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ON THE DEVELOPMENT AND EXTENSIONS OF SOME CLASSES
OF OPTIMAL THREE–POINT ITERATIONS FOR SOLVING

NONLINEAR EQUATIONS

T. ZHANLAV† and KH. OTGONDORJ†,∗

Abstract. We develop new families of optimal eight–order methods for solving
nonlinear equations. We also extend some classes of optimal methods for any
suitable choice of iteration parameter. Such development and extension was
made using sufficient convergence conditions given in [20]. Numerical examples
are considered to check the convergence order of new families and extensions of
some well-known methods.
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1. INTRODUCTION

Finding solution of nonlinear equations f(x) = 0 is an important problem
in science and engineering. In last years, many optimal eight–order iterative
methods were developed, see [1–6, 8, 10–14, 17, 19–23] and references therein.
But many of them work only for special choices of iteration parameter and
absolutely not clear how changed the structure of iterations for another choice
of parameter. Therefore, it is very desirable to construct the optimal iterations
that work well for any suitable choice of parameter. Our aim is to develop
and to extend some classes of optimal three–point iterations using sufficient
convergence conditions given in [20].

We consider the following standard three–point iterative methods:

yn = xn − f(xn)
f ′(xn) ,

zn = yn − τ̄n
f(yn)
f ′(xn) , (1)

xn+1 = zn − αn
f(zn)
f ′(xn) , n = 0, 1 . . .
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In [20] was proven that the order of convergence iterations (1) is eight if and
only if the parameters τ̄n and αn satisfy the conditions

τ̄n = 1 + 2θn + β̃θ2
n + γ̃θ3

n + . . . , θn = f(yn)
f(xn) (2)

and
αn =1 + 2θn + (β̃ + 1)θ2

n + (2β̃ + γ̃ − 4)θ3
n

+ (1 + 4θn)υn + O(f(xn)4),
(3)

where υn = f(zn)
f(yn) . The optimal methods (1) distinguish each other only by

choices of parameters τ̄n and αn. It should be pointed out that to establish the
convergence order of iterative methods often used either the error equation,
see for example [1–5, 8–15, 17–19], or the nonlinear residuals [20–23]. An
more detailed explanation of various aspects of convergence order based on
error analysis, corrections and nonlinear residuals was given in the excellent
surveys [6, 7]. In this paper, we propose a new family of optimal three–point
methods and extensions of some classes of optimal methods. The rest of this
paper is organized as follows.

In Section 2, we propose new families of optimal three-point methods. In
Section 3, we suggested extension of classes of optimal eighth-order methods.
The numerical experiments and dynamic behavior of methods are discussed
in Section 4. Finally, short conclusions are included in Section 5.

2. DEVELOPMENT OF THE NEW FAMILIES OF OPTIMAL THREE–POINT

METHODS

First, we consider iterations (1) with parameter αn given by

αn = f ′(xn)
f [yn, zn] + 2(f [xn, zn] − f [xn, yn]) + (yn − zn)f [yn, xn, xn] , (4)

where

f [yn, xn, xn] = f [yn, xn] − f ′(xn)
yn − xn

. (5)

To show the convergence analysis of methods (1), (4), the following results is
proven.

Theorem 1. Let the function f(x) be sufficiently smooth and have a simple
root x∗ on the open interval I ⊂ R. Furthermore, let the initial approximation
x0 be sufficiently close to x∗ and the parameter τ̄n in (1) satisfies the condition
(2). Then the order of convergence of the methods (1), (4) is eight.

Proof. Using the relations
f [xn, yn] = f ′(xn)(1 − θn),

f [yn, zn] = f ′(xn)1 − υn

τ̄n
, (6)
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Table 1. The choices of parameter τ̄n

Cases Methods Special case of (10) τ̄n β̃ γ̃

i Potra-Ptack’s c = ω = 1, d = b = 0 1 + 2θn + θ2
n 1 0

ii Maheshwari’s c = 1, b = 0, d = ω = −1 1+θn−θ2
n

1−θn
1 1

iii Kung-Traub’s c = b = 1, d = −2, ω = 0 1
(1−θn)2 3 4

iv King’s type c = 1, ω = b = 0, d = β − 2 1+βθn

1+(β−2)θn
2(2 − β) 2(2 − β)2

f [xn, zn] = f ′(xn)1 − θnυn

1 + τ̄nθn
,

in (4), we obtain

αn = τ̄n

1 − υn + 2 τ̄nθn
1+τ̄nθn

(1 − υn − τ̄n + τ̄nθn) + τ̄2
nθ2

n

. (7)

Using (2) and well-known expansion

1
1 − x

= 1 + x + x2 + x3 + . . . , |x| < 1, (8)

in (7) we obtain

αn = τ̄n(1 + θ2
n − (6 − 2β̃)θ3

n + (1 + 2θn)υn) + O(f(xn)4). (9)

From (2) and (9) it follows that αn defined by (9) satisfies the condition (3)
that completes the proof of theorem. □

Of course, there are many possibility for choice τ̄n in (1) satisfying the
condition (2). In particular, we give τ̄n as

τ̄n = c + (2c + d)θn + ωθ2
n

c + dθn + bθ2
n

, c + d + b ̸= 0, (10)

that includes four free parameters. In Table 1, we list some well-known choices.

Note that similar theorem for iteration (1), (4) for Kung-Traub’s type it-
eration were proved by Petković et al. [11] and by Zhanlav et al. [22] for
Kings type iteration and by Wang et al. [19] for Ostrowski’s type method.
Thus, theorem 1 extend essentially the class of families of optimal eight-order
iterations (1), (4). Now we consider the iterations (1) with αn given by

αn = f ′(xn)(1 + Aθn + Bθ2
n + Cθ3

n + (δ + ∆θn)υn)
ω1f [xn, zn] + ω2f [zn, yn] + ω3f [xn, yn] , (11)

where ω1 + ω2 + ω3 = 1 and A, B, C, δ, ∆, ω1, ω2 and ω3 are free parameters to
be determined such that the iterations (1) with αn given by (11) has optimal
eight-order of convergence. Namely we can prove
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Theorem 2. Let all assumptions of Theorem 1 be fulfilled. Then the order
of convergence of the iterations (1), (11) is eight when

A = δ = 1 − ω2, B = (β̃ − 2)(1 − ω2) + 1 − ω1, ∆ = 3 − ω1 − ω2,

C = γ̃(1 − ω2) + β̃(1 + ω2 − ω1) + ω1 − ω2 − 5. (12)

Proof. The proof is the same as that of Theorem 1. For convenience, here
we only give the main step of proof. As before, using (6) and (8) after some
manipulations we obtain

αn = f ′(xn)
ω1f [xn, zn] + ω2f [zn, yn] + ω3f [xn, yn]

=1 + (1 + ω2)θn + (ω1 + β̃ω2 + (1 − ω2)2)θ2
n

+
(
γ̃ω2 + β̃(2(1 − ω2)2 − ω1 − 2ω3) + ω1

+ 2(1 − ω2)(2 − ω1) − 2(1 − ω2)2 − (1 − ω2)3)θ3
n

+ (ω2 + (ω1 + 2ω2
2)θn)υn + O(f(xn)4).

(13)

Substituting (13) into (11) and comparing (11) with (3) we arrive at (12). □

The expression in the numerator of (11) can be expressed through first order
divided differences f [xn, yn], f [xn, zn] and f [zn, yn] within accuracy O(f(xn)4).
Indeed using the iterations

f [xn, yn] − f [xn, zn] = f ′(xn)(θ2
n + (β̃ − 3)θ3

n + θnυn), (14)
and

f [zn, xn] − f [yn, zn] =f ′(xn)(θn + (β̃ − 5)θ2
n

+ (γ̃ − 5β̃ + 11)θ3
n + (1 − 3θn)υn),

(15)

in (11) we obtain

αn = (3ω2 + ω1 − 5)(f [xn, zn] − f [xn, yn]) + Fn + Qn

ω1f [xn, zn] + ω2f [zn, yn] + ω3f [xn, yn] , (16)

where
Qn = f ′(xn)(1 + (ω2 − 2)θ2

n + 2(1 − ω1 − ω2)θ3
n)

and
Fn = (1 − ω2)(f [xn, yn] − f [yn, zn]).

From (11), (12) we see that αn includes two free parameters ω1 and ω2. Thus,
we develop the class of optimal eight-order iterations (1), (11), (12). We
consider some choices of parameters ω1 and ω2.

(1) Let ω1 = ω3 = 0, ω2 = 1. Then (16) converted to

αn = (3 + θn)f [xn, yn] − 2f [zn, xn]
f [yn, zn] . (17)
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(2) Let ω1 = 1, ω2 = ω3 = 0. Then (16) converted to

αn = 5f [xn, yn] − 4f [zn, xn] − f [yn, zn] + f ′(xn)(1 − 2θ2
n)

f [xn, zn] , (18)

(3) Let ω1 = ω2 = 0, ω3 = 1. Then (16) converted to

αn = 6f [xn, yn] − 5f [zn, xn] − f [yn, zn] + f ′(xn)(1 − 2θ2
n + 2θ3

n)
f [yn, xn] , (19)

(4) Let ω1 = −1, ω2 = 2, ω3 = 0. Then (16) converted to

αn = f [zn, yn] − f [xn, yn] + f ′(xn)
2f [zn, yn] − f [zn, xn] . (20)

The iteration (1), (20) can be considered as another variant of itera-
tions given by Sharma et al. in [12–14] and given by Zhanlav et al. in
[23].

(5) Let ω1 = ω2 = 1, ω3 = −1. Then (16) converted to

αn = f [yn, xn] − f [zn, xn] + f ′(xn)(1 − θ2
n − 2θ3

n)
f [zn, xn] + f [zn, yn] − f [yn, xn] . (21)

It can be rewritten as:

αn ≈ 1(
1 − f(zn)

f(xn)

)(
1 + (5 − β̃)

(
f(yn)
f(xn)

)3
) f ′(xn)

f [zn, xn] + f [zn, yn] − f [yn, xn] .

It is worth to note that similar results for derivative-free case and
for some choices of τ̄n were obtained by Thukral in [18] and by Khattri
et al. in [9]. We also note that the iteration (1), (21) for β̃ = 4 was
considered by Sharma et al. in [15].

(6) Let ω1 = −1, ω2 = ω3 = 1. Then (16) converted to

αn = 3f [xn, yn] − 3f [zn, xn] + f ′(xn)(1 − θ2
n + 2θ3

n)
f [yn, xn] + f [zn, yn] − f [zn, xn] . (22)

In each iteration step the methods (1), (4) and (1), (11) require three func-
tion evaluations and one evaluation of first derivative. Based on the conjecture
of Kung and Traub, the methods reached the optimality with higher efficiency
index E = 81/4 = 1.68179. One of main advantageous of the proposed iter-
ative methods (1), (4) and (1), (11) is that they work well for any choice of
parameter τ̄n satisfying the condition (2).

3. EXTENSIONS OF SOME CLASSES OF OPTIMAL EIGHT-ORDER METHODS

Now we consider the iterations (1) with parameter αn given by

αn = (p(tn) + γ̂θ3
n) f ′(xn)

f [zn, yn] + (zn − yn)f [zn, xn, xn] , (23)

where tn = f(zn)
f(xn) = θnυn and γ̂ constant and p(tn) some function of t.
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Namely, we have

Theorem 3. Let all assumptions of Theorem 1 be fulfilled. Then the order
of convergence of the iterations (1) and (23) is eight when

p(0) = 1, p′(0) = 2, γ̂ = 2(β̃ − 5). (24)

Proof. We denote the second factor in (23) by α̂n. That is

α̂n = f ′(xn)
f [zn, yn] + (zn − yn)f [zn, xn, xn] . (25)

Then using the relations (6) we obtain

α̂n = τ̄n

1 − υn − τ̄n

(
τ̄nθn

1+τ̄nθn

)2 . (26)

Using the expansion (8) in (26) and taking into account υn = O(f(xn)2),
θn = O(f(xn)), we obtain

α̂n = τ̄n

(
1 + υn + τ̄n

(
τ̄nθn

1 + τ̄nθn

)2)
+ O(f(xn)4). (27)

By using (2) and (8) it is easy to show that(
τ̄nθn

1 + τ̄nθn

)2
= θ2

n + 2θ3
n + O(f(xn)4). (28)

Substituting (2) and (28) into (27) we get

α̂n = 1 + 2θn + (β̃ + 1)θ2
n + (γ̃ + 6)θ3

n + (1 + 2θn)υn + O(f(xn)4). (29)
Then (23) is written as

αn =(p(tn) + γ̂θ3
n)(1 + 2θn + (β̃ + 1)θ2

n

+ (γ̃ + 6)θ3
n + (1 + 2θn)υn) + O(f(xn)4),

(30)

which satisfies the condition (3) provided that (24). □

Thus, we develop the family of optimal three-point iterative methods (1)
with αn given by

αn = (p(tn) + 2(β̃ − 5)θ3
n) f ′(xn)

f [zn, yn] + (zn − yn)f [zn, xn, xn] . (31)

Similar results were obtained in [2, 3] for the iterations (1) with

τ̄n = 1 − θn/2
1 − 5θn/2 , (32)

and

τ̄n = 1
1 − 2θn − θ2

n − θ3
n/2 , (33)
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respectively. The parameters τ̄n given by (32) and (33) satisfy the condition
(2) with β̃ = 5. In this case γ̂ = 0 by (24) and the αn given by (23) leads to

αn = p(tn) f ′(xn)
f [zn, yn] + (zn − yn)f [zn, xn, xn] . (34)

This means that our iterations (1) and (31) include the iterations proposed by
Bi et al. [2] and by Cordero et al. [3] as particular cases.

Now we consider the expression

α̃n = f ′(xn)
f [zn, yn] + (zn − yn)f [yn, xn, xn] . (35)

As before, using the relations (6) in (35) we obtain

α̃n = τ̄n

1 − υn − τ̄2
nθ2

n

= τ̄n(1 + υn + τ̄2
nθ2

n) + O(f(xn)4). (36)

By (2) one can easily to check that
α̃n = α̂n + O(f(xn)4). (37)

It means that instead of (23) one can also use

αn = (p(tn) + γ̂θ3
n) f ′(xn)

f [zn, yn] + (zn − yn)f [yn, xn, xn] , (38)

Therefore, Theorem 3 holds true for iterations (1), (38). Similar extension
can be done for all optimal eight-order iterations. As examples, we present
in Table 2 some of methods and their extension α̃n = ξn · αn with extension
factor ξn.
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Thus, we obtain extensions of some well-known optimal methods that work
well for any suitable parameter τ̄n, satisfying the condition (2). This allows
us to expand the applicability of the original methods.

4. NUMERICAL EXPERIMENTS

In order to show the convergence behavior and to check the validity of the-
oretical results of the presented family (1) with parameters τ̄n and αn, we
make some numerical experiments. We also compare our methods with exist-
ing methods of same order in [13], [14] and [23] that denoted by (SAWN8) and
(ZO8). Here all the computations are performed using the programming pack-
age MATHEMATICA with multiple-precision arithmetic and 1000 significant
digits. As a test, we consider the following sample functions.

f1(x) = ex3−3x sin x + log(x2 + 1), x∗ = 0,

f2(x) = x2 − exp(x) − 3x + 2, x∗ ≈ 0.25.

In Tables 3–5, we present the necessary iterations (n), absolute error |xn − x∗|
and computational order of convergence, which is calculated by the following
formula [11, 16]:

ρ ≈ ln(|xn−1 − xn|/|xn − xn−1|)
ln(|xn − xn−1|/|xn−2 − xn−1|) ,

where xn, xn−1, xn−2 are three consecutive approximations of iterations.
The convergence orders and their computational variants have been thoroughly
treated in [6, 7]. Outcomes of the numerical experiments are calculated so as
to satisfy the criterion |xn − x∗| < 10−30. For τ̄n parameter, we choose the
cases i–iv listed in Table 1. Table 3 gives some numerical results in order
to show convergence behaviour of method (1) with αn parameter given by
(4), (17)–(22). We observe from Table 3 that the methods (1) with parame-
ters τ̄n given by case iv and αn given by (4), (21) produce approximations of
higher accuracy compared to the eight-order methods SAWN8, ZO8.

The results corresponding to the same kind of experiments for the extension
of methods can be found in Table 4-5. In Table 4, we present the numerical
results of iteration (1) with parameter αn given (23) and (38), in which we
used function p(t) = 1

(1−t)2 . In Table 5, we present the numerical results
of the extension of some methods that work well any parameters τ̄n satisfies
condition (2).

From the results displayed in Table 3–5, we see that the calculated values
of the computational order of convergence are in complete agreement with the
theoretical orders proved in Section 2, 3.

Additionally, we analyze the basin of attraction of our methods to find out
what is the best choice for the parameters. To generate basin attraction for
complex polynomials using the methods, we take a grid of 400 × 400 points
z0 in the square [−3, 3] × [−3, 3] ⊂ C. We have used the method (1) for cubic
polynomial p(z) = z3 − 1 having three simple zeros.
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Table 3. The numerical result for fi(x) by the methods (1) with τ̄n

and αn

αn τ̄n n |x∗ − xn| ρ n |x∗ − xn| ρ
f1(x), x0 = 0.5 f2(x), x0 = 2

case i 3 0.5407e-222 8.00 3 0.1220e-231 8.00
case ii 3 0.4264e-222 8.00 3 0.4412e-189 7.99

(4) case iii 3 0.2180e-233 8.00 3 0.2054e-245 8.00
case iv, β = 0 3 0.2111e-226 8.00 3 0.4836e-229 7.99
case i 3 0.5182e-200 8.00 3 0.3202e-231 7.99
case ii 3 0.7800e-203 8.00 2 0.6607e-31 8.00

(17) case iii 3 0.4084e-132 8.00 3 0.2183e-205 7.99
case iv, β = 0 3 0.5805e-127 8.00 3 0.3391e-235 8.00
case i 3 0.3401e-122 8.00 3 0.3173e-229 7.99
case ii 3 0.5182e-200 8.00 3 0.3976e-247 7.99

(18) case iii 3 0.4084e-132 7.99 3 0.9235e-207 7.99
case iv, β = 0 3 0.5805e-127 8.00 3 0.1166e-232 7.99
case i 3 0.8671e-118 8.00 3 0.2475e-221 7.99
case ii 3 0.1363e-116 8.00 3 0.3905e-241 7.99

(19) case iii 3 0.1213e-121 8.00 3 0.2152e-202 7.99
case iv, β = 0 3 0.3621e-119 8.00 3 0.1296e-226 7.99
case i 3 0.1024e-139 7.99 3 0.1307e-234 7.99
case ii 3 0.4756e-142 7.99 2 0.7314e-33 7.93

(20) case iii 3 0.1560e-146 7.99 3 0.3104e-204 8.00
case iv, β = 0 3 0.5207e-153 8.00 3 0.1715e-172 8.00
case i 3 0.2195e-222 8.00 3 0.4879e-248 7.99
case ii 3 0.4844e-243 8.00 2 0.9301e-33 7.97

(21) case iii 3 0.2720e-219 8.00 3 0.8760e-212 7.99
case iv, β = 0 3 0.8966e-220 8.00 3 0.4439e-247 8.00
case i 3 0.1236e-187 8.00 3 0.1047e-221 7.99
case ii 3 0.9877e-182 8.00 3 0.1326e-245 7.99

(22) case iii 3 0.1077e-184 8.00 3 0.9069e-201 8.00
case iv, β = 0 3 0.1073e-184 8.00 3 0.1044e-227 8.00

SAWN8 [14] 3 0.5207e-153 8.00 3 0.1715e-172 8.00
ZO8 [23] 3 0.1036e-137 7.99 3 0.3317e-178 8.00

In Figure 4.1–4.3, the yellow, red and blue colors are assigned for the at-
traction basin of the three zeros and the roots of function are marked with
white points. Black color is shown lack of convergence to any of the roots. In
this cases, the stopping criterion ε = 10−3 and maximum of 25 iterations are
used.

Based on Figure 4.1–4.3 for p(z), we can see that the method (1) with τ̄n

given by case iii and αn given by (4) is the best one and have fewer diverging
points that other cases of parameters.
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Table 4. The numerical result for fi(x) by the methods (1) with τ̄n

and αn

αn τ̄n n |x∗ − xn| ρ n |x∗ − xn| ρ
f1(x), x0 = 0.5 f2(x), x0 = 2

case i 3 0.6992e-190 8.00 3 0.2459e-223 7.99
(23) case ii 3 0.1915e-190 8.00 3 0.3996e-244 7.99

case iii 3 0.2945e-186 8.00 3 0.1124e-181 7.99
case iv, β = 0 3 0.1334e-189 8.00 3 0.8535e-221 8.00
case i 3 0.3186e-194 8.00 3 0.1093e-200 7.99

(38) case ii 3 0.1273e-194 8.00 3 0.1051e-217 7.99
case iii 3 0.2945e-186 8.00 3 0.3833e-158 7.99
case iv, β = 0 3 0.6747e-194 8.00 3 0.5685e-198 8.00

Table 5. The numerical results of extension of methods for f2(x)

Methods Extension factor ξn τ̄n n |x∗ − xn| ρ
Case i 3 0.3159e-214 8.00

Sharma [12] 1 + (β̃ − 4)θ3
n Case ii 3 0.3453e-212 8.00

Case iv, β = 0 3 0.8671e-210 7.99
Case i 3 0.2781e-229 7.99

DP8 [11] 1 + (β̃ − 4)θ2
n + (γ̃ − 8)θ3

n Case ii 3 0.1848e-238 7.99
Case iv, β = 0 3 0.1196e-162 7.99
Case i 3 0.2433e-214 7.99

GK8 [8] 1 + (β̃ − 3)θ2
n + (γ̃ − 6)θ3

n Case ii 3 0.5841e-236 7.99
Case iv, β = 1 3 0.6505e-172 7.99
Case i 3 0.2100e-114 8.00

Chun [4] 1 + (β̃ − 3)θ2
n + (γ̃ − 4)θ3

n Case ii 3 0.2547e-114 8.00
Case iii 3 0.7827e-120 8.00
Case i 3 0.5103e-156 8.00

Thukral [17] 1 + (β̃ − 2(2 − β))θ2
n Case ii 3 0.1603e-155 8.00

+(γ̃ − 2(2 − β)2)θ3
n Case iv, β = 0 3 0.5103e-156 8.00

Case i 3 0.1915e-234 8.00
Lotfi [10] 1 + (β̃ − 4)θ2

n + (γ̃ − 8)θ3
n Case ii 3 0.1797e-233 8.00

Case iv, β = 0 3 0.2567e-157 8.00

5. CONCLUSION

The main contributions of this work are:
The development of wide class of optimal eight-order iterative methods and

extensions of some optimal methods that work well for any suitable choice of
parameter τ̄n satisfying the condition (2).

The proposed iterative methods can be regarded as an advancement in the
topic and can compete with other well-known methods.
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(a) (1)-ii-(4) (b) (1)-iii-(4) (c) (1)-iv-(4)

Fig. 4.1. Basins of attraction of methods for z3 − 1.

(a) (1)-iv-(17) (b) (1)-iv-(18) (c) (1)-iii-(20)

Fig. 4.2. Basins of attraction of methods for z3 − 1.

(a) (1)-iv-(20) (b) (1)-iv-(21) (c) (1)-iv-(31)

Fig. 4.3. Basins of attraction of methods for z3 − 1.
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nonlinear equations. Elsevier, (2013).

[12] J.R. Sharma, R. Sharma, A new family of modified Ostrowski’s method with ac-
celerated eighth–order convergence, Numer. Algorithms, 54 (2010), 445–458, https:
//doi.org/10.1007/s11075-009-9345-5.

[13] J. R. Sharma, H. Arora, A new family of optimal eighth order methods with dynamics
for nonlinear equations. Appl. Math. Comput., 273 (2016), 924–933, http://dx.doi
.org/10.5923/j.ajcam.20180801.02.

[14] J. R. Sharma, H. Arora, An efficient family of weighted-Newton methods with optimal
eighth order convergence, Appl. Math. Lett., 29 (2014), 1–6, https://www.academia
.edu/22799830/.

[15] R. Sharma, A. Bahl, Optimal eighth order convergent iteration scheme based on
Lagrange interpolation, Acta Mathematicae Applicatae Sinica, English Series 33 (2017),
1093–1102, https://doi.org/10.1007/s10255-017-0722-x.

[16] J. W. Schmidt, On the R-Order of Coupled Sequences, Computing, 26 (1981), 333—
342.
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