
JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY
J. Numer. Anal. Approx. Theory, vol. 49 (2020) no. 2, pp. 177–189

ictp.acad.ro/jnaat

BASIN ATTRACTORS FOR DERIVATIVE-FREE METHODS
TO FIND SIMPLE ROOTS OF NONLINEAR EQUATIONS

BENY NETA∗

Abstract. Numerous methods exist for finding zeros of nonlinear equations.
Several of these schemes are derivative-free. One of the oldest is the secant
method where the derivative is replaced by a divided difference. Clearly such
method will need an additional starting value. Here we study the dynamics
of several derivative-free methods and compare them using the idea of basin of
attraction. As a results, we develop a new high-order derivative-free method and
study its dynamics.

2020 Mathematics Subject Classification. 65H05.
Keywords. Basin of Attraction, Derivative-free methods, simple roots, nonlin-
ear equations.

1. INTRODUCTION

In engineering and applied science we encounter the problem of solving a
nonlinear equation f(x) = 0. Most numerical solution techniques are based
on Newton’s method, i.e., starting with an initial guess x0 for the root ξ, we
create a sequence {xn}

xn+1 = xn −
f(xn)
f ′(xn)

The convergence is quadratic, that is
|xn+1 − ξ| ≤ C2|xn − ξ|2

and 2 is the largest with such property. In general, we say that a method is
of order p if

|xn+1 − ξ| ≤ Cp|xn − ξ|p

and p is the largest with such property.
The vast literature (see Traub [20] and the more recent book by Petković

et al. [12]) for the numerical solution of a single nonlinear equation include
relatively few derivative-free methods. The methods are multistep with Stef-
fensen’s method [17] as first step. See, Khattri and Steihaug [7], Soleymani
and Shateyi [15], Soleymani and Vanani [16], Thukral [19], Zheng et al. [23],
∗Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA 93943;

e-mail: bneta@nps.edu, Tel.: 1 (831) 656-2235, Fax: 1 (831) 656-2355.

www.ictp.acad.ro/jnaat

178 Beny Neta 2

Veiseh et al. [21], Sharma and Goyal [14], Chicharro et al. [1], Cordero and
Torregrosa [5], Petković et al. [11], Peng et al. [9] and Zhanlav and Otgondorj
[22]. Such methods are especially useful when the derivative is very expensive
and, of course, when the function is non-differentiable.

The methods are of order p using d function evaluations per step. Kung
and Traub [8] conjectured that multipoint methods without memory using
d evaluations could have order no larger than 2d−1. The efficiency index I
defined as p1/d. Thus an optimal method of order 8 has an efficiency index
of I = 81/4 = 1.6817 and an optimal method of order 4 has an efficiency
index I = 41/3 = 1.5874 which is better than Newton’s method for which
I =

√
2 = 1.4142. The efficiency index of optimal method cannot reach a

value of 2. In fact realistically one uses methods of order at most 8. There
are one step methods that converge super-linearly with p = 1.618 such as the
secant method and p = 1.839. These one step methods require one function
evaluation per step (except that they require additional starting value(s)).
Therefore the efficiency index is 1.618 (secant) and 1.839. Here we will list
the one-step methods along with their order of convergence. We will compare
the basin of attraction of the methods and suggest a multistep method that
is almost optimal but having higher efficiency index (because it uses one less
function evaluation). We measure the behavior on 5 functions, 4 of which
are polynomials. It was demonstrated by Petković and Herceg [10] that the
conclusions are the same even if we take more examples.

The basin of attraction method was initially discussed by Stewart [18]. This
is better than comparing methods on the basis of running several nonlinear
functions using a certain initial value. In the last decade many papers appeared
using the idea of basin of attraction to compare the efficiency of many methods.
See, for example, Chun and Neta [2], [3] and references there.

The paper is organized in the following way: In the next section, we will
describe several super linear and one quadratic derivative-free methods. In
section 3, we compare the methods using the idea of basins of attraction.
Section 4 details our new derivative-free method of order 6.219 and in section
5 we study its dynamics and compare it to a certain eighth-order derivative-
free method. We close with conclusions.

2. SUPER-LINEAR DERIVATIVE-FREE SCHEMES

In this section, we describe the following derivative-free methods in the
literature:

(1) Secant Method (p = 1.618)
(2) Three Traub’s Methods (p = 1.839)
(3) Jarratt and Nudds’ method (p = 1.839)
(4) Popovski’s method (p = 1.839)
(5) Steffensen’s method (p = 2)

3 Basin attractors for derivative-free methods 179

Secant Method Given f(x) and x0, x1 be 2 initial guesses for the root ξ,
then

(1) xn+1 = xn −
fn

fn−fn−1
xn−xn−1

, n = 1, 2, . . .

where fk = f(xk).
This algorithm is similar to Regula Falsi. The order of convergence is 1.618

and the method requires one function evaluation per iteration. thus the effi-
ciency index I = 1.618. Geometrically, the method approximates the slope of
f(xn) by using the secant line via the points (xn, fn) and (xn−1, fn−1).

Traub methods ([20])
(1) The first method denoted Traub1 (Method 7a on page 234) is:

(2) xn+1 = xn −
fn

(fn−2−fn−1)+(fn−1−fn)
(xn−2−xn−1)+(xn−1−xn) −

fn−2−fn−1
xn−2−xn−1

+ fn−1−fn

xn−1−xn

(2) The second method denoted Traub2 (Method 5a on page 233) is:

(3) xn+1 = xn −
[

(xn−2−xn−1)+(xn−1−xn)
(fn−2−fn−1)+(fn−1−fn) −

xn−2−xn−1
fn−2−fn−1

+ xn−1−xn

fn−1−fn

]
fn

(3) The third method denoted Traub3 (Method 2a on page 233) is given
by:

(4) xn+1 = xn +
{ [

xn−xn−1
fn−fn−1

− xn−1−xn−2
fn−1−fn−2

]
fn−1

fn−fn−2
− xn−xn−1

fn−fn−1

}
fn.

All three Traub’s methods have order and efficiency index of 1.839
(see [20, p. 233]).

Jarratt and Nudds
Jarratt and Nudds [6] developed a method based on the rational interpo-

lating function
y(x) = x− a

bx+ c
using the last three points (xi, fi), i = n − 2, n − 1, n as data. Thus the
method
(5)

xn+1 = xn + [(xn − xn−1) + (xn−1 − xn−2)] (xn − xn−1)fn(fn−1 − fn−2)
fn−2(xn−1 − xn−2)(fn − fn−1)− fn(xn − xn−1)(fn−1 − fn−2) .

The rate of convergence of the method and the efficiency are 1.839.
Popovski’s method
Popovski [13] used the same interpolating function as Jarratt and Nudds

[6] to derive the following method of order 1.839. The method is referred to
as the method of tangential hyperbolic approximation.

(6) xn+1 = xn − [(xn−2−xn−1)+(xn−1−xn)](fn−2−fn−1)(xn−1−xn)
[(fn−2−fn−1)+(fn−1−fn)](xn−2−xn−1)(fn−1−fn) fn.

The efficiency index of the method is I = 1.839.
Steffensen’s family of methods

180 Beny Neta 4

Steffensen’s method [17]

(7)
wn = xn + γ(fn)
xn+1 = xn − γ(fn)2

f(wn−fn)

The method converges quadratically and uses two function-evaluation. There-
fore its efficiency index is 1.4142 as Newton’s method. This is the reason that
higher order derivative-free methods use the method as a first step.

3. DYNAMICS STUDY OF THE METHODS

In this section, we describe the experiments with each of the 7 methods
detailed above. We chose 4 polynomials and one non-polynomial function
all having roots within a 6 by 6 square centered at the origin. The square
is divided horizontally and vertically by equally spaced lines. We took the
intersection of all these lines as initial points in the complex plane for the
iterative schemes. The code collected the number of iteration or function
evaluation to converge within a tolerance of 10−7 and the root to which the
sequence converged. If the sequence did not converge within 40 iteration, we
denote it as a divergent point. Each point is colored by the color corresponding
to the root. A divergent point is colored black. We also collected the CPU run
time to execute the code on all initial points using Dell Optiplex 990 desktop
computer.

We ran all methods on the following 5 examples, 4 of which are polynomials:
(1) z2 − 1
(2) z3 − 1
(3) z4 − 1
(4) z5 − 1
(5)

(
ez+1 − 1

)
(z − 1)

Remark 1. The additional starting values are x−1 = x0 + 0.01 and x−2 =
x0 + 0.02. �

Example 2. The first example is

(8) p1(z) = z2 − 1,

vanishing at z = ±1. The basins for all methods are given in Fig. 3.1. Clearly
from the figure one can see that the best schemes are secant, Traub1 and
Jarratt-Nudds methods.

From Table 1, the average number of function-evaluations per point is mini-
mum (5.82) for Traub1 followed by Jarratt-Nudds (5.86). The highest number
(11.75) was used by Traub2.

The CPU runtime in seconds, see Table 2, is the lowest for secant method
(115.423) followed by Traub1 (122.283). The slowest is Traub2 with 227.337
seconds.

5 Basin attractors for derivative-free methods 181

The secant method has no divergent point (see Table 3) and Popovski has
only 1 point. Traub2 has the highest number of divergent points (52648),
which is unacceptable. �

Fig. 3.1. The top row for Secant (left), Traub1 (center), Traub2
(right). Second row for Traub3 (left), Steffensen (center) and Jarratt-
Nudds (right). Third row for Popovski (left), TZKO (center), Neta
(right) for the roots of the polynomial z2 − 1.

Method Ex1 Ex2 Ex3 Ex4 Ex5 average
Secant 7.78 11.5 16.65 17.35 6.85 12.02
Traub1 5.82 6.97 8.88 9.62 6.52 7.56
Traub2 11.75 17.70 22.34 21.15 9.26 16.44
Traub3 7.10 10.32 15.64 16.35 6.64 11.21

Steffensen 5.78 7.93 10.84 17.47 5.28 9.46
Popovski 5.87 7.13 8.84 9.23 5.86 7.39

JN 7.32 9.79 13.24 13.98 7.28 10.32
TZKO 11.85 19.52 25.60 29.26 12.25 19.70
Neta 10.54 10.91 13.13 13.79 9.10 11.49

Table 1. Average number of function evaluations per point for each
example (1–5) and each of the methods.

Example 3. The cubic polynomial

(9) p2(z) = z3 − 1,

182 Beny Neta 6

Method Ex1 Ex2 Ex3 Ex4 Ex5 average
Secant 115.423 215.15 373.899 418.568 154.492 255.506
Traub1 122.283 183.568 252.397 328.295 195.38 216.385
Traub2 227.337 394.5 590.03 584.702 217.026 402.719
Traub3 170.923 287.784 508.552 557.584 245.495 354.068

Steffensen 111.546 224.375 306.197 545.721 174.007 272.370
Popovski 154.366 272.019 392.188 482.016 212.037 302.525

JN 156.286 221.251 304.169 425.87 196.356 260.786
TZKO 290.886 545.869 621.265 745.541 334.541 507.620
Neta 231.431 311.934 368.234 452.034 282.761 329.279

Table 2. CPU time (msec) for each example (1–5) and each of the methods.

Method Ex1 Ex2 Ex3 Ex4 Ex5 average
Secant 0 14605 62225 64895 139 28375
Traub1 601 2 203 1054 809 534
Traub2 52648 110398 156658 133868 27955 96305
Traub3 61 11034 58766 68535 34 27686

Steffensen 2 6188 27514 95107 997 25962
Popovski 197 25 1771 3464 8 1093

JN 1 645 6305 11911 5180 4808
TZKO 2364 16674 27745 33419 2640 16568
Neta 2930 0 0 1 901 766

Table 3. Number of black points for each example (1–5) and each of
the methods.

having the 3 roots of unity. Figure 3.2 shows that the best schemes are again
Traub1 and Jarratt-Nudds methods.

The average number of function-evaluations per point (Table 1) is minimum
(6.97) for Traub1 followed by Popovski (7.13). The highest number (17.70)
was used by Traub2.

Based on the CPU time in seconds, we find that the fastest method is
Traub1 (183.568 seconds) followed by secant method (215.15 seconds). The
slowest is Traub2 with 394.5 seconds.

Traub1 (see Table 3) has the lowest number (2 divergent points), followed
by Popovski (25 points). �

Example 4. The third example is a quartic polynomial

(10) p3(z) = z4 − 1

and the roots are just the four roots of unity. Figure 3.3 shows that the best
schemes are again Jarratt-Nudds and Traub1 methods.

The minimum average number of function-evaluations per point (Table 1)
is 8.84 for Popovski followed closely by Traub1 (8.88). The highest number
(22.34) was for Traub2.

7 Basin attractors for derivative-free methods 183

Fig. 3.2. The top row for Secant (left), Traub1 (center), Traub2
(right). Second row for Traub3 (left), Steffensen (center) and Jarratt-
Nudds (right). Third row for Popovski (left), TZKO (center), Neta
(right) for the roots of the polynomial z3 − 1.

Based on the CPU execution time in seconds, we find again that the fastest
method is Traub1 (252.397 seconds) and the slowest is again Traub2 with
590.03 seconds.

Traub1 has the lowest number of black points (see Table 3). Again Traub2
has the highest number of divergent points (156658). �

Example 5. The fourth example is a fifth degree polynomial

(11) p4(z) = z5 − 1.

Figure 3.4 indicates that the best scheme is Jarratt-Nudds method.
Based on Table 1 the minimum average number of function-evaluations per

point is 9.23 for Popovski followed by Traub1 with 9.62.
Based on the CPU time in seconds, we find again that the fastest method

is Traub1 (328.295 seconds). The slowest is again Traub2.
In terms of the number of black points (see Table 3) we find again that

Traub1 has the lowest number (1054 points) and the highest is Traub2 (133868
points). �

Example 6. The last example is a non-polynomial example.

(12) F1(z) = (ez+1 − 1)(z − 1).

184 Beny Neta 8

Fig. 3.3. The top row for Secant (left), Traub1 (center), Traub2
(right). Second row for Traub3 (left), Steffensen (center) and Jarratt-
Nudds (right). Third row for Popovski (left), TZKO (center), Neta
(right) for the roots of the polynomial z4 − 1.

Figure 3.5 indicates an interesting phenomenon. The basin for z = −1 is much
larger than the other. It seems that the best scheme is Jarratt-Nudds method,
even though Traub1 give slightly more equitable division of the basins.

The minimum average number of function-evaluations per point (see Ta-
ble 1) is 5.28 for Steffensen’s method followed closely by Popovski with 5.86.
This is the first time that Steffensen’s method came at the top. The highest
number (9.26) for Traub2.

The CPU runtime in seconds (Table 2) is the lowest for secant (154.492
seconds), followed by Steffensen’s method with 174.007 seconds. The slowest
is now Traub3.

Popovski’s method has the lowest number (8) of divergent points, followed
by Traub3 (34). The highest is Traub2 (27955 points). �

We now averaged the results across the five examples and find the top three
methods in each category. Based on Table 1 the order is Popovski, Traub1 and
Steffensen. In terms of CPU time: Traub1, Secant, Jarratt-Nudds method.
The lowest number of divergent points is for Traub1 followed by Popovski
and Jarratt-Nudds. Therefore we find the Traub1 is the only method in the
top three in all three categories. As a results, we have decided to try and
develop a method (of order 6.219) based on Traub1 as first step instead of

9 Basin attractors for derivative-free methods 185

Fig. 3.4. The top row for Secant (left), Traub1 (center), Traub2
(right). Second row for Traub3 (left), Steffensen (center) and Jarratt-
Nudds (right). Third row for Popovski (left), TZKO (center) for the
roots of the polynomial z2 − 1.

Steffensen’s method. The new method is of order p = 1.8393 = 6.219 and
uses only 3 function evaluations per cycle. Therefore the efficiency index is
I = 6.2191/3 = 1.839 which is higher than the optimal eighth order method.
This is possible for methods with memory.

In the next section, we will develop the new scheme and discuss the order
and efficiency index. The section after that will compare the basins for our new
method to an optimal eighth order method due to Zhanlav and Otgondorj.

4. NEW METHOD

We now develop a 3-step method having Traub1 method as first step instead
of Steffensen. The method is

(13)

yn = xn − fn
(fn−2−fn−1)+(fn−1−fn)
(xn−2−xn−1)+(xn−1−xn)−

fn−2−fn−1
xn−2−xn−1

+ fn−1−fn
xn−1−xn

,

zn = yn − f(yn)
f ′(yn) ,

xn+1 = zn − f(zn)
f ′(zn) .

186 Beny Neta 10

Fig. 3.5. The top row for Secant (left), Traub1 (center), Traub2
(right). Second row for Traub3 (left), Steffensen (center) and Jarratt-
Nudds (right). Third row for Popovski (left), TZKO (center), Neta
(right) for the roots of (ez+1 − 1)(z − 1).

As usual, we approximate the derivatives in the last two steps by an interpo-
lating polynomial, in this case, using the last 3 function values,
(14) f ′(yn) = α1fn + α2fn−1 + α3f(yn),
where

(15)

α1 = − xn−1−yn

(xn−yn)(xn−xn−1) ,

α2 = xn−yn

(xn−xn−1)(xn−1−yn) ,

α3 = − xn+xn−1−2yn

(xn−yn)(xn−1−yn) ,

and
(16) f ′(zn) = β1fn + β2f(yn) + β3f(zn),
where

(17)

β1 = − yn−zn

(xn−zn)(xn−yn) ,

β2 = xn−zn
(xn−yn)(yn−zn) ,

β3 = − xn+yn−2zn

(xn−zn)(yn−zn) .

11 Basin attractors for derivative-free methods 187

Index f(x) x0 number of iterations COC
1

(
ex+3 − 1

)
(x − 1) 10.0 8 5.567

2 x3 + 4x2 − 10 -2.6 13 4.817
3 (sin x)2 − x2 + 1 2.0 4 5.162
4 (x − 1)3 − 1 3.5 5 4.826
5 x3 − 10 4.0 4 5.179
6 xex2

− (sin x)2 + 3 cos x + 5 -1.0 4 4.674
7 ex2+7x−30 − 1 4.0 9 4.814
8 sin x − x/2 2.0 4 4.851
9 x5 + x − 10000 4.0 5 4.996
10

√
(x) − 1/x − 3 9.0 3 5.222

11 ex + x − 20 0.0 7 4.716
12 ln x +

√
(x) − 5 10.0 4 4.738

13 x3 − x2 − 1 4.0 5 5.011
14 x5 − 1 10.0 8 4.858
15

(
ex+1 − 1

)
(x − 1) 5.0 6 5.242

16
(
ex+3 − 1

) (
ex−1 − 1

)
15.0 15 4.836

Table 4. Computational order of convergence for several functions
using our new method.

This method uses memory, the point xn−1 in the second step. The order of
the method is the product of the orders p = 1.8393 = 6.219, see [20] Theorem
2.4. We arrived at this by using the fact that each step uses the values of f
at the current and two previously computed values, and it is known that in
that case the order is 1.839. Clearly this is not optimal. The efficiency index
is I = 6.2191/3 = 1.839. This is better than the optimal eighth-order method
(denoted TZKO) without memory of [22].

We now refer to Table 4 showing the computational order of convergence
as defined by

(18) coc =
ln
∣∣∣ xi−nexx
xi−1−nexx

∣∣∣
ln
∣∣∣xi−1−nexx
xi−2−nexx

∣∣∣
where nexx is the final approximation for the zero.

5. DYNAMICS OF OUR NEW METHOD

We ran the same five examples from the numerical experiments section
above on our new method (Neta) and compared it to TZKO [22]. The results
are given in the previous figures as the last two sub figures and in Tables 1
to 3. The average over all 5 examples of the average number of function
evaluation is 12.132 versus 18.382 for TZKO. Our new method is much faster
329.279 seconds versus 507.620 second for TZKO. The number of divergent
point on average over all examples is 766.4 for our method versus 16568.4 for
TZKO. We can conclude that our method is better than the optimal method
of Zhanlav and Otgondorj.

188 Beny Neta 12

CONCLUSIONS

We have considered several derivative free super linear methods and com-
pared them to the quadratic method due to Steffensen. We found that one
of Traub’s method, namely Traub1, performed best on the five examples. We
then developed a new method with memory based on Traub1 method as first
step and we showed that our method is faster, have much less divergent points
and require less iteration per initial point.

Acknowledgements. The author thank Professor M.S. Petković for his
very helpful comments on the previous version of the manuscript.

REFERENCES

[1] F.I. Chicharro, A. Cordero, J.R. Torregrosa, M.P. Vassileva, King-type
derivative-free iterative families: real and memory dynamics, Complexity, 2017, Article
ID 2713145, 15 pages.

[2] C. Chun, B. Neta, Comparative study of methods of various orders for finding simple
roots of nonlinear equations, J. Appl. Anal. Comput., 9 (2019), pp. 400–427.

[3] C. Chun, B. Neta, Comparative study of methods of various orders for finding repeated
roots of nonlinear equations, J. Comput. Appl. Math., 340 (2018), pp. 11–42.

[4] C. Chun, B. Neta, Comparative study of eighth-order methods for finding simple roots
of nonlinear equations, Numer. Algor., 74 (2017), pp. 1169–1201.

[5] A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal de-
rivative free iteration methods for nonlinear equations by using polynomial interpolation,
Math. Comput. Model., 57 (2013) (7-8), pp. 1950–1956.

[6] P. Jarratt, D. Nudds, The use of rational functions in the iterative solution of equa-
tions on a digital computer, Computer J., 8 (1965), pp. 62–65.

[7] S.K. Khattri, T. Steihaug, Algorithm for forming derivative-free optimal methods,
Numer. Algor., 65 (2014), pp. 809–824.

[8] H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc.
Comput. Math., 21 (1974), pp. 634–651.

[9] Y. Peng, H. Feng, Q. Li, X. Zhang, A fourth-order derivative-free algorithm for
nonlinear equations, J. Comput. Appl. Math., 235 (2011), pp. 2551–2559.

[10] I. Petković, D. Herceg, Computers in mathematical research: the study of three-point
root-finding methods, Numer. Algor., 84 (2020), pp. 1179–1198.

[11] M.S. Petković, S. Illic, J. Dz̆unić, Derivative-free two-point methods with and with-
out memory for solving nonlinear equations, Appl. Math. Comput., 217 (2010), pp.
1887–1895.

[12] M.S. Petković, B. Neta, L.D. Petković, J. Dz̆unić, Multipoint Methods for the
Solution of Nonlinear Equations, Elsevier, 2012.

[13] D.B. Popovski, Method of tangential hyperbolic approximation for solving equations,
Proc. 3rd Int. Symp. Computers at the University, Cavtat, May 25-28, 1981, 311.1–
311.6.

[14] J.R. Sharma, R.K. Goyal, Fourth-order derivative-free methods for solving nonlinear
equations, Inter. J. Computer Math., 83 (2006), pp. 101–106.

[15] F. Soleymani, S. Shateyi, Two optimal eighth-order derivative-free classes of iterative
methods, Abstract. Applied Anal., 2012, ID 318165, pp. 1–14.

[16] F. Soleymani, S.K. Vanani, Optimal Steffensen-type methods with eighth order of
convergence, Comp. Math. Appl., 62 (2011), pp. 4619–4626.

[17] J.F. Steffensen, Remarks on iteration, Scand. Actuar. J., 1 (1933), pp. 64–72.

https://doi.org/10.11948/2156-907x.20160229
https://doi.org/10.11948/2156-907x.20160229
https://doi.org/10.1016/j.cam.2018.02.009
https://doi.org/10.1016/j.cam.2018.02.009
https://doi.org/10.1007/s11075-016-0191-y
https://doi.org/10.1007/s11075-016-0191-y
https://doi.org/10.1016/j.mcm.2012.01.012
https://doi.org/10.1016/j.mcm.2012.01.012
https://doi.org/10.1016/j.mcm.2012.01.012
https://doi.org/10.1093/comjnl/8.1.62
https://doi.org/10.1093/comjnl/8.1.62
https://doi.org/10.1007/s11075-013-9715-x
https://doi.org/10.1007/s11075-013-9715-x
https://doi.org/10.1145/321850.321860
https://doi.org/10.1145/321850.321860
https://doi.org/10.1016/j.cam.2010.11.007
https://doi.org/10.1016/j.cam.2010.11.007
https://doi.org/10.1007/s11075-019-00796-6
https://doi.org/10.1007/s11075-019-00796-6
https://doi.org/10.1016/j.amc.2010.06.043
https://doi.org/10.1016/j.amc.2010.06.043
https://doi.org/10.1016/j.amc.2010.06.043
https://doi.org/10.1080/00207160500113306
https://doi.org/10.1080/00207160500113306
https://doi.org/10.1155/2012/318165
https://doi.org/10.1155/2012/318165
https://doi.org/10.1016/j.camwa.2011.10.047
https://doi.org/10.1016/j.camwa.2011.10.047
https://doi.org/10.1080/03461238.1933.10419209

13 Basin attractors for derivative-free methods 189

[18] B.D. Stewart, Attractor Basins of Various Root-Finding Methods, M.S. thesis, Naval
Postgraduate School, Department of Applied Mathematics, Monterey, CA, June 2001.

[19] R. Thukral, Eighth-order iterative methods without derivatives for solving nonlinear
equations, International Scholarly Research Notices, 2011, ID 693787, pp. 1–12.

[20] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, New York,
1964.

[21] H. Veiseh, T. Lotfi, T. Allahviranloo, A study on the local convergence and dy-
namics of the two-step and derivative-free Kung-Traub’s method, Comp. Applied. Math.,
37 (2018), pp. 2428–2444.

[22] T. Zhanlav, K. Otgondorj, Comparison of some optimal derivative-free three-point
iterations, J. Numer. Anal. Approx. Theory, 49 (2020), pp. 76–90.

[23] Q. Zheng, J. Li, F. Huang, An optimal Steffensen type family for solving nonlinear
equations, Appl. Math. Comput., 217 (2011), pp. 9592–9597.

Received by the editors: December 4, 2020; accepted: December 21, 2020; published

online: February 20, 2021.

https://doi.org/10.5402/2011/693787
https://doi.org/10.5402/2011/693787
https://doi.org/10.1007/s40314-017-0458-5
https://doi.org/10.1007/s40314-017-0458-5
https://doi.org/10.1007/s40314-017-0458-5
https://ictp.acad.ro/jnaat/journal/article/view/1179
https://ictp.acad.ro/jnaat/journal/article/view/1179
https://doi.org/10.1016/j.amc.2011.04.035
https://doi.org/10.1016/j.amc.2011.04.035

	1. Introduction
	2. Super-linear derivative-free schemes
	3. Dynamics study of the methods
	4. New method
	5. Dynamics of our new method
	Conclusions
	References

