

∫ n

m
|f ′′′(t)| dt.

In order to calculate the limit, it is necessary to expand this sequence in
the following way. To begin, for N ≥ 1 we can write

xN =
N∑
k=1

k
1
k −N − 1

2 log(N)2 =
N∑
k=1

∞∑
m=0

1
m!
( log k

k

)m −N − 1
2 log(N)2

=
N∑
k=1

∞∑
m=1

1
m!
( log k

k

)m − 1
2 log(N)2

=
N∑
k=1

log k
k −

1
2 log(N) +

∞∑
m=2

1
m!

N∑
k=1

( log k
k

)m
.(14)

To estimate the k-dependent series in (14), the Euler Summation formula is
used. For the first series in (14), we have

N∑
k=1

log k
k =

∫ N

1
log x
x dx+ log(N)

2N +O( log(N)2

N2 ) = 1
2 log(N)2 + log(N)

2N

+O( log(N)2

N2 ).(15)

For the last series in (14), the following integral for m > 1 is required,∫ N

1

(log x)m

xm dx =
∫ log(N)

0
ume−(m+1)u du

=
∫ ∞

0
ume−(m−1)u du−

∫ ∞
log(N)

ume−(m−1)u du

= m!
(m−1)m−1 −

∫ ∞
log(N)

ume−(m−1)u du.(16)

For each m ≥ 2 the remaining integral on the right side of (16) approaches
zero as N →∞. Consequently, the final sum in xN takes the following form,

∞∑
m=2

1
m!

N∑
k=1

( log k
k

)m =

=
∞∑
m=2

1
(m−1)m+1 −

∞∑
m=2

1
m!

∫ ∞
log(N)

ume−(m−1)u du+O
(
( log(N)

N )m
)
.(17)
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Substituting (15) and (17) into (14), we obtain that

xN =
∞∑
n=1

1
nn+2 −

∞∑
m=2

1
m!

∫ ∞
log(N)

ume−(m−1)u du+O
( log(N)

N

)
.(18)

The result in (18) is presented in the following Theorem.

Theorem 4. The sequence (xn) for n ∈ N defined by (2) approaches a finite
limit which is given by

lim
n→∞

xn =
∞∑
n=1

1
nn+2 .(19)

3. INTEGRAL VERSION RELATED TO THESE SEQUENCES.

There is an analogue of the sequence defined in (2) which is worth studying.
This sequence employs a definite integral in its definition rather than a sum.
To motivate the definition of this sequence, begin by defining the sequence
(In) in the following form,

In =
∫ n

0
(x

1
x − 1) dx.(20)

Writing the function x1/x in the form of an exponential, expanding this ex-
ponential and then using some substitutions, equation (20) can be put in the
following form,

In =
∫ n

1
(x

1
x − 1) dx =

∫ n

1

( ∞∑
k=0

1
k!
( log(x)

x

)k − 1) dx

=
∫ ∞

1

∞∑
k=1

1
k!
( log(x)

x

)k
dx =

∫ n

1

log(x)
x dx+

∞∑
k=2

1
k!

∫ n

1

( log(x)
x

)k
dx(21)

= 1
2 log(n)2 +

∞∑
k=2

1
k!

∫ log(n)

1
uke−(k−1)u du

= 1
2 log(n)2 +

∞∑
k=2

1
k!

1
(k−1)k+1

∫ (k−1) log(n)

0
tke−t dt.

Based on the final equation in (21), since the series on the right has to converge,
define the following sequence for n ∈ N already introduced in (3),

βn =
∫ n

1

(
x

1
x − 1− log(x)

x

)
dx.

It is desired to put βn in a form in which its behavior for large n is clear and
which implies the limit exists and permits its evaluation. Using the integral
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form of the gamma function, it is clear that

βn =
∞∑
k=2

1
k!

1
(k−1)k+1

( ∫ ∞
0

tke−t dt−
∫ ∞

(k−1) log(n)
tke−t dt

)
=
∞∑
k=2

1
(k−1)k+1 −

∞∑
k=2

1
k!

1
(k−1)k+1

∫ ∞
(k−1) log(n)

tke−t dt

=
∞∑
k=2

1
(k−1)k+1 − 1

2n(log(n)2 + 2 log(n) + 2)

−
∞∑
k=3

1
k!

1
(k−1)k+1

∫ ∞
(k−1) log(n)

tke−t dt.(22)

The second term on the right-hand side approaches zero as n → ∞. The
remaining series on the right side also converges for each large n and in fact
approaches zero in the limit as well. It is not hard to give support to this
claim by developing the following rough upper bound∫ ∞

(k−1) log(n)
tke−te−(t−1) dt ≤

≤ ((k − 1) log(n))ke−(k−1) log(n)
∫ ∞

(k−1) log(n)
e−(t−1) dt

= (k−1)k

nk−1 (log(n))k (e(log(n))−(k−1)+1) = e (k − 1)k (log(n))k

(nk−1)2

≤ e (k − 1)k nk

n2k−2 .(23)

Substituting this into the sum in (22), we have the upper bound
∞∑
k=3

1
k!

1
(k−1)k+1

∫ ∞
(k−1) log(n)

tke−t dt <e
∞∑
k=3

1
k!(k−1)

1
nk−2

<e
∞∑
k=3

nk−2

(k−2)! < 3 · (e1/n − 1).(24)

This implies that the series on the left of (24) is squeezed to zero as n→∞.
With these results, it is possible to quickly prove the following theorem.

Theorem 5. The sequence βn defined by (3) is increasing and has a finite
limit which is given by

lim
n→∞

βn =
∞∑
n=1

1
nn+2 .(25)

Proof. From the last term in (21), sequence βn is given by

βn =
∞∑
k=2

1
k!

1
(k−1)k+1

∫ (k−1) log(n)

0
tke−t dt.(26)
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Hence (26) implies that βn is increasing because the integrand is strictly posi-
tive on (0,∞) and the upper limit on the integral grows like log(n). Since the
right side of the inequality in (24) is finite the remainder term in (22) con-
verges and since it converges to zero as noted already, this implies the limit
of sequence βn in (3) exists. Based on result (22), the limit must be given by
(25). �
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