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INTEGER COMPOSITION, CONNECTION APPELL CONSTANTS
AND BELL POLYNOMIALS

NATALIIA LUNO∗

Abstract. We introduce an explicit form of the connection coefficients for Ap-
pell polynomial sequences via Toeplitz-Hessenberg matrix determinants. Gen-
eralising, we give an explicit form of the connection coefficients for arbitrary
polynomial sequences and explain the combinatorial meaning of both constants
in terms of integer composition.
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1. INTRODUCTION

In [3], P. Appell introduced polynomials An(x) defined by the exponential
generating function

(1) exp(xt)A(t) =
∞∑

n=0
An(x) tn

n! ,

where A(t) is a formal power series

(2) A(t) =
∞∑

n=0
an

tn

n! , a0 ̸= 0,

which are known as the Appell polynomials today.
Besides, it was shown there exists a one-to-one correspondence in the form

(3) An(x) =
(n

0
)
anx0 +

(n
1
)
an−1x1 +

(n
2
)
an−2x2 + · · · +

(n
n

)
a0xn.

We call the formal power series A(t) the transfer sequence of the Appell
sequence {An(x)}n≥0.

Throughout the text, we will use the equivalent for transfer sequence in the
form

(4) A(t) =
∞∑

n=0
antn, a0 ̸= 0,
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whence

(5) An(x) =
n∑

i=0

(n
i

)
(n − i)!an−ix

i.

The classical Appell polynomials include the monomials, the Bernoulli poly-
nomials, the Euler polynomials, the Hermite polynomials. All of them, in turn,
participate in a big number of modern generalisations such as the Bernoulli-
Apostol polynomials, the Euler-Apostol polynomials, the Gould-Hopper poly-
nomials, the generalised hypergeometric Appell polynomials, etc.

The Appell polynomials is a special case of the Sheffer polynomials, basic
properties of the latter were widely studied in [22] from the point of view of
the umbral calculus. Nowdays, the Appell polynomials are of great interest
again, new modifiers of the existing definitions and properties are proposed, for
instance, the Dattoli’s school [12] is focused on the realisation of the Wheyle
algebras with special functions, matrix [1] and determinantal approaches [2]
came out as well. As a consequence, new polynomial and combinatorial iden-
tities are obtained [10, 19, 20, 5].

For two given arbitrary polynomial sequences {pn(x)} and {qn(x)} of degree
n, each member of every sequence can be expressed as a linear combination of
the second one:

(6) pn(x) =
n∑

k=0
ck(n)qk(x).

We call expression (6) the connection problem for polynomial sequences
{pn(x)} and {qn(x)}. The unknown numbers ck(n) that need to be found are
called the connection coefficients or the connection constants.

When pn(x) = xn, the connection problem (6) is called the inverse problem:

(7) xn =
n∑

k=0
ck(n)qk(x).

In literature, large variety of methods are proposed to solve the connection
problem, and choosing the proper method depends on what special classes
both sequences belong to. Great amount of solutions were constructed consid-
ering the classical orthogonal polynomials, we only mention the ones based on
NaViMa and other algorithms [16, 14, 25] or on the generalised hypergeomet-
ric function [15]. Sometimes the results obtained by the recurrence methods
are recurrent themselves [24, 13].

The explicit form of several connection problem solutions (the Laguerre
polynomials, the Abel polynomials, the Gould polynomials, the falling and
the rising factorials, etc.) was presented in the fundamental article by Roman
and Rota [22].

Here, we will use the results on Appell polynomials presented in [11].
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Theorem 1 (Cheikh and Chaggara). Given two Appell sequences pn(x),
deg (pn) = n, and qn(x), deg (qn) = n, with transfer sequences A(t) and B(t),
respectively, the solution of the connection problem (6) has the form

(8) pn(x) =
n∑

i=0

n!
(n−i)!ciqn−i(x), where A(t)

B(t) =
∞∑

i=0
cit

i.

Recently, independently from the Cheikh and Chaggara, in [9], the authors
presented the Sheffer and Appell families linear functionals based on the in-
verse problem closed form solution.

The aim of this paper is to give an explicit form of the connection coeffi-
cients for the Appell sequences, together with generalizing it to an arbitrary
polynomial sequences. We also give the combinatorial interpretation of the
results based on integer compositions and discuss arising related questions,
i.e., relations between the Toeplitz-Hessenberg matrices determinants and the
classical Bell polynomials.

2. APPELL CONNECTION COEFFICIENTS

2.1. Formal power series. It is known, that that formal power series (4) has
a unique multiplicative inverse 1

A(t) = A−1(t) if and only if a ̸= 0. The explicit
formula was firstly discovered by Brioshi [8] in 1858 and is re-discovered by
different researchers from time to time.

Transforming (4),

(9) 1
A(t) =

(
1 +

∞∑
n=0

antn

)−1

=
∞∑

m=0
(−1)m

(
1 +

∞∑
n=0

antn

)m

=

=
∞∑

i=0

∑
m1,...,mn>0,

m1+2m2+...+imi=i

(−1)m1+...+mn

(
m1 + . . . + mi

m1, . . . , mn

)
am1

1 . . . ami
i ti

The inner sum is precisely the expanded expression of an arbitrary n-th
order determinant

∑
σ∈Sn

ϵ(σ)aσ(1)
1 . . . aσ(n)

n =
∑

σ1,σ2,...,σn

(−1)N(σ1σ2...σn) · aσ1
1 . . . aσn

n ,(10)

where permutations σ1, σ2, . . . , σn belong to S1, S2, . . . , Sn, respectively, and
N(σ1σ2 . . . σn) denotes the number of inversions in σ1σ2 . . . σn.
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The explicit form of the determinant (10) is given (see, e.g., [18]) by one of
the following expressions

δn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a1 a2 . . . ai−2 ai−1 ai

0 a0 a1 . . . ai−3 ai−2 ai−1
0 0 a0 . . . ai−4 ai−3 ai−2

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . a0 a1 a2
0 0 0 . . . a0 a1
1 0 0 . . . 0 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,(11)

or, equivalently, as the n-th order determinant of a Toeplitz-Hessenberg matrix

δn = (−1)n

an+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 . . . ai−2 ai−1 ai

a0 a1 . . . ai−3 ai−2 ai−1
0 a0 . . . ai−4 ai−3 ai−2

. . . . . . . . . . . . . . . . . .
0 0 . . . a0 a1 a2
0 0 . . . 0 a0 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We gather all previous statements into

Lemma 2. The formal power series (4) inverse has the following explicit
form

(12) 1
A(t) =

∞∑
n=0

a∗
ntn, where a∗

0 = 1 and a∗
i = δi+1are defined by (10).

Some first inverse coefficients are listed below.

a∗
0 = 1,

a∗
1 = −a1,

a∗
2 = a2

1 − a2,
a∗

3 = −a3
1 + 2a2a1 − a3,

a∗
4 = a4

1 − 3a2a2
1 + 2a3a1 + a2

2 − a4,
a∗

5 = −a5
1 + 4a3

1a2 − 3a2
1a3 − 3a1a2

2 + 2a1a4 + 2a2a3 − a5.

Recall, division of two formal power series B(t)
A(t) is defined as a product

B(t)A−1(t) if A−1(t) exists.
For A(t) =

∑∞
n=0 antn, a0 = 1 and B(t) =

∑∞
n=0 bntn, we denote C(t) =

B(t)
A(t) =

∑∞
=0 cit

i, then 1
A(t) =

∑∞
n=0 a∗

ntn and, with the Cauchy formula,

C(t) = B(t) 1
A(t) =

∞∑
n=0

bntn ·
∞∑

n=0
a∗

ntn =
∞∑

n=0

 n∑
p=0

bn−pa∗
p

 tn.
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Considering the expressions (11) for a∗
p and the properties of the determinants,

we obtain

c0 = 1, cn = 1
ap+1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bp a1 a2 . . . ap−2 ap−1 ap

bp−1 a0 a1 . . . ap−3 ap−2 bp−1
bp−2 0 a0 . . . ap−4 ap−3 bp−2
. . . . . . . . . . . . . . . . . . . . .
b2 0 0 . . . a0 a1 a2
b1 0 0 . . . 0 a0 a1
b0 0 0 . . . 0 0 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.(13)

Some first ratio coefficients are listed below.

c0 = 1,
c1 = −a1+1,

c2 = a2
1 − a1b1 − a2 + b2,

c3 = −a3
1 + a2

1b1 + 2a2a1 − a1b2 − a2b1 − a3 + b3,
c∗

4 = a4
1 − a3

1b1 − 3a2
1a2 + a2

1b2 + 2a1a2b1 + 2a3a1 − a1b3 + a2
2 − a2b2−

−a3b1 − a4 + b4.

2.2. Connection constants. Thus, we derive the explicit form of two arbi-
trary formal power series ratio.

Lemma 3. The ratio coefficients ci of two given formal power series A(t) =∑∞
n=0 antn, a0 ̸= 0 and B(t) =

∑∞
n=0 bntn are defined by formulas (13).

Now, connection Appell coefficients are specified as follows.

Theorem 4. Given two Appell families pn(x) and qn(x) such that deg (pn)=
= deg (qn) = n, with transfer sequences A(t) and B(t), respectively,

• (i) solution of inverse problem for An(x) has the form

(14) xi =
n∑

i=0

n!
(n−i)!a

∗
i An−i(x),

where connection constants a∗
i are defined by Lemma 2;

• (ii) solution of their connection problem has the form

(15) Bn(x) =
n∑

i=0

n!
(n−i)!ciAn−i(x),

where connection constants ci are defined by Lemma 3.

The proof comes from Theorem 1, Lemma 2 and Lemma 3.
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Example 5. Considering two equal formal power series with ai = bi for all
i ≥ 0, according to Theorem 4 we have

c0 = 1, ci = 1
ai+1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi b1 2 . . . bi−2 bi−1 i

bi−1 b0 b1 . . . bi−3 bi−2 bi−1
bi−2 0 b0 . . . bi−4 bi−3 bi−2
. . . . . . . . . . . . . . . . . . . . .
b2 0 0 . . . b0 b1 b2
b1 0 0 . . . 0 b0 b1
b0 0 0 . . . 0 0 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

which turns the connection formula (15) into the needed identity:

An(x) =
n∑

i=0

n!
(n−i)!ciBn−i(x) = c0Bn−0(x) = Bn(x).

Example 6. Let us find the standard basis representation of an arbitrary
Appell polynomial An(x) with transfer sequence A(t) =

∑∞
n=0 antn, where

an = An(0)
n! . For standard basis, we have Bn(x) = xn with transfer sequence

B(t) =
∑∞

n=0 tn, then

c0 = 1, ci = 1
ai+1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣

ai 0 0 . . . 0 0
ai−1 1 0 . . . 0 0
ai−2 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
a1 0 0 . . . 0 1 0
a0 0 0 . . . 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ai

and the connection formula (15) takes the form

An(x) =
n∑

i=0

n!
(n−i)!aix

n−i =
n∑

i=0

n!
(n−i)!

Ai(0)
i! xn−i =

n∑
n=0

(n
i

)
Ai(0)xn−i,

which reconstitute S. Roman’s umbral calculus result presented in [22].

Remark 7. It is easy to see that the first k members of the ratio B(t)
A(t) =

C(t) =
∑∞

=0 cit
i with A(t) =

∑∞
i=0 ait

i and B(t) =
∑∞

i=0 bit
i produce the

simultaneous linear recurrent equations

bk =
k∑

j=0
ajck−j , where a0 ̸= 0,

solutions of which in the form of determinants (13) were given formulas ???(2.22)
in the significant collection of combinatorial identities of H. W Gould [21]. □

Remark 8. Another interesting method of obtaining determinants (11)
appeared in [26]. For two given formal power series

g(x) = a1x1 + a2x2 + a3x3 + . . . + anxn + . . . ,

f(x) = 1
1−x = 1 + x1 + x2 + x3 + . . . + xn + . . . ,
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their compositional function F (x) = f (g(x)) has the expansion
F (x) = 1 + a1x1 + (a2

1 + a2)x2 + (a3
1 + 2a1a2 + a3)x3+

+(a4
1 + 3a2

1a2 + a2
2 + 2a1a3 + a4)x4+

+(a5
1 + 4a3

1a2 + 3a1a2
2 + 3a2

1a3 + 2a2a3 + 2a1a4 + a5)x5 + . . .

and the coefficients of the powers of n almost coincide with the connection
determinants defined by (11) (for total identity, choose f(x) = 1

1+x .)
The reasons of choosing f(x) and g(x), due to N. Wheeler, is cored into the

eigenvalue representation of unnamed Newton matrices identity:

det (I − xA) = exp (tr log (I − xA)) =exp
(
−T1x − 1

2T2x2 − 1
3T3x3 + . . .

)
,

where Tk = tr(Ak).
Besides the relations between the connection determinants and the Toeplitz-

Hessenberg matrix determinants, in [26], the similarity of the Toeplitz-Hessen-
berg matrix determinants and the classical Bell polynomials are clarified. In
the assumptions

f(x) = exp(x) = 1 + 1
1!x

1 + 1
2!x

2 + 1
3!x

3 + . . . ,

g(x) = b1x1 + 1
2!b2x2 + 1

3!b3x3 + . . . ,

one can obtain
F (x) = 1 + 1

1!b1x1 + 1
2!(b

2
1 + b2)x2 + 1

3!(b
3
1 + 3b1b2 + b3)x3+

+ 1
4!(b

4
1 + 6b2

1b2 + 3b2
2 + 41b3 + b4)x4+

+ 1
5!(b

5
1 + 10b3

1b2 + 15b1b2
2 + 10b2

1b3 + 10b2b3 + 5b1b4 + b5)x5 + . . . =

= 1 + 1
1!B1 (b1) x1 + 1

2!B2 (b1, b2) x2 + 1
3!B3 (b1, b2, b3) x3+

+ 1
4!B4 (b1, b2, b3, b4) x4 + 1

5!B5 (b1, b2, b3, b4, b5) x5 + . . . ,

where the Bn(•) are the classical complete exponential Bell polynomials. □

3. COMBINATORIAL MEANINGS OF APPELL CONNECTION CONSTANTS

3.1. Integer composition. As far as classical Bell polynomials encode the
information related to the ways a set (an integer number) can be partitioned,
let us have a look on the inverse determinants (11) from the combinatorial
point of view.

The partition of the integer number n is a tuple of positive integers [4]:
λ = (λ1, λ2, . . . , λn) such that λ1 + λ2 + . . . + λk = n and λ1 ≤ λ2 ≤ . . . ≤ λk.
The notation λ ⊢ n means that λ is a partition of n. As usual, integer partitions
are visualized with Young diagrams.

Two sums that differ only in the order of their summands are considered
the same partition. For example, 5 can be partitioned in seven distinct ways:

5 = 5, 5 = 4 + 1, 5 = 3 + 2, 5 = 3 + 1 + 1, 5 = 2 + 2 + 1,
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5 = 2 + 1 + 1 + 1, 5 = 1 + 1 + 1 + 1 + 1.

If the order of summands does matter, integer partition is called integer
composition.

In the case of integer composition of n, we move from the origin (0, 0) to the
east-north along the n×n square diagonal. The step is a pair (x, y), where x is
an east value, y is a north value. In integer compositions, only (x, x) diagonal
steps occur, with the length of the step equal to x. Thus, we associate every
step (λj , λj) with a member λj of the certain partition

∑k
j=1λj = n. The pass

is a sequence of the diagonal steps with integer coordinate from the origin
(0, 0) to the point (n, n). So, a path is a product of the steps of lengths λi :
(λ1, λ1) (λ2, λ2) . . . (λk, λk) . Thus, there exists a one-to-one correspondence
between the set of all compositions of n and the set of all different paths from
(0, 0) to the point (n, n).

According to the composition definition, for n = 5, the binary paths
(1, 1) (2, 2) . . . (2, 2) and (2, 2) (2, 2) . . . (1, 1)

are considered to be different, but, taking into account step product’s com-
mutativity, we have three different paths of length 1 + 2 + 2 :

(1, 1)(2, 2)(2, 2) + (2, 2)(1, 1)(2, 2) + (2, 2)(2, 2)(1, 1) =
= 3(1, 1)(2, 2)(2, 2) = 3(1, 1)(2, 2)2.

For n = 5, we have sixteen distinct partitions, two of which are shown in Fig.
1 (a, b).

(a) 5 = 1 + 1 + 3. (b) 5 = 2 + 1 + 2.

Fig. 3.1

3.2. Toeplitz-Hessenberg matrix determinants via integer composi-
tion. As far, as Toeplitz-Hessenberg matrix determinants (11) and, conse-
quently, the formulas (9), describe integer partition of natural number i, it
implies the combinatorial meaning of the connection coefficients a∗

i defined by
Lemma 2.‘ We match every step (λj , λj) the member aλj

of the transfer func-
tion A(t) =

∑n
n=0ait

i. Then, the expressions for a∗
i (11) of the inverse problem
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are literally the “connection” coefficients, each of a∗
i is formed as a sum of all

different paths connecting the origin (0, 0) with the point (n, n). The latter
coincides with all integer compositions of n.

For instance, if n = 5, from (11),
c5 = −a5

1 + 4a3
1a2 − 3a2

1a3 − 3a1a2
2 + 2a1a4 + 2a2a3 − a5.

Here the summands multiplied by a number k contain k different paths, i.e.,
3a1a2

2 = a1a2a2 + a2a1a2 + a2a2a1

binary path corresponding to the second summand in the latter sum are shown
in Fig. 1(a)??,

3a2
1a3 = a1a1a3 + a1a3a1 + a3a1a1

binary path corresponding to the first summand in the latter sum are shown
in Fig. 1(b)???, and we have sixteen different binary paths in total.

Moreover, those coefficients a∗
i (11) form the corresponding line in the ana-

logue of Pascal triangle, similiar constructions occure for special polynomial
structures ([7]). In the case of the inverse problem, we have the analogue
of Pascal’s triangle for compositions (as far as the order of the summands
matters, some coefficients are multiplied by a number k):

1
−a(1)

a(12) −a(2)
−a(13) 2a(2,1) −a(3)

a(14) −3a(2,12) a(22) 2a(3,1) −a(4)
−a(15) 4a(2,13) −3a(22,1) −3a(3,12) 2a(3,2) 2a(4,1) −a(5)

where a(λi⊢n) =
∏

i ami
i , i.e., a(2,13) = a2a3

1.
Here, some summands have negative signs. Combinatorially, it means when

making the odd number of paths we change the direction into the opposite
one.

Let us denote the number of all different paths corresponding to integer n
by W (n), the properties of the Pascal triangle implies W (n) = 2n−1. Thus, we
have

Proposition 9. The number of all different paths corresponding to each a∗
i

in determinants (11) is equal to 2i−1.

Combinatorially, the expressions for ci from the connection problem solution
given by Theorem 4 are formed in the following manner. Starting from the
origin (0, 0), the first step correspondent to bi always ought to be made over
the main diagonal of the big square to the east-north (marked by blue), and it
can be absent. The rest of the steps corresponding to

∏n−i
k=1ak are made under

the main diagonal of the big square to the point (n, n) (marked by red).
In other words, connection coefficient cn is represented by the set of all

paths, each of the latter consists of no more than one upper binary step and
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the rest (n − i) lower steps, both all upper and lower steps are the members
of the same integer partition. If we match every upper step (βi, βi) with the
coefficient bβi

of the transfer function B(t) and we match the rest (n−i) of the
lower steps with the product of the coefficients aα1 , . . . , aαn−i of the transfer
function A(t), then the path (βi, βi) (α1, α1) . . . , (αn−i, αn−i) is matched with
a product bβi

, aα1 , . . . , aαn−i , where βi + α1 + . . . + αn−i = n.
For instance, if n = 4, due to (13),

c4 = a4
1 −a3

1b1 −3a2
1a2 +a2

1b2 +2a1a2b1 +2a1a3 −a1b3 +a2
2 −a2b2 −a3b1 −a4 +b4.

Here the summands multiplied by a number k contain k different paths, start-
ing with bi (0 ≤ i ≤ n), i.e.,

2a1a2b1 = b1a1a2 + b1a2a1

the paths corresponding to both summands are shown in Fig. 2(a,b).

(a) b1a1a2. (b) b1a2a1.

Fig. 3.2

Proposition 10. The number of all different paths corresponding to each
connection coefficient ci in determinants (11) is equal to 2i.

Proof. Let us count the number of all paths correspondent to the connection
coefficient(11).

• If multiplier bi is absent, the corresponding summands look like
∏

kak

and the number of all correspondent paths describes integer composi-
tion of n, and it is equal to W (n);

• for b1, the correspondent multipliers
∏

kak describe integer composition
of n − 1, d the number of correspondent paths is equal to W (n − 1),
and we have 1 · W (n − 1) paths in total;

• for b2, the correspondent multipliers
∏

kak describe integer composition
of n − 2, d the number of correspondent paths is equal to W (n − 2),
and we have 1 · W (n − 1) paths in total; and so on;

• for bn−1, we have 1 · W (1) paths;
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• finally, for bn, we have only one possible path.
Summing up, we obtain from Proposition 9:

W (n) + 1 · W (n − 1) + 1 · W (n − 2) + · · · + 1 · W (2) + 1 · W (1) + 1 =
2n−1 + 2n−2 + · · · + 21 + 20 + 1.

The latter sum is known to be equal to 2n, which completes the proof. □

4. CONNECTION COEFFICIENTS FOR ARBITRARY POLYNOMIALS

4.1. Expressions for arbitrary connection constants. Connection be-
tween two orthogonal polynomial families

Pn(x) =
n∑

k=0
an,kxk, Qn(x) =

m∑
k=0

am,kxm, an,k, am,k ∈ R

can be established as a connection between corresponding vectors P⃗ t
n and Q⃗t

n

by the lower-triangle matrix of unknown coefficients Cm(n) (see [24]):

P⃗n = [Cm,n] Q⃗n where Cm,n = Cm(n),

or, equivalently:
P0(x)
P1(x)

· · ·
Pn(x)

 =


C0(0) 0 · · · 0
C1(0) C1(1) · · · C1(0)
· · · · · · · · · · · ·

Cn(0) Cn(1) · · · Cn(n)




Q0(x)
Q1(x)

· · ·
Qn(x)


We will search for the solution of the connection problem (6) in the form

(16) Pn(x) =
(
d0(n) d1(n) d2(n) · · · dn(n)

)


Qn(x)
Qn−1(x)
Qn−2(x)

· · ·
Q0(x)

 .

Solving the Appell connection problem in the previous section was based
on the simultaneously linear recurrence equations

bk =
k∑

j=0
ajck−j , where a0 ̸= 0, 0 ≤ k ≤ n,

Unlike the Appell polynomials, the generating function of an arbitrary poly-
nomial family depends on two variable x and t, which can not be ”divided”
into two independent series, for instance, the Chebyshev polynomials Tn(x) of
the first kind have the following generating function

∞∑
n=0

Tn(x)tn = 1 − tx

1 − 2tx + t2 .
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Let

(17) Pn(x) =
n∑

i=0
ci(n)xn−i and Qi(x) =

i∑
j=0

bj(i)xi−j , 0 ≤ i ≤ n

be two families of arbitrary polynomials given in the standard basis. For
the fixed n, coefficients di(n) and ci(n) can be treated as one-indexed, so we
denote di(n) := di, ci(n) := ci. After substituting (17) into (16), we obtain
simultaneously two-indexed recurrence equations

(18) bi =
i∑

j=0
ajci−j(n − j), where b0(i) ̸= 0, 0 ≤ i ≤ n.

Since deg(Qi(x)) = i, then b0(i) ̸= 0, and, by the Cramer’s rule, (18) has
unique solution.

Lemma 11. Solutions ci(n) of the simultaneously two-indexed recurrence
equations (18) are defined by the (n + 1)-order determinants

ci(n) = 1
a0(n)a0(n − 1) . . . a0(1)a0(0)×(19)

×

∣∣∣∣∣∣∣∣∣∣

bi a1(n − i + 1) a2(n − i + 2) . . . ai−1(n − i) ai(n)
bi−1 a0(n − i + 1) a1(n − i + 2) . . . ai−2(n − i) ai−1(n)
bi−2 0 a0(n − i + 2) . . . ai−3(n − i) ai−2(n)
. . . . . . . . . . . . . . . . . .
b0 0 0 . . . 0 a0(n)

∣∣∣∣∣∣∣∣∣∣
.

Now, we are ready to establish the explicit formula of the connection prob-
lem (6) in general case.

Theorem 12. For two polynomial families given in the standard basis

Pn(x) =
n∑

i=0
bi(n)xn−i, Qi(x) =

i∑
j=0

aj(i)xi−j , b0(i) ̸= 0, 0 ≤ i ≤ n,

the unknown connection coefficients ci(n) of the connection problem (6)

Pn(x) =
n∑

i=0
ci(n)Qi(x)

are defined via determinants (19).

4.2. Combinatorial meanings of arbitrary connection constants. In
fact, the connection problem (6) includes one polynomial Pn(x) and the set
of the polynomials {Qi(x)}n

i=0, every of which, in turn, is defined by the set
of two-indexed coefficients b0(n), b1(n), . . . , bn(n) and a0(n), a1(n), . . . , an(n),
a0(n − 1), a1(n − 1), . . . , an(n − 1), . . . , a0(0), a1(0), . . . , an(0), respectively.

In the case when all zero-subscribed coefficients are equal to 1, the connec-
tion coefficients (19) have combinatorial meanings. It looks like we need to
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arrange all implicit points (i, n) associated with value ai(n), and points (i, i)
associated with values bi(n) along the (n, n) square diagonal in a proper way.

More precisely, we associate each two-indexed coefficient bi(n) (0 ≤ i ≤
n) with upper step (over the diagonal, marked blue) and each two-indexed
coefficient ai(i) (0 ≤ i ≤ n) with lower binary step (under the diagonal,
marked red) into the west-south direction. The number in the parentheses
denotes the starting point at the diagonal of the (n, n) square, the number of
subscript denotes the step size.

Then every connection coefficient ci(n) (0 ≤ i ≤ n) in (19) represents the
set of all possible paths from point (n, n) to point (n − i, n − i). Each path
consists of no more than one upper step bi(n) and the rest (n − i) of lower
steps ai(i) (0 ≤ i ≤ n), both all upper and lower steps are the members of the
same integer composition.

(a) b3(4)a1(1). (b) a2(2)a1(3)b1(4).

Fig. 4.3

If n = 4, i = 4, from (19),

c4(4) = b4(4) − b3(4)a1(1) + a1(1)a1(2)b2(4) − a2(2)b2(4)−
−a1(1)a1(2)a1(3)b1(4) + a1(1)a2(3)b1(4) + a2(2)a1(3)b1(4) − a3(3)b1(4)+
+a1(1)a1(2)a1(3)a1(4) − a1(1)a1(2)a2(4) − a1(1)a2(3)a1(4) + a1(1)a3(4)−

−a2(2)a1(3)a1(4) + a2(2)a2(4) + a3(3)a1(4) − a4(4),

which implies sixteen different paths from (4, 4) to (0, 0), the ones representing
the second and the seventh summands, respectively, are shown in Fig. 3(a, b).

If n = 4, i = 3, from (19),

c3(4) = −a1(3)a1(2)a1(4) + a1(3)a1(2)b1(4) + a2(3)a1(4)−
−a2(3)b1(4) + a1(2)a2(4) − b2(4)a1(2) + b3(4) − a3(4),

there are eight different binary paths from (4, 4) to (1, 1), the ones representing
the second and the third summands, respectively, are shown in Fig. 4(a, b).
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(a) a1(3)a1(2)b1(4). (b) a2(3)b1(4).

Fig. 4.4

Proposition 13. The number of all different paths corresponding to each
connection coefficient in the (19) is equal to 2i.

The proof is analogous to that of Proposition 9.
Remark 14. Choosing a proper numeration of the polynomial coefficients

different from the standard one (17) one can obtain the binary paths corre-
spondent to the connection coefficients that will start at origin (0, 0) and will
end at point (n, n). □

Remark 15. In the case when zero-subscribed coefficients are not equal to
1, the number of the summands does not increase, but the number of steps
inside one summand does increase. Moreover, the divisors appear as well.
That is why the question about combinatorial meanings of the connection
coefficients ci(n) when all a0(i) ̸= 0 is still open. □
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