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OPTIMAL PROPERTIES FOR DEFICIENT QUARTIC SPLINES
OF MARSDEN TYPE

A.M. BICA∗, D. CURILĂ-POPESCU∗∗ and M. CURILĂ∗∗∗

Abstract. In this work, we obtain an improved error estimate in the interpola-
tion with the Hermite C2-smooth deficient complete quartic spline that has the
distribution of nodes following the Marsden type scheme and investigate the pos-
sibilities to compute the derivatives on the knots such that the obtained spline
S ∈ C1[a, b] has minimal curvature and minimal L2-norm of S′ and S′′′. In each
case, the interpolation error estimate is performed in terms of the modulus of
continuity.
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1. INTRODUCTION

Motivated by the nice properties of complete cubic splines, and trying to
increase the degree of C2-smooth complete spline interpolant, but preserving
the bandwidth of the diagonally dominant system, Howell introduced in [9]
the deficient complete quartic spline that match the interpolated function
f ∈ C[a, b] on the interpolation nodes and on midpoints of a grid following
the Marsden scheme (see [17] and [25]). More precisely, considering a grid

a = x0 < x1 < . . . < xn−1 < xn = b

and the midpoints zi = xi−1/2 = xi−1+xi

2 , i = 1, n, Howell proved the existence
and uniqueness of the deficient quartic spline S ∈ C2[a, b] taking prescribed
values on xi, i = 0, n and on xi−1/2, i = 1, n, with the endpoint interpolation
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conditions S′ (a) = f ′ (a) , S′ (b) = f ′ (b) . Moreover, by the continuity condi-
tion S ∈ C2[a, b] the spline must satisfy the tridiagonal system of equations

− 1
hi
·mi−1 +

(
4
hi

+ 4
hi+1

)
·mi − 1

hi+1
·mi+1 =

(1)

= 5
h2

i
f (xi−1)− 5

h2
i+1
f (xi+1)+

( 11
h2

i
− 11

h2
i+1

)
f (xi)+ 16

h2
i+1
f(xi+1/2)− 16

h2
i
f(xi−1/2)

= di, i = 1, n− 1

with known m0 = f ′ (a) , mn = f ′ (b), where hi = xi − xi−1, i = 1, n, and
mi = S′ (xi) , i = 0, n. With the notation yi = f (xi) , i = 0, n, and t =
x−xi−1
hi

∈ [0, 1] for x ∈ [xi−1, xi], this quartic spline has the following expression
on each interval [xi−1, xi], i = 1, n :

S (x) = (1− t)2 (1− 2t) (4t+ 1) · yi−1 + 16t2 (1− t)2 · yi−1/2+
(2)

+ t2 (2t−1) (5−4t) yi + hit (1−t)2 (1−2t)mi−1 + hit
2 (1−t) (1−2t)mi

= Ai (x) · yi−1 +Bi (x) · yi−1/2 + Ci (x) · yi +Di (x) ·mi−1 + Ei (x) ·mi.

Solving this system, the local derivatives mi, i = 0, n are uniquely determined.
Concerning the interpolation error estimate, in [10] was established the fol-
lowing result.

Theorem 1. [10, Th.2] Let f ∈ C5 [0, 1]. Then we have:

|f (x)− S (x)| ≤ C0h5

5! · max
x∈[0,1]

∣∣∣fV (x)
∣∣∣ , x ∈ [0, 1]

where

C0 =
(

1
30 +

√
30
3

)
·
√(

1
4 −

1√
30

)
= max

x∈[0,1]
|c (t)|(3)

c (t) = 3t2(1−2t)(1−t)2+t(1−t)(1−2t)
6 .

Also we have∣∣f ′ (xi)− S′ (xi)∣∣ ≤ h4

6! · max
x∈[0,1]

∣∣∣fV (x)
∣∣∣ , i = 1, n− 1.(4)

Furthermore, the constant C0 in (3) cannot be improved for an equally spaced
partition. Inequality (4) is also best possible. Also we have∣∣f ′ (x)− S′ (x)

∣∣ ≤ C1
h4

6! · max
x∈[0,1]

∣∣∣fV (x)
∣∣∣ .(5)

In [9] Howell conjectured that C1 = 1. Volkov [24] proved that this con-
jecture holds true. For much less smooth class of functions f ∈ C[a, b] and
in the case of uniform partition, considering a simplified endpoint condition
S′ (a) = S′ (b) = 0, the corresponding error estimate is obtained in terms of
the modulus of continuity as follows:
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Theorem 2 ([9], [10]). Let f ∈ C[a, b]. If {xi}ni=0 is the partition of equally
spaced knots, then for xi−1 ≤ x ≤ zi = xi−1+xi

2 and t = x−xi−1
hi

, i = 1, n, we
have

|f (x)− S (x)| ≤ c (t)ω (f, h) ≤ c2ω (f, h) , t ∈ [0, 1
2 ](6)

and for xi ≤ x ≤ zi+1, or 1
2 ≤ t ≤ 1

|f (x)− S (x)| ≤ c (1− t)ω (f, h)(7)

where c (t) = 1 + 13
3 t− 3t2 − 58

3 t
3 + 16t4 and c2 = max

t∈[0,12 ]
|c (t)| ∼= 1.6572.

In [9] the author had extended this result for nonuniform partitions con-
sidering the constant β = max{hi : i = 1, n}/min{hi : i = 1, n} and
h = max{hi : i = 1, n}, obtaining:

Theorem 3 ([9, Th. 4.1.3]). Let f ∈ C[a, b] and let S ∈ C2[a, b] be the
quartic spline (2). Then for xi−1 ≤ x ≤ zi = xi−1+xi

2 (i.e. for 0 ≤ t ≤ 1
2 with

t = x−xi−1
hi

)

|f (x)− S (x)| ≤ c1 (t)ω (f, h)(8)

and for xi ≤ x ≤ zi+1 (i. e. for 1
2 ≤ t ≤ 1)

|f (x)− S (x)| ≤ c1 (1− t)ω (f, h)

where c1 (t) = 1 + 10t2 − 28t3 + 16t4 + 8
3
(
β2 + β

)
t (1− t) (1− 2t) .

Error estimates for C3-smooth quartic splines and for quartic splines that
on midpoints matches with the first derivative were established in [4], [5], [12],
[18], [20] and [21]. In [20], Theorem 1 is generalized by replacing the position
of midpoints to a general type of interior points of the form zi = xi−1 + θhi,
i = 1, n with θ ∈ [1

4 ,
3
4 ]. In this paper we improve the error estimates (6)–

(7) obtaining a smaller constant in terms of the modulus of continuity in the
case f ∈ C[a, b], and investigate the corresponding error estimates for the
situations when the endpoint condition S′ (a) = S′ (b) = 0 is replaced by other
classical ones such as S′′ (a) = S′′ (b) = 0, S′ (a) = f ′ (a) and S′ (b) = f ′ (b),
or S′′ (a) = f ′′ (a) and S′′ (b) = f ′′ (b) .

On the other hand, in the present work we investigate the posibilities to
determine the local derivatives mi, i = 0, n, on the nodes of the deficient
quartic spline S ∈ C1[a, b] given in (2), such that the mean curvature√√√√ n∑

i=1

∫ xi

xi−1
(S′′ (x))2 dx

and the functionals

Jk (S) =
n∑
i=1

∫ xi

xi−1

(
S(k) (x)

)2
dx
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for k ∈ {1, 2, 3}, are minimized.
Shape preserving properties for quartic splines were investigated in [7], [22]

and [26]. Optimal properties for quartic splines were obtained in [6], [14], [15],
and [18]. In [14] and [15] the properties of C3-smooth quartic splines having
interpolation points ti, i = 1, n with xi−1 < ti < xi, different by the grid nodes,
were investigated. Natural, complete and periodic C3-smooth quartic splines
in connection with the minimization of the curvature are considered in [14],
while the parameters of spline are determined in [15] under the minimization
of the functionals Jk (S), k ∈ {0, 1, 2, 3}, by using quadratic programming and
the technique of pseudoinverse solution of linear systems in a similar way as
was performed in [13] for cubic splines.

The paper is organized as follows. In Section 2 we obtain some improve-
ments of the error estimates presented in [10] and in [9], regarding the inter-
polation of a continuous function f ∈ C[a, b] by the deficient complete quartic
spline S ∈ C2[a, b] given in (2). Section 3 is devoted to the optimal properties
of the deficient quartic spline S ∈ C1[a, b] in connection with the minimization
of the functionals Jk (S) above presented, of a special interest being the min-
imal curvature and the minimal slope of the graph of S. In order to illustrate
the obtained theoretical results, a numerical example is presented in Section 4
and some concluding remarks are pointed out in the last section.

2. ERROR ESTIMATES FOR DEFICIENT QUARTIC SPLINES

Consider the quartic spline S ∈ C2[a, b] given in (2) under the endpoint
condition S′ (a) = S′ (b) = 0 interpolating a continuous function f ∈ C[a, b] on
a uniform parition {xi}ni=0 and matching f on the midpoints xi−1/2, i = 1, n. In
that follows, we get an improvement of the estimates (6)–(7) considering both
the cases f ∈ C[a, b] and f ∈ Lip[a, b], where Lip[a, b] = {f ∈ C[a, b] : ∃L > 0
with |f (x)− f (y)| ≤ L |x− y| , ∀x, y ∈ [a, b]}.

Theorem 4. If the quartic spline S presented in (2) interpolates f ∈ C[a, b]
on the uniform partition {xi}ni=0 with the endpoint condition S′ (a) = S′ (b) =
0, then

|S (x)− f (x)| ≤(9)

≤


max
t∈[0, 1

2 ]
|P (t)|ω

(
f, h2

)
+ 1125

8192ω (f, h) , x ∈ [xi−1, xi−1/2]

max
t∈[ 1

2 ,1]
|P (1−t)|ω

(
f, h2

)
+ 1125

8192ω (f, h) , x ∈ [xi−1/2, xi]
i = 1, n

where P (t) = 8t4 − 10
3 t

3 − 11t2 + 16
3 t + 1, and h = b−a

n . If f ∈ Lip[a, b] with
the Lipschitz constant L, then the error estimate becomes

|S (x)− f (x)| ≤ 0.95084 · Lh, ∀x ∈ [a, b].(10)

Proof. Firstly, we observe that Ai (x) ≥ 0, Bi (x) ≥ 0, Ci (x) ≤ 0, Di (x) ≥
0, Ei (x) ≥ 0 for x ∈ [xi−1, xi−1/2] and Ai (x) ≤ 0, Bi (x) ≥ 0, Ci (x) ≥ 0,
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Di (x) ≤ 0, Ei (x) ≤ 0 for x ∈ [xi−1/2, xi]. Since Ai (x) + Bi (x) + Ci (x) = 1,
∀x ∈ [xi−1, xi] we infer that on the interval [xi−1, xi−1/2] we have

|S (x)− f (x)| ≤ |Ai (x) +Bi (x)| ·max
{
|yi−1 − f (x)| , |yi−1/2 − f (x) |

}(11)

+ |Ci (x)| · |yi − f (x)|+ |Di (x) + Ei (x)| ·max{|mi−1| , |mi|}

and on [xi−1/2, xi] we get

|S (x)− f (x)| ≤ |Ai (x)| · |yi−1 − f (x)|(12)
+ |Bi (x) + Ci (x)| ·max{|yi − f (x)| , |yi−1/2 − f (x) |}
+ |Di (x) + Ei (x)| ·max{|mi−1| , |mi|}

with |Di (x) + Ei (x)| = t (1− t) |1− 2t| · h, where t = x−xi−1
h ∈ [0, 1]. For

estimating max{|mi| : i = 0, n} we see that the tridiagonal system (1) becomes
in the case of equally spaced knots:

−1
8 ·mi−1 +mi − 1

8 ·mi+1 = 5(yi−1−yi+1)
8h + 2(yi+1/2−yi−1/2)

h = di

for i = 1, n− 1, with m0 = mn = 0. Intending to estimate |di|, i = 1, n− 1,
we get

|di| ≤
5|yi−1−yi−1/2|

8h + 11|yi−yi−1/2|
8h + 11|yi+1/2−yi|

8h + 5|yi+1/2−yi+1|
8h

≤ 4
h · ω

(
f, h2

)
, ∀i = 1, n− 1

and since the matrix A of the tridiagonal system is diagonally dominant, we
infer that

∥∥A−1∥∥ ≤ 4
3 and then,

‖m‖∞ = max{|mi| : i = 0, n} ≤ ‖A−1‖ ·max{|di| : i = 1, n− 1} ≤ 16ω(f,h
2 )

3h .

Consequently, for the last term in (11) and (12) we get

|Di (x) + Ei (x)| ·max{|mi−1| , |mi|} ≤ t (1− t) |1− 2t| · 16
3 · ω

(
f, h2

)
for all x ∈ [xi−1, xi], i = 1, n. Now, by (11) we obtain

|S (x)− f (x)| ≤

≤
(
(1−t)2 (1−2t) (4t+1) + 16t2 (1−t)2 + 16

3 t (1−t) (1−2t)
)
· ω
(
f, h2

)
+
∣∣∣t2 (2t− 1) (5− 4t)

∣∣∣ω (f, h)

≤ max
t∈[0, 1

2 ]

∣∣∣8t4 − 10
3 t

3 − 11t2 + 16
3 t+ 1

∣∣∣ · ω (f, h2)+ max
t∈[0, 1

2 ]
|Ci (x)| · ω (f, h)

≤ max
t∈[0, 1

2 ]
|P (t)| · ω

(
f, h2

)
+ 1125

8192ω (f, h)
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for x ∈ [xi−1, xi−1/2]. Analogously, by (12) it obtains

|s (x)− f (x)| ≤ max
t∈[ 1

2 ,1]

∣∣∣8t4− 86
3 t

3+27t2− 16
3 t
∣∣∣ · ω (f, h2)+ max

t∈[ 1
2 ,1]
|Ai (x)| · ω (f, h)

≤ max
t∈[ 1

2 ,1]
|P (1− t)| · ω

(
f, h2

)
+ 1125

8192ω (f, h)

when x ∈ [xi−1/2, xi], and the estimate (9) follows. After elementary calculus,
we see that

max
t∈[0, 1

2 ]
|P (t)| = max

t∈[ 1
2 ,1]
|P (1− t)| ' 1.627,

and when f ∈ Lip[a, b], the estimate (9) becomes

|S (x)− f (x)| ≤ 1.627 · Lh2 + 1125
8192 ·Lh ' 0.95084 ·Lh, ∀x ∈ [xi−1, xi], i = 1, n

that is the estimate (10). �

Remark 5. By Theorem 2, the estimate (6) is |s (x)− f (x)| ≤ 1.6572 ·
ω (f, h) , ∀x ∈ [a, b] and when f ∈ Lip[a, b] it becomes |s (x)− f (x)| ≤ 1.6572 ·
Lh. So, the estimate (10) is better because gives a smaller constant in the case
of Lischitzian functions. We can assert that the estimate (9) is better than (6)
because in (9) it appears ω(f, h2 ) near maxt∈[0, 1

2 ] |P (t)| ' 1.627 and the factor
ω(f, h2 ) considerable reduces the error in comparison with ω (f, h) . Therefore
the estimates obtained in Theorem 4 represent an improvement of Theorem 2,
especially in the case of Lipschitzian functions. �

Remark 6. An interesting property of the deficient quartic spline S ∈
C2[a, b] given in (2) can be observed in the case of uniform partition when
integrate this spline over the interval [a, b]. It obtains the corrected Simpson
composite quadrature formula which is exact for polynomials of degree 5 or
less. This corrected quadrature formula is usually obtained by applying the
Richardson extrapolation and Grüss type inequalities (see [16]), or by using a
finite difference technique (see [23]). �

Concerning the estimate from Theorem 3, in the case of nonuniform parti-
tion, we can state the following.

Corollary 7. If the quartic spline S presented in (2) interpolates f ∈
C[a, b] on a nonuniform partition {xi}ni=0 with the endpoint condition S′ (a) =
S′ (b) = 0 and β = max{hi : i = 1, n}/min{hi : i = 1, n}, h = max{hi : i =
1, n}, h = min{hi : i = 1, n}, then

(13) |S (x)− f (x)| ≤
(

9317
8192 + 4

√
3(β2+1)

27

)
· ω
(
f, h2

)
+ 1125

8192 · ω (f, h)

for all x ∈ [a, b].
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Proof. The matrix A of the tridiagonal, diagonally dominant system (1) has∥∥A−1∥∥ ≤ 4
3 and when estimate |di| , i = 1, n− 1, we get

|di| ≤ hi+1
4hi(hi+hi+1) · (5|yi−1 − yi−1/2|+ 11|yi − yi−1/2|)+

+ hi
4hi+1(hi+hi+1)

(
5|yi+1/2 − yi+1|+ 11|yi+1/2 − yi|

)
≤ 4

(hi+hi+1) · [
hi+1
hi
· ω
(
f, hi

2

)
+ hi

hi+1
ω
(
f, hi+1

2

)
]

≤ 4ω(f,h
2 )

(hi+hi+1)

(
β + 1

β

)
≤ 2(β2+1)

βh ω
(
f, h2

)
for all i = 1, n− 1. Then, max{|mi−1| , |mi|} ≤ 8

3h

(
β + 1

β

)
·ω
(
f, h2

)
and since

max
t∈[0, 1

2 ]
|Ai (x) +Bi (x)| = max

t∈[ 1
2 ,1]
|Bi (x) + Ci (x)| = 9317

8192

and max
t∈[0, 1

2 ]
|Ci (x)| = max

t∈[ 1
2 ,1]
|Ai (x)| = 1125

8192 , the maximum values being attained

in t = 5
16 and t = 11

16 , respectively, by (11) and (12) we obtain,

|S (x)− f (x)| ≤

≤ 9317
8192 · ω

(
f, h2

)
+ 1125

8192 · ω (f, h) + max
t∈[0,1]

|Di (x) + Ei (x)| 8(β2+1)
3βh ω

(
f, h2

)
=
(

9317
8192 + h

√
3

18 ·
8(β2+1)

3βh

)
· ω
(
f, h2

)
+ 1125

8192ω (f, h)

=
(

9317
8192 + 4

√
3(β2+1)

27

)
ω
(
f, h2

)
+ 1125

8192ω (f, h)

for all x ∈ [a, b]. �

If we compare the estimate (13) with the result from Theorem 4.1.3 in [9],
since maxt∈[0, 1

2 ] |t (1− 2t) (1− t)| =
√

3
18 and maxt∈[0, 1

2 ]
∣∣16t4 − 28t3 + 10t2 + 1

∣∣
= 9317

8192 + 1125
8192 = 1.2747, we see that the presence in (13) of the factor ω(f, h2 )

instead of ω (f, h) represents an improvement of the result from Theorem 4.1.3
in [9].

The endpoint condition S′ (a) = S′ (b) = 0 imposed in [10] in order to
simplify the study of the error estimate in the case f ∈ C[a, b] can be re-
placed by other classical ones. For instance, in that follows we investigate the
modification of the error estimate when other two supplementary endpoint
conditions are included. In the first case, mentioned in [10], we can consider
S′ (a) = f ′ (a) , S′ (b) = f ′ (b) and the linear system (1) has the central lines

−hi+1·mi−1+hi·mi+1
4(hi+hi+1) +mi =hi+1·(5yi−1−16yi−1/2+11yi)

4hi(hi+hi+1) − hi·(5yi+1−16yi+1/2+11yi)
4hi+1(hi+hi+1)

=di, i = 2, n− 2



120 A. M. Bica, D. Curilă-Popescu and M. Curilă 8

and the first and the last equations becomes

m1 − h1·m2
4(h1+h2) = h2

2(5y0−16y1/2+11y1−f ′(a))
4h1h2(h1+h2) − h2

1(5y2−16y2−1/2+11y1)
4h1h2(h1+h2)

and
− hn·mn−2

4(hn−1+hn) +mn−1 =

= hn·(5yn−2−16yn−1−1/2+11yn−1)−hn·f ′(b)
4hn−1(hn−1+hn) − hn−1·(5yn−16yn−1/2+11yn−1)

4hi+1(hi+hi+1) = dn−1

obtaining the same inequality |di| ≤ 4h
h2 · ω

(
f, h2

)
, i = 2, n− 2 and

|d1| ≤ 4h
h2 · ω

(
f, h2

)
+ h

8h2

∣∣f ′ (a)
∣∣ , |dn−1| ≤ 4h

h2 · ω
(
f, h2

)
+ h

8h2

∣∣f ′ (b)∣∣ .
Then, ‖m‖∞ = max{|mi| : i = 0, n} ≤ 4

3 ·
(

4h
h2 · ω

(
f, h2

)
+ h·m′

8h2

)
and the error

estimate becomes
|S (x)− f (x)| ≤

(
9317
8192 +

(
4
√

3
27 +

√
3·m′
108

) (
1 + β2

))
· ω
(
f, h2

)
+ 1125

8192 · ω (f, h)

for all x ∈ [a, b], where m′ = max{|f ′ (a)| , |f ′ (b)|}.

Remark 8. If f ∈ C1[a, b], then in the case of equally spaced knots this
error estimate is,

(14) |S (x)− f (x)| ≤
(

11 567
16 384 + 11

√
3

72

)
·M ′h ' 0.97061 ·M ′h, ∀x ∈ [a, b]

where M ′ = max{|f ′ (x)| : x ∈ [a, b]}. �

Taking the natural type endpoint condition S′′ (a) = S′′ (b) = 0 the linear
system (1) receives two supplementary equations

(15)

 m0 − 1
4m1 = −11y0+16y1−1/2−5y1

4h1
= d0

−1
4mn−1 +mn = 5yn−1−16yn−1/2+11yn

4hn
= dn

obtaining the estimates |d0| ≤ 4
h · ω

(
f, h2

)
, |dn| ≤ 4

h · ω
(
f, h2

)
and the inter-

polation error estimate is the same as in (13).
We can consider now, the second type of complete endpoint conditions

S′′ (a) = f ′′ (a) , S′′ (b) = f ′′ (b) when the values f ′′ (a) and f ′′ (b) are given,
the supplementary equations becoming m0 − 1

4m1 = −11y0+16y1−1/2−5y1
4h1

+ h1
8 f
′′ (a) = d0

−1
4mn−1 +mn = 5yn−1−16yn−1/2+11yn

4hn
+ hn

8 f
′′ (b) = dn

with |d0| ≤ 4
h ·ω

(
f, h2

)
+ h

8 |f
′′ (a)| , and |dn| ≤ 4

h ·ω
(
f, h2

)
+ h

8 |f
′′ (b)| . In this

case, the error estimate is

|S (x)− f (x)| ≤
(

9317
8192 + 4

√
3(1+β2)

27

)
· ω
(
f, h2

)
+ 1125

8192 · ω (f, h) + m′′
√

3h2

108

where m′′ = max{|f ′′ (a)| , |f ′′ (b)|}.



9 Deficient quartic splines of Marsden type 121

Remark 9. When the values f ′′ (a) and f ′′ (b) are not available, in order to
preserve O

(
h5) accuracy, we can consider the endpoint conditions S′′ (x0) =

p′′0 (x0), S′′ (xn) = p′′n (xn), where p0 is the quartic Lagrange polynomial inter-
polating the points (x0, y0) , (x1−1/2, y1−1/2), (x1, y1) , (x2−1/2, y2−1/2), (x2, y2)
and pn is the quartic Lagrange polynomial interpolating the points (xn−2, yn−2) ,
(xn−1−1/2, yn−1−1/2), (xn−1, yn−1) , (xn−1/2, yn−1/2), (xn.yn). Based on [11],
we have f ′′ (x0) = p′′0 (x0) + u′′0 (x0)

5! · f (5) (ξ1) and f ′′ (xn) = p′′n (xn) + u′′n(xn)
5! ·

f (5) (ξn), where ξ1 ∈ (x0, x2), ξn ∈ (xn−2, xn), and

u0 (x) = (x− x0) (x− x1−1/2) (x− x1) (x− x2−1/2) (x− x2)
un (x) = (x− xn−2) (x− xn−1−1/2) (x− xn−1) (x− xn−1/2) (x− xn) .

Similar treatment at endpoints can be realized when the values f ′ (a) and
f ′ (b) are not available, by considering the conditions S′ (x0) = p′0 (x0) and
S′ (xn) = p′n (xn) . �

3. OPTIMAL PROPERTIES FOR DEFICIENT QUARTIC SPLINES

3.1. Minimal mean curvature. In this section we consider the deficient
quartic spline (2) S ∈ C1[a, b] and in this case the spline local derivatives
mi, i = 0, n remain free. We will determine mi, i = 0, n, in order to minimize
the functionals

Jk (S) =
n∑
i=1

∫ xi

xi−1

(
S(k) (x)

)2
dx, k ∈ {1, 2, 3}.

According to [2],
√
J1 (S) is an average of the slope of the graph of S and√

J2 (S) represents the mean curvature of the graph of S, while
√
J3 (S) is re-

lated to the mean curvature of the graph of S′. Since S(4) is piecewise constant
discontinuous function, the minimization of J4 (S) is without of interest.

By (2) we see that in each interval [xi−1, xi], i = 1, n we have

S′′ (x) = A′′i (x) yi−1 +B′′i (x) yi−1/2 + C ′′i (x) yi +D′′i (x)mi−1 + E′′i (x)mi

and therefore

J2 (S) (m0,m1, . . . ,mn) =

=
n∑
i=1

xi∫
xi−1

(
S′′ (x)

)2
dx

=
n∑
i=1

xi∫
xi−1

[A′′i (x) yi−1+B′′i (x) yi−1/2+C ′′i (x) yi+D′′i (x)mi−1+E′′i (x)mi]2dx.
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In order to minimize J2 (S) the system of normal equations ∂J2
∂mi

= 0, i = 0, n,
is

m0

x1∫
x0

(
D′′1 (x)

)2
dx+m1

x1∫
x0

D′′1 (x)E′′1 (x) dx =

= −
x1∫
x0

A′′1 (x)D′′1 (x) dx · y0 −
x1∫
x0

B′′1 (x)D′′1 (x) dx · y1−1/2 −
x1∫
x0

C ′′1 (x)D′′1 (x) dx · y1,

mi−1

xi∫
xi−1

E′′i (x)D′′i (x) dx+mi

 xi∫
xi−1

(
E′′i (x)

)2
dx+

xi+1∫
xi

(
D′′i+1 (x)

)2
dx

+

+mi+1

xi+1∫
xi

D′′i+1 (x)E′′i+1 (x) dx =

= −
xi∫

xi−1

E′′i (x) [A′′i (x) yi−1 +B′′i (x) yi−1/2 + C ′′i (x) · yi]dx

−
xi+1∫
xi

D′′i+1 (x) [A′′i+1 (x) yi +B′′i+1 (x) yi+1/2 + C ′′i+1 (x) yi+1]dx, i = 1, n− 1

mn−1

xn∫
xn−1

D′′n (x)E′′n (x) dx+mn

xn∫
xn−1

(
E′′n (x)

)2
dx =

= −
xn∫

xn−1

E′′n (x) [A′′n (x) · yn−1 +B′′n (x) · yn−1/2 + C ′′n (x) · yn]dx

and after elementary calculus becomes

(16)



m0 − 1
6m1 = −47y0+64y1−1/2−17y1

18h1
= d′′0

− hi+1·mi−1
6(hi+hi+1) +mi − hi·mi+1

6(hi+hi+1) =

= hi+1·(17yi−1−64yi−1/2)
18hi(hi+hi+1) + 47yi

18 ·
(

1
hi
− 1

hi+1

)
+ hi·(64yi+1/2−17yi+1)

18hi+1(hi+hi+1)

= d′′i , i = 1, n− 1

−1
6mn−1 +mn = 17yn−1−64yn−1/2+47yn

18hn
= d′′n.

We see that the matrix A′′ of this system is strictly diagonally dominant with
the index of diagonally dominance 1/6, better than for the system (1), and∥∥∥(A′′)−1

∥∥∥ ≤ 6
5(see [19]). Moreover, since a′′ii > 0 and a′′ij < 0 for i 6= j,

i, j = 0, n, we infer that all elements of the matrix (A′′)−1 are nonnegative.
The strictly diagonally dominance ensures the existence and uniqueness of the
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solution of system (16) and the numerical stability of the LU factorization
method for solving this system. In this way we obtain the following result.

Theorem 10. There is a unique solution (m0,m1, . . . ,mn) which minimize
the functional J2 (S) and the mean curvature of the graph of S, too. The inter-
polation error estimate of the obtained quartic spline S ∈ C1[a, b] interpolating
a function f ∈ C[a, b] is,

(17) |S (x)− f (x)| ≤
(

9317
8192 + 32

√
3β2

135

)
· ω
(
f, h2

)
+ 1125

8192 · ω (f, h)

for all x ∈ [a, b].

Proof. As above, the system of normal equations associated to the func-
tional J2 (S) has unique solution due to the strictly diagonally dominance of
its matrix and this solution can be obtained by applying the iterative algo-
rithm presented in [1, pp. 14–15], for tridiagonal linear systems. Moreover, by
the strictly diagonally dominance of the matrix A′′ we infer that all the di-
agonal minors of the Hessian matrix

(
∂2J2

∂mi∂mj

)
i,j=0,n

are strictly positive and
thus (m0,m1, . . . ,mn) is a real minimum point of J2 (S). For obtaining the
estimate (17) we observe by (16) that∣∣d′′0∣∣ ≤ 47|y1−1/2−y0|+17|y1−1/2−y1|

18h1
≤ 32

9h · ω
(
f, h2

)
,

∣∣d′′n∣∣ ≤ 17|yn−1−yn−1/2|+47|yn−yn−1/2|
18hn

≤ 32
9h · ω

(
f, h2

)
and∣∣d′′i ∣∣ ≤ hi+1(17|yi−1−yi−1/2|+47|yi−yi−1/2|)

18hi(hi+hi+1) + 47hi|yi+1/2−yi|
18hi+1(hi+hi+1)+

+ 17hi|yi+1/2−yi+1|
18hi+1(hi+hi+1) ≤

32hi+1·ω(f,h
2 )

9hi(hi+hi+1) + 32hi·ω(f,h
2 )

9hi+1(hi+hi+1) ≤
32h
9h2 · ω

(
f, h2

)
for all i = 1, n− 1, and consequently, ‖m‖∞ = max{|mi| : i = 0, n} ≤ 64h

15h2 ·

ω
(
f, h2

)
. Similarly as in the proof of Corollary 7 we obtain

|S (x)− f (x)| ≤ 9317
8192 · ω

(
f, h2

)
+ 1125

8192 · ω (f, h) + h
√

3
18 ·

64h
15h2ω

(
f, h2

)
≤
(

9317
8192 + 32

√
3β2

135

)
· ω
(
f, h2

)
+ 1125

8192 · ω (f, h) , ∀x ∈ [a, b].

Since the solution of (16) minimize J2 (S) we infer that it minimize the mean
curvature

√
J2 (S) of the graph of S, too. �

Remark 11. The solution of (16) provides a less smooth quartic spline
S ∈ C1[a, b] with increased deficiency, and for the Marsden’s type quartic
spline S ∈ C2[a, b] given in (2) we cannot obtain neither a natural kind spline,
nor the continuity property S ∈ C3[a, b]. Altough, natural quartic spline can
be obtained with high degree of continuity S ∈ C3[a, b], and a way that leads
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to natural quartic spline were obtained in [3], for the class of interpolating-
derivative splines with minimal J3 (S). For quartic splines S ∈ C3[a, b] with
different type interpolation points ti, i = 1, n with xi−1 < ti < xi, the property
of minimal curvature (minimal J2) was obtained in [14] in connection with the
endpoint type conditions S′′ (a) = S′′ (b) = S′′′ (a) = S′′′ (b) = 0 (natural
quartic spline) and S(j) (a) = f (j) (a) , S(j) (b) = f (j) (b) , j ∈ {0, 1} (complete
quartic spline). �

Concerning the minimal mean curvature
√
J3 (S) of the graph of S′, since

J3 (S) (m0,m1, . . . ,mn) =
n∑
i=1

∫ xi

xi−1
[S′′′ (x)]2dx

the minimization of
√
J3 (S) can be obtained by solving the system of normal

equations ∂J3
∂mi

, i = 0, n. After elementary calculus, this system becomes
(18)

m0 − 13
19m1 = −70y0+157y1−1/2−87y1

19h1
= d′′′0

− 13h3
i+1

19(h3
i +h3

i+1)
·mi−1 +mi −

13h3
i

19(h3
i +h3

i+1)
·mi+1 = d′′′i =

= h3
i+1·(87yi−1−157yi−1/2+70yi)

19hi(h3
i +h3

i+1)
+ h3

i ·(−70yi+157yi+1/2−87yi+1)
19hi+1(h3

i +h3
i+1)

, i = 1, n− 1

−13
19mn−1 +mn = 87yn−1−157yn−1/2+70yn

19hn
= d′′′n

being diagonally dominant and thus has unique solution that minimizes J3 (S).
Since∣∣d′′′0 ∣∣ ≤70|y0−y1−1/2|+87|y1−1/2−y1|

19h1
≤ 157

19h · ω
(
f, h2

)
,∣∣d′′′n ∣∣ ≤ 157

19h · ω
(
f, h2

)
∣∣d′′′i ∣∣ ≤ 157h3

i+1
19hi(h3

i +h3
i+1)

ω
(
f, hi

2

)
+ 157h3

i

19hi+1(h3
i +h3

i+1)
ω
(
f, hi+1

2

)
≤ 157h3

19h4 · ω
(
f, h2

)
,

∀i = 1, n− 1 and since the matrix A′′′ of the linear system (18) has the inverse
with ‖ (A′′′)−1 ‖ ≤ 19

6 , for the solution m = (m0,m1, . . . ,mn) of (18) we obtain
the estimate

‖m‖∞ = max{|mi| : i = 0, n} ≤ 157h3

6h4 · ω
(
f, h2

)
.

In this way it obtains the following result.

Corollary 12. The functional J3 (S) has unique minimum point which
minimize the mean curvature of the graph of the derivative S′. The inter-
polation error estimate of the obtained deficient quartic spline with minimal
curvature of the graph of S′ is,

(19) |S (x)− f (x)| ≤
(

9317
8192 + 157

√
3β4

108

)
·ω
(
f, h2

)
+1125

8192 ·ω (f, h) , ∀x ∈ [a, b].
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3.2. Minimal average slope of the graph. In order to establish the para-
maters mi, i = 0, n, of the quartic spline with minimal average slope of the
graph

√
J1 (S), we minimize the functional J1 (S) which has the expression

J1 (S) (m0,m1, . . . ,mn) =
n∑
i=1

xi∫
xi−1

[S′ (x)]2dx

The corresponding system of normal equations ∂J1
∂mi

, i = 0, n, will be after
some computation,

(20)



m0 + 5
16m1 = −29y0+16y1−1/2+13y1

16h1
= d′0

5hi
16(hi+hi+1) ·mi−1 +mi + 5hi+1

16(hi+hi+1) ·mi+1 =

= −13yi−1−16yi−1/2+16yi+1/2+13yi+1
16(hi+hi+1) = d′i, i = 1, n− 1

5
16mn−1 +mn = −13yn−1−16yn−1/2+29yn

16hn
= d′n

and since the matrix of this system is diagonally dominant, the system (20)
has unique solution. In this way we obtain the following result.

Theorem 13. The functional J1 (S) has unique minimum point
(m0,m1, . . . ,mn) and for the corresponding quartic spline S ∈ C1[a, b] in-
terpolating a function f ∈ C[a, b], we have the following error estimate:

(21) |S (x)− f (x)| ≤
(

9317
8192 + 7

√
3β

33

)
· ω
(
f, h2

)
+ 1125

8192 · ω (f, h) , ∀x ∈ [a, b].

Proof. Based on the strictly diagonal dominance of the matrix A′ of the
system (20) we infer that ‖ (A′)−1 ‖∞ ≤ 16

11 , this system has unique solution
and all the diagonal minors of the Hessian matrix

(
∂2J1

∂mi∂mj

)
i,j=0,n

are strictly
positive. Then, this solution is the unique extremal point of the functional
J1 (S) and it is a minimum point. In order to obtain the error estimate, firstly
we see that∣∣d′0∣∣ ≤29|y1−1/2−y0|+13|y1−y1−1/2|

16h1
≤ 21

8h · ω
(
f, h2

)
,∣∣d′n∣∣ ≤ 21

8h · ω
(
f, h2

)
,

d′i =−13yi−1−16yi−1/2
16(hi+hi+1) + 29yi

16(hi+hi+1) + 16yi+1/2+13yi+1
16(hi+hi+1) − 29yi

16(hi+hi+1)

=13(yi−1/2−yi−1)
16(hi+hi+1) + 29(yi−yi−1/2)

16(hi+hi+1) + 29(yi+1/2−yi)
16(hi+hi+1) + 13(yi+1−yi+1/2)

16(hi+hi+1)

and consequently,∣∣d′i∣∣ ≤ 42·ω(f,hi
2 )

16(hi+hi+1) + 42·ω(f,hi+1
2 )

16(hi+hi+1) ≤
21
8h · ω(f, h2 ), i = 1, n− 1.

It follows that ‖m‖∞ = max{|mi| : i = 0, n} ≤ 42
11h · ω(f, h2 ) obtaining,

|S (x)− f (x)| ≤ 9317
8192 · ω

(
f, h2

)
+ 1125

8192 · ω (f, h) + h
√

3
18 ·

42
11hω

(
f, h2

)
≤
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≤
(

9317
8192 + 7

√
3β

33

)
· ω
(
f, h2

)
+ 1125

8192 · ω (f, h) , ∀x ∈ [a, b].
�

Remark 14. Considering the index of the diagonally dominant property
introduced in [8] for a matrix A = (aij)i,j=0,n , be the constant

D (A) = max
i=0,n

 1
|aii| ·

n∑
j=0,j 6=i

|aij |


and denoting by D, D′′, D′′′, D′, the index of the diagonally dominant property
of the matrices of the linear systems (1), (16), (18), (20), respectively, we see
that D = 1

4 , D
′′ = 1

6 , D
′′′ = 13

19 , D
′ = 5

16 , and D′′ < D < D′ < D′′′.
So, the matrix of the system of normal equations associated to the minimal
curvature of the graph has stronger diagonally dominant property than the
others. Investigating the error estimates obtained in (13), (17), (19), and (21),
and considering even the case of equally spaced knots, when β = 1, we see
that

7
√

3
33 ' 0.3674 < 32

√
3

135 ' 0.41056 < 8
√

3
27 ' 0.5132 < 157

√
3

108 ' 2. 5179.
Consequently, the quartic spline with minimal average slope of the graph has
the best error estimate both for uniform and nonuniform partitions. �

4. NUMERICAL EXPERIMENT

In order to illustrate the theoretical results consider n = 5 and the following
data presented in Section 4.

i 0 1 2 3 4 5
xi 0 2 4 6 8 10
yi 16 20 28 21 24 28
yi−1/2 12 23 32 18 30

Table 1. The input data.

According to (1), (15) and (16), let SC ∈ C2[0, 10] be the deficient quartic
spline with the endpoint conditions as in (15) and SMC ∈ C1[0, 10] be the de-
ficient quartic spline with minimal mean curvature of the graph

√
J2 obtained

according to Theorem 10. With SD we denote the deficient quartic spline
with minimal average slope of the graph

√
J1 obtained in Theorem 13 after

solving the linear system (18), and with SDC we denote the quartic spline
with minimal mean curvature of the graph of the first derivative

√
J3, accord-

ing to (20). By solving the linear systems (1)+(15), (16), (18) and (20) we
obtain the corresponding local derivatives mi, i = 0, 5, for each of the above
mentioned quartic splines, and the results are presented in Section 4.

These quartic splines are represented in Fig. 4.1 and Fig. 4.2 illustrating
their interpolation properties. In Fig. 4.1 we represent with solid line the
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splines m0 m1 m2 m3 m4 m5

SC −8.7018 7.1929 8.2452 −10.731 7.9057 −4.5236
SMC −7.8476 6.9145 7.488 −10.225 7.8167 −4.1417
SD −1.9689 5.1006 2.5249 −5.5601 5.4596 −1.0811
SDC −21.343 6.3453 13.621 −17.530 6.2924 −13.116

Table 2. The local derivatives mi, i = 0, 5.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Fig. 4.1. The graphs of the C2-smooth quartic spline SC ( .... ), and
of SD ( — ) with minimal

√
J1 (S).

quartic spline SD having minimal average slope of the graph and in dots
is plotted the quartic spline SC ∈ C2[0, 10] obtained by solving the system
(1)+(15). The quartic spline SMC with minimal mean curvature of the graph
is represented under solid line in Fig. 4.2, while the quartic spline SDC with
minimal mean curvature of the graph of the first derivative is plotted in dots.
Investigating Figs. 4.1 and 4.2 we see that smaller oscillation can be observed
at the quartic spline SD with minimal average slope of the graph and at the
quartic spline SMC with minimal mean curvature of the graph, respectively.
In order to illustrate this geometric property observed in Figs. 4.1 and 4.2
we compute the length L (S) of the graph for this four quartic splines and
the results are sumarized in Section 4. As was expected, the deficient quartic
spline SD with minimal average slope of the graph has the smallest graph
length.

The graphs and figures were obtained by using the Matlab application.
splines: SC SD SMC SDC

L (S) : 68.676 63.15 68.237 72.735

Table 3. The length of graph.
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0 1 2 3 4 5 6 7 8 9 10
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35

Fig. 4.2. Graphs of SMC (—) with minimal
√
J2 (S) and SDC (....)

with minimal
√
J3 (S).

5. CONCLUSIONS

Observing the possibility to express the error estimate of the deficient quar-
tic spline interpolant S ∈ C2[a, b] in terms of both ω

(
f, h2

)
and ω (f, h), in

the case of interpolated functions f ∈ C[a, b], in this work we improve the
error estimates from [10] and [9], the results being obtained in Theorem 4 and
Corollary 7. This fact is revealed in Remark 5 by observing a smaller constant
for equally spaced knots in the case of Lipschitzian interpolated functions. The
possibility to determine the local derivatives mi, i = 0, n, for obtaining certain
optimal properties of the deficient quartic spline S ∈ C1[a, b], is investigated.
In this context, the deficient quartic spline with minimal mean curvature of
the graph of S and S′, respectively, are obtained in Theorem 10 and Corol-
lary 12. Related to the error estimate in terms of the modulus of continuity, a
better bound is observed at the deficient quartic spline with minimal average
slope of the graph, which is obtained in Theorem 13.

The numerical example shows the quality of the interpolation properties
of the above presented four quartic splines. The technique of minimizing the
mean curvature and the average slope of the graph, presented in this work, can
be extended to parametric quartic spline curves, too, and this is the subject
of a future work, investigating the use of both the chordal and centripetal
parametrization.
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