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SOLUTION TO UNSTEADY FRACTIONAL HEAT CONDUCTION
IN THE QUARTER-PLANE

VIA THE JOINT LAPLACE-FOURIER SINE TRANSFORMS

ARMAN AGHILI∗

Abstract. In this article, the author implemented the joint transform method,
for solving the boundary value problems of time fractional heat equation. We
also used methods of operational nature to solve a Fokker-Planck equation with
non-constant coefficients. The results reveal that the integral transform method
is reliable and efficient. Some illustrative non-trivial examples are also provided.
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1. INTRODUCTION AND PRELIMINARIES

In this study, the author provided mathematical results that are useful
to the researchers in a variety of fields. This article is devoted to study-
ing and application of the joint Laplace-Fourier sine transform for solving
time fractional diffusion equation in the quarter-plane. We also consider a
Fokker-Planck equation with variable coefficients. We provided methods and
results for a partial fractional differential equations which arise in applica-
tions. So far, different methods of solution have been introduced to solve
partial fractional differential equations, the Laplace transform method, [1]
[2], [3], the Fourier transform method [10], operational method [4], [6]. We
provided methods and results for a partial fractional differential equations
which arise in applications. Different methods of solution have been intro-
duced to solve partial fractional differential equations, the Laplace transform
method, [1], [2], [3], the Fourier transform method [10], operational method
[4], [6]. The diffusion equation describes the flow of heat, or a concentra-
tion of particles. In [11], the author considered the time fractional radial
diffusion in a cylinder by using the joint Laplace-finite Hankel transforms
https://www.overleaf.com/project/6148a908e65ae2a25915fa5d method.
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In [12], the authors considered the time-fractional diffusion-wave equation.
The corresponding Green’s function was obtained in closed form for arbitrary
space dimension in terms of Fox H-functions.

Remark 1.1. In [9], the authors summarize the essential definitions and no-
tations for the Fox H-functions.They also provide for the general Green func-
tion a representation in terms of Mellin–Barnes integrals and, consequently,
in terms of Fox H-functions. �

1.1. Definitions and Notations.

Definition 1.2. The left Riemann-Liouville fractional derivative of order
α (0 < α < 1) of φ(t) is defined as follows [10]

(1.1) DR−L,α
a,t φ(t) = 1

Γ(1−α)
d
dt

∫ t

a

1
(t−ξ)αφ(ξ)dξ.

Definition 1.3. The left Caputo fractional derivative of order α (0 < α <
1) of φ(t) is defined as follows [10]

DC,α
a,t φ(t) = 1

Γ(1−α)

∫ t

a

1
(t−ξ)αφ

′(ξ)dξ.

It should be pointed out that in the literature, the Riemann-Liouville and
the Caputo fractional derivatives generally mean the left Riemann-Liouville
and the left Caputo derivatives, respectively.

Let us recall some definitions and properties that are related to the classical
continuous Fourier transform.

Definition 1.4. The Fourier transform of the function f(x), and −∞ <
x < +∞ is defined as follows

F{f(x)} = 1√
2π

∫ +∞

−∞
eiωxf(x)dx := F (ω).(1.2)

If F{f(x)} = F (ω), then the inverse Fourier transform F−1{F (ω)} is given
by

f(x) = 1√
2π

∫ +∞

−∞
e−ixωF (ω)dω.(1.3)

Lemma 1.5. The following identities hold true.
(1) F−1( 1

a
√

2 exp (− ω2

4a2 )) = exp (−a2x2),

(2) F−1(
√

2
π

a
a2+ω2 ) = exp (−a|x|),

(3) F−1(
√

2
π

2aiω
(a2+ω2)2 ) = x exp (−a|x|),

(4) F−1(i
√

2
π

Γ(1−δ)
|ω|1−δ cos(πδ2 )) = |x|−δsgn(x).

Proof. See [8]. �
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In the sequel a new class of the inverse Fourier transforms of exponential
functions involving square roots are determined. Inverse Fourier transforms
involving square roots arise in many areas of applied mathematics and math-
ematical physics.

Lemma 1.6. The following identity holds true

F−1
[
e−t
√
ω2+2iλω+k2

√
ω2+2iλω+k2 ;ω → x

]
=
√

2
πe
−λxK0

(√
(x2 + t2)(k2 + λ2)

)
.

Proof. Let us assume that

F (ω) = e−(t
√
ω2+2iλω+k2 )√

ω2+2iλω+k2 .

Let us consider the following well-known elementary integral∫ +∞

0
e(−a2x2− b

2
x2 )dx =

√
π

2a e
−2ab.

In view of the above integral, F (ω) can be written as follows

F (ω) = 2√
π

[√
πe−2( t2

√
ω2+2iλω+k2

)
2
√
ω2+2iλω+k2

]
= 2√

π

∫ +∞

0
e
−(ω2+2iλω+k2)ξ2− t2

4ξ2 dξ.

Upon using Fourier inversion formula, we arrive at

F−1(F (ω)) = f(x) = 1√
2π

∫ +∞

−∞
e−ixω

(
2√
π

∫ +∞

0
e
−(ω2+2iλω+k2)ξ2− t2

4ξ2 dξ
)
dω,

changing the order of integration, we get the following

f(x) = 2√
π

∫ +∞

0
e
−k2ξ2− t2

4ξ2
(

1√
2π

∫ +∞

−∞
e−i(x+2λξ2)ω−ξ2ω2

dω
)
dξ,

after evaluating the inner integral by using first part of the Lemma 1.5, we
have

f(x) = 2√
π

∫ +∞

0
e
−k2ξ2− t2

4ξ2 ( 1
ξ
√

2)e−
(x+2λξ2)2

4ξ2 dξ,

at this stage, if we make the simple change of variable ξ2 = θ in the above
integral, after simplifying we obtain

f(x) = e−λx

π

∫ +∞

0
e−(λ2+k2)θ− 0.5(t2+x2)

θ dθ
2θ ,

by means of the following integral representation for the modified Bessel’s
function of the second kind of order zero (Macdonald’s function)

K0(2√pq) =
∫ +∞

0
e
−(pξ+ q

ξ
) dξ

2ξ ,

we have finally

f(x) =
√

2
πe
−λxK0

(√
(t2 + x2)(λ2 + k2)

)
. �
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Corollary 1.7. The following identity holds true

F−1
[
e−t
√
ω2+k2

√
ω2+k2 ;ω → x

]
=
√

2
πK0

(
k
√

(x2 + t2)
)
.

Proof. In the above Lemma 1.6 let us choose λ = 0 we get the desired
identity. �

Corollary 1.8. The following integral identity holds true∫ +∞

−∞
e−(t
√
ω2+2iλω+k2)

√
ω2+2iλω+k2 dω = 2K0

(
t(
√
k2 + λ2)

)
.

Proof. In the above Lemma 1.6, if we take x = 0 we arrive at the result. �

Corollary 1.9. The following identity holds true

F−1
[
e−t
√
ω2+2iλω+k2

√
ω2+2iλω+k2 ;ω → x

]
=
√

2
πe
−λx

∫ +∞

1
e−η
√

(λ2+k2)(t2+x2) dη√
η2−1

.

Proof. Let us recall an integral representation for the modified Bessel’s func-
tion of order zero

K0(ξ) =
∫ +∞

0
e−ξ coshφdφ.

At this point, let us choose ξ =
√

(k2 + λ2)(t2 + x2) and making a change of
variable coshφ = η, we get

K0(ξ) = K0
(√

(t2 + x2)(k2 + λ2)
)

=
∫ +∞

1
e−η
√

(t2+x2)(k2+λ2) dη√
η2−1

.

By replacing the above integral on the right hand side of the Corollary 1.7 we
obtain

F−1
[
e−t
√
ω2+2iλω+k2

√
ω2+2iλω+k2 ;ω → x

]
=
√

2
πe
−λx

∫ +∞

1
e−η
√

(λ2+k2)(t2+x2) dη√
η2−1

. �

Remark 1.10. In the above relation, let us choose k = 0, then we get the
following relation

F−1
[
e−t
√
ω2+2iλω

√
ω2+2iλω ;ω → x

]
=
√

2
πe
−λx

∫ +∞

1
e−ηλ
√

(t2+x2) dη√
η2−1

. �

Note. To the best of the author’s knowledge, in the literature the same
result is obtained by using complex integration around a complicated key-hole
contour in the complex plane.

Definition 1.11. The Laplace transform of the function f(t), 0 < t < +∞
is defined as follows

L{f(t)} =
∫ ∞

0
e−stf(t)dt := F (s).(1.4)

If L{f(t)} = F (s), then L−1{F (s)} is given by

f(t) = 1
2πi

∫ c+i∞

c−i∞
estF (s)ds =

n∑
k=1

Res[etsF (s); s = sk].(1.5)
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where F (s) is analytic in the region Re(s) > c with finite number of isolated
singularities in the complex-plane and s is a complex number with positive
real part. This complex integral can be evaluated by using an appropriate
contour in the complex plane, with the parameter c chosen to take into account
the analytic structure of the integrand, such as the presence of any poles and
branch cuts. The expression in (1.5) is the inverse Laplace transform for the
function F (s), and is often called the Bromwich integral.

Lemma 1.12 (Gross-Levi). Let us assume that L[f(t); t → s] = F (s) and
F (s) = F (reiφ), |φ| < π and

∫+∞
0 |F (reiφ)|2dr < +∞ , then we have the

following inversion formula

f(t) = 1
π

∫ +∞

0
e−tr Im

[
lim
φ→−π

F (reiφ)
]
dr.

Proof. See [5]. �

The most important use of the Caputo fractional derivative is treated in ini-
tial value problems where initial conditions are expressed in terms of integer
order derivatives. In this respect, it is interesting to know the Laplace trans-
form of this kind of derivative. In the following lemma, Laplace transform of
the Caputo fractional derivatives of order non integer α is given.

Lemma 1.13. We have the following relations

L{DC,α
0,t f(t)} = sαF (s)− sα−1f(0+), 0 < α < 1.(1.6)

and generally

L{DC,α
0,t f(t)} = sαF (s)−

k=m−1∑
k=0

sα−1−kfk(0+), m− 1 < α < m.(1.7)

Proof. See [7]. �

The Laplace transform provides a useful technique for the solution of such
fractional singular integro-differential equations.

Lemma 1.14. Let L{f(t)} = F (s), then the following identities hold true.
(1) L−1[F (sα); s→ t)] =

= 1
π

∫ +∞

0
f(u)

(∫ +∞

0
e−tr−ur

α cosαπ sin(urα sinαπ)dr
)
du.

(2) L−1(e−k
√
s) = k

(2
√
π)

∫ ∞
0

e
−sξ− k

2
4ξ dξ

(3) e−ωsα = 1
π

∫ ∞
0

e−r
α(ωcosαπ) sin(ωrα sinαπ)

(∫ ∞
0

e−sτ−rτdτ

)
dr

Proof. See [1], [2]. �
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Definition 1.15. The Stieltjes transform (i.e. the second iterate of the
Laplace transform) of a function ψ(t) : R+ → C is defined by means of the
following relation

S[ψ](s) = L[L[ψ(t); p]; s] =
∫ +∞

0

ψ(t)
t+s dt = Ψ(s).

Provided that the integral exists.
We have the following inversion formula for the Stieltjes transform [5],

S−1[Ψ(s); s→ t] = 1
π Im

[
lim

s→te−iπ
Ψ(s)

]
,

Lemma 1.16. The following integral identity holds true.∫ +∞

0

etKν(t)
(t+ξ)

√
t
dt = e−ξ√

ξ
Kν(ξ).

Proof. The left hand side of the above identity can be written in terms of
the Stieltjes transform (i.e. the second itrate of the Laplace transform) of a
function as below

L
[
L[ e

−tKν(t)√
t

; t→ η]; η → ξ
]

= S
[
e−tKν(t)√

t
; t→ ξ

]
= πe−ξ

cos(πν)
√
ξ
Kν(ξ).

Equivalently, we need to show that
e−tKν(t)√

t
= S−1

[
πe−ξ

cos(πν)
√
ξ
Kν(ξ); ξ → t

]
.

At this point, let us evaluate the right hand side by means of the inversion
formula for the Stieltjes transform [5] as follows

S−1
[
e−ξ√
ξ
Kν(ξ); ξ → t

]
= 1

π Im
[

lim
ξ→te−iπ

πe−ξKν(ξ)
cos(πν)

√
ξ

]
,

after simplifying we get

S−1
[

πe−ξ

cos(πν)
√
ξ
Kν(ξ); ξ → t

]
= 1

π Im
[
πe−tKν(−t)
−i cos(πν)

√
t

]
= Im

[
ie−tKν(−t)
cos(πν)

√
t

]
.

Let us use the well-known identity for the Macdonal’s function as below
Kν(−t) = eiπνKν(t) = (cosπν + i sin πν)Kν(t),

hence, we have

S−1
[

πe−ξ

cos(πν)
√
ξ
Kν(ξ); ξ → t

]
= Im

[
e−t(i cosπν−sinπν)Kν(t)

cos(πν)
√
t

]
= e−tKν(t)√

t
.

�

The operational methods provide a fast and universal mathematical tool for
obtaining the solution of partial differential equations. The most commonly
exponential operators which act on the function Ψ(t) are as follows.

Lemma 1.17. The following exponential identities hold true.
(1) exp(±λ d

dt)Ψ(t) = Ψ(t±λ)
(2) exp(±λt ddt)Ψ(t) = Ψ(te±λ)
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(3) exp(λq(t) ddt)Ψ(t) = Ψ(Q(F (t) + λ))
where F (t) is the primitive function of 1

q(t) and Q(t) is the inverse function of
F (t).

Proof. See [6]. �

Example 1.18. Let us consider the following Fokker-Planck equation with
variable coefficients as

∂u
∂t − αt

α−1( ∂
∂xx

∂u
∂x) = −λu. λ, γ > 0.

u(x, 0) = e−γx.

Note: The operator LDx(.) = ∂
∂xx

∂
∂x is known as Laguerre derivative [7].

Solution. The above partial differential equation can be written as below,
∂u
∂t = (−λ+ αtα−1 ∂

∂xx
∂
∂x)u,

in order to solve the above differential equation, we separate the variables and
rewrite the above equation as follows

du
u = (−λ+ αtα−1 ∂

∂xx
∂
∂x)dt,

by integrating the above equation, we get
ln u = (−λt+ tα ∂

∂xx
∂
∂x) + c(x),

or
u(x, t) = exp[(−λt+ tα ∂

∂xx
∂
∂x)]c1(x),

by using the fact that u(x, 0) = e−γx = c1(x) = ec(x), we arrive at

u(x, t) = e(−λt+tα( ∂
∂x
x ∂u
∂x

))e−γx.

After simplifying, we obtain

u(x, t) = e−λt[etα
∂
∂x
x ∂
∂x ]e−γx.

Let us define the operators A and B as follows

A = tα ∂
∂x , B = tαx ∂2

∂x2 .

Then we have
tα ∂

∂xx
∂
∂x = tα ∂

∂x + tαx ∂2

∂x2 = A+B,

with
[A,B] = AB −BA = t2α ∂2

∂x2 = A2.

In this case we have the following decomposition [6]
eA+B = (1 +A)eB.

From the above relation, we arrive at

u(x, t) = e−λt[etα
∂
∂x
x ∂
∂x ]e−γx =
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= e−λt(1 +A)[eBe−γx] = e−λt(1 + tα ∂
∂x)[et

αx ∂2
∂x2 e−γx],

at this point let us recall the following integral identity

eξ = 1√
π

∫ +∞

−∞
e−(s2+2s

√
ξ)ds.

In the above integral let us set ξ = tαx ∂2

∂x2 we obtain the following operational
identity

et
αx ∂2

∂x2 = 1√
π

∫ +∞

−∞
e−(s2+2s

√
xtα ∂

∂x
)ds = 1√

π

∫ +∞

−∞
e−s

2[
e−2
√
tαs
√
x ∂
∂x

]
ds,

thus, we have

u(x, t) = e−λt[etα
∂
∂x
x ∂
∂x ]e−γx

= e−λt(1 + tα ∂
∂x)
[

1√
π

∫ +∞

−∞
e−s

2 [e(−2s
√
tα)
√
x ∂
∂x e−γx]ds

]
.

Then apply the identity

eφ
√
x ∂
∂x f(x) = f

(
[
√
x+ φ

2 ]2
)
,

leads to

u(x, t) = e−λt(1 + tα ∂
∂x)
[

1√
π

∫ +∞

−∞
e−s

2
e−γ(

√
x−
√
tαs)2

ds
]
.

After evaluation of the inner integral we have

u(x, t) = e−λt
√
π

(1 + tα ∂
∂x)
[ √

π√
1+γtα e

−(γ− γ2tα
1+γtα )x

]
,

after simplification

u(x, t) = e−λt

(1+γtα)
3
2
e
−(γ− γ2tα

1+γtα )x
.

Note: It is easy to verify that u(x, 0) = e−γx.

In the next lemma, let us illustrate the use of Bromwich integral and residues
theorem.

Lemma 1.19. Using Bromwich complex inversion formula to show that

L−1
[
K0(a

√
s)√

s−b

]
= 2bK0(ab)eb2t −

∫ +∞

0
e−tξ

2 bJ0(aξ)+ξY0(aξ)
b2+ξ2 ξdξ.

Note. The techniques introduce for evaluating the inverse Laplace trans-
forms are adequate for a wide variety of routine applications involving the
Laplace transform.
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Proof. Direct application of the complex inversion formula and (1.5) leads
to the following

L−1
[
K0(a

√
s)√

s−b

]
= g(t) = 1

2πi

∫ c+i∞

c−i∞
est K0(a

√
s)√

s−b ds =

=
n∑
k=1

Res
[
ets K0(a

√
s)√

s−b ; s = sk
]
.(1.8)

The transform G(s) = [K0(a
√
s)√

s−b ] has a simple pole at s = b2 and a branch
point at s = 0. Then, the inverse Laplace transform will be obtained by the
Gross-Levi method as follows [5]

g(t) = lim
s→b2

[
(s− b2)K0(a

√
s)ets√

s−b

]
+ 1

π

∫ +∞

0
e−tr Im

[
lim
φ→−π

G(reiφ)
]
.(1.9)

or,

g(t) = lim
s→b2

[
(
√
s− b)(

√
s+ b)K0(a

√
s)ets√

s−b

]
+ 1

π

∫ +∞

0
e−tr Im

[
K0(a

√
re−iπ)√

re−iπ−b

]
.

after simplifying we get

g(t) = 2bK0(ab)eb2t − 1
π

∫ +∞

0
e−tr Im

[
K0(−ia

√
r)

i
√
r+b

]
dr.

At this stage, we use the following well-known identity for the Bessel’s func-
tions of the first and second kind [5]

K0(−ia
√
r) = πi

2 [J0(a
√
r) + iY0(a

√
r)].

therefore,

g(t) = 2bK0(ab)eb2t − 1
π

∫ +∞

0
e−tr Im

[ iπ
2 (b−i

√
r)(J0(a

√
r+iY0(a

√
r)

r+b2

]
dr,

after taking imaginary part of the fraction under integral sign, followed by
making a change of variable r = ξ2 and simplifying, we arrive at

g(t) = 2bK0(ab)eb2t −
∫ +∞

0
e−tξ

2 bJ0(aξ)+ξY0(aξ)
b2+ξ2 ξdξ.

Definition 1.20. The Hankel transform of order ν of a function f(t) is
given by

Hν [f(t); ρ] =
∫ +∞

0
f(t)tJν(ρt)dt = F (ρ).(1.10)

It is well to note that ν is not specified at this point and can be chosen to fit
best the particular problem under consideration. In order for a transformation
to be useful in solving boundary value problems, it must have an inverse. The
inverse Hankel transform of a function F (ρ) is given by [4, 5]

H−1
ν [F (ρ); t] =

∫ +∞

0
F (ρ)ρJν(tρ)dρ = f(t).
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Lemma 1.21. Let us define the function

hν(r) = 1
rν+1

d

dr

[ 1
rν
y(r)

]
.

and apply the Hankel transform of order ν, then we obtain
1. Hν [hν(r); r → ρ] = −ρ2Hν [y(r); r → ρ].

2. H0[h0(r); r → ρ] = −ρ2H0[y(r); r → ρ].

As an example of the Hankel transform we will consider the problem of heat
conduction formulated as follows.

Solution to time fractional heat equation via the joint Laplace-
Hankel transform.

Problem 1.22. Let us solve the time fractional heat conduction equation
with boundary conditions as follows

DC,α
t u = k2 1

r
∂
∂r (r ∂u∂r ),(1.11)

u(r, 0) = f(r), 0 < α ≤ 1, 0 < r < +∞.(1.12)

lim
r→+∞

u(r, t) = 0,(1.13)

lim
r→0
|u(r, t)| < +∞.(1.14)

Note. Notice that the fractional derivative is in the Caputo sense. The
constant k2 is the coefficient of diffusion for the substance under considera-
tion. In the most general case the coefficient of diffusion will depend on the
concentration and the coordinates of the point in question.

Solution: In order to obtain a solution for equations (1.11)–(1.14), let us
define the joint Laplace-Hankel transform as follows

Hν(L[u(r, t); t→ s], r → ρ]) = U(ρ, s) =
∫ +∞

0
rJ0(ρr)

( ∫ +∞

0
e−stu(r, t)dt

)
dr,

taking the joint Laplace-Hankel transform to each term of Eq. (1.11) followed
by second part of the Lemma 1.19 and using boundary conditions (1.12),
(1.13), (1.14) leads to

sαU(ρ, s) + (k2ρ2)U(ρ, s) = sα−1F (ρ),(1.15)
from which we obtain

U(ρ, s) = sα−1F (ρ)
sα + k2ρ2 .

At this point, taking the inverse joint Laplace-Hankel transform to obtain

u(r, t) =
∫ +∞

0
ρJ0(rρ)F (ρ)

[
L−1( sα−1

sα+k2ρ2 )
]
dρ.
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But, using the fact that L−1( sα−1

sα+k2ρ2 ) = Eα,1(−k2ρ2tα), we get the formal
solution as follows

u(r, t) =
∫ +∞

0
ρJ0(rρ)F (ρ)Eα,1(−k2ρ2tα)dρ.

Note. Eα,1(z) stands for the Mittag-Leffler function in one-parameter and
we have

Eα,1(z) = Eα(z) =
+∞∑
k=0

zk

Γ(αk+1) .

Let us consider the special case α = 0.5, then we have

L−1
[

sα−1

sα+k2ρ2

]
= L−1

[
1√

s
√
s+k2ρ2

]
= ek

4ρ4terfc(k2ρ2√t).

Therefore, our formal solution becomes

u(r, t) =
∫ +∞

0
ρJ0(rρ)Erfc(k2ρ2√t)F (ρ)dρ.

Let us recall that H0[f(r); r → ρ] =
∫+∞

0 f(ξ)ξJ0(ρξ)ξ = F (ρ) then we get
finally

u(r, t) =
∫ +∞

0
ξf(ξ)

[ ∫ +∞

0
ρJ0(rρ)J0(ξρ)Erfc(

√
tk2ρ2)dρ

]
dξ.

The last step is to verify that u(r, 0) = f(r), we have

u(r, 0) =
∫ +∞

0
ξf(ξ)

( ∫ +∞

0
ρJ0(ξρ)J0(rρ)dρ

)
dξ.

But the value of the inner integral is∫ +∞

0
ρJ0(ξρ)J0(rρ)dρ = 1

2δ(
r2−ξ2

4 ).

From which we deduce that

u(r, 0) =
∫ +∞

0
ξf(ξ)

[
1
2δ(

r2−ξ2

4 )
]
dξ.

In order to evaluate the above integral, we introduce a new change of variable
r2−ξ2

4 = η, we get

u(r, 0) =
∫ r2

4

−∞

√
r2 − 4ηf

(√
r2 − 4η

)
δ(η)dη√
r2−4η

=

=
∫ r2

4

−∞
f
(√

r2 − 4η
)
δ(η)dη = f(r).

Lemma 1.23. We have the following integral identity for the Bessel’s func-
tions

J0
(
2| sinh t

2 |ξ
)

= 4
π2

∫ +∞

0
sin(tτ) sinh(πτ)Kiτ (ξ)dτ.
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Proof. Let us start with the well-known identity for the product of the
modified Bessel’s functions

Kν(x)Kν(y) = π
2 sinπν

∫ +∞

0
J0
(√

2xy cosh t− (x2 + y2)
)

sinh(νt)dt.

Let us take x = y = ξ, ν = iτ then after simplifying we get

K2
iν(ξ) = π

2i sinhπτ

∫ +∞

0
J0
(√

2ξ2 cosh t− 2ξ2
)
i sin(τt)dt,

or,

2
π sinh πτK2

iτ (ξ) =
∫ +∞

0
J0
(
ξ
√

2(cosh t− 1)
)

sin τtdt =

=
∫ +∞

0
J0
(
2| sinh( t2)|ξ

)
sin τtdt.

At this stage, by taking the inverse Fourier-sine transform, we have

4
π2

∫ +∞

0
Kiτ (ξ) sinh(πτ) sin(tτ)dτ = J0

(
2| sinh t

2 |ξ
)
.

�

2. SOLUTION TO UNSTEADY FRACTIONAL HEAT CONDUCTION IN THE

QUARTER-PLANE VIA THE JOINT LAPLACE-FOURIER SINE TRANSFORM.

During the last three decade, many mathematical methods were widely ap-
plied in fractal analysis. Fractional calculus used to investigate fractal func-
tions is an important tool in this fields [13]. The main physical purpose for
investigating fractional diffusion equations is to describe phenomena of anoma-
lous diffusion.

Problem 2.1. Let us solve the time fractional heat conduction equation in
two dimensions with boundary conditions as follows

Dc,α
t u = ∆u = ∂2u

∂x2 + ∂2u
∂y2 ,(2.1)

u(x, 0, t) = 0,(2.2)

u(x, y, 0) = 0,(2.3)

u(0, y, t)− ux(0, y, t) = tα−1

Γ(α) , 0 < α ≤ 1, 0 < x, y < +∞.(2.4)

lim
y→+∞

u(x, y, t) = 0,(2.5)

lim
x→+∞

|u(x, y, t)| = 0.(2.6)
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Solution: In order to obtain a solution for equations (2.1)–(2.6), let us
define the joint Laplace-Fourier sine transform as follows
Fs(L[u(x, t); t→ s], y → ω]) = U(x,w, s)

=
√

2
π

∫ +∞

0
sin(wy)

( ∫ +∞

0
e−stu(x, y, t)dt

)
dy,

taking the joint Laplace-Fourier sine transform of (2.1) and using boundary
conditions (2.2), (2.3), (2.5) yields

Uxx(x, ω, s)− (sα + ω2)U(x, ω, s) = 0,(2.7)
with boundary conditions as follows

U(0, ω, s)− Ux(0, ω, s) = 1
ωsα ,(2.8)

lim
x→+∞

|U(x, ω, s)| = 0.(2.9)

The solution to Eq. (2.7) that satisfies the boundary conditions (2.8), (2.7) is
as follows

U(x, ω, s) = e−x
√
sα+ω2

ωsα(
√
sα + ω2 + 1)

.

Upon inverting the joint Laplace-Fourier sine transform, we obtain

u(x, y, t) =
√

2
π

∫ +∞

0
sin yω
ω

(
1

2πi

∫ c+i∞

c−i∞
ets−x

√
sα+ω2

sα(
√
sα+ω2+1)ds

)
dω.

Let us evaluate first the complex inner integral, we have

h(x, ω, t) = L−1
[

e−x
√
sα+ω2

sα(
√
sα+ω2+1)

]
= L−1[G(sα)],

in order to evaluate h(x, t), let us assume that

G(s) = e−x
√
s+ω2

s(
√
s+ ω2 + 1)

.

We first evaluate L−1[G(s); s → t] = g(x, ω, t) by means of the Gross-Levi
method as follows

L−1[G(s); s→ t] = g(x, ω, t) = e−ωx

ω+1 + e−ω2t

π

∫ +∞

0
e−tξ

(√
ξ cosx

√
ξ+sinx

√
ξ

(1+ξ)(ξ+ω2)

)
dξ.

Then we evaluate L−1[G(sα); s→ t] = h(x, ω, t), by means of the Lemma 1.13,
we get

h(x, ω, t) = 1
π

∫ +∞

0
g(x, ω, η)

( ∫ +∞

0
e−tr−ηr

α cosαπ sin(ηrα sinαπ)dr
)
dη.

Finally, we get the exact solution to diffusion equation as follows

u(x, y, t) =
√

2
π

∫ +∞

0
sin yω
ω h(x, ω, t)dω.
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Let us consider the special case α = 0.5, then we have

h(x, ω, t) = 1
π

∫ +∞

0
g(x, ω, η)

( ∫ +∞

0
e−tr sin(η

√
r)dr

)
dη

= 1
2t
√
πt

∫ +∞

0
g(x, ω, η)[ηe−

η2
4t ]dη.

Finally, we obtain

u(x, y, t) = 1
πt
√

2t

∫ +∞

0

sin(yω)
ω

( ∫ +∞

0
ηg(x, ω, η)e−

η2
4t dη

)
dω,

with

g(x, ω, t) = e−ωx

ω+1 + e−ω2t

π

∫ +∞

0
e−tξ

(√
ξ cosx

√
ξ+sinx

√
ξ

(1+ξ)(ξ+ω2)

)
dξ.

3. CONCLUSION

The Fourier, Laplace and Hankel transforms provide a powerful method
for solving certain linear differential and integral equations, and can be used
for evaluating certain definite integrals. The paper is devoted to studying
and application of the joint Laplace-Fourier sine transform for solving time
fractional diffusion equation in the first quadrant. As a mathematical tool,
the proposed method is extremely simple, attractive and concise.
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