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1. INTRODUCTORY REMARKS AND NOTATIONS

Products of parametric extensions of d univariate operators are appropriate
tools to approximate functions defined on the product of d compact metric
spaces. We will deal in this paper with twodimensional tensor products over
compact real intervals. These are used in Computer Aided Geometric Design
(CAGD) to construct approximating or interpolating free form surfaces (see
[21], [42], [7] and the references therein). According to Schumakers classifica-
tion (see [66]) the tensor product of two univariate operators can be viewed
as a simple two-stage process. For the case of d dimensions see, e.g., [29], [33]
where, however, no assertions concerning simultaneous approximation were
made. This paper is a continuation of our recent paper [3] and focusses on
applications. A more detailed presentation including full proofs was given in
our technical report [2].

The tensor product method is a restrictive one, especially because of the
requirement that the information must be given in tensor product form, e.g.,
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in the case of discretely defined operators on a Cartesian product grid. We also
have to recall that some directions are preferred on a tensor product surface,
and if these directions are not properly chosen, then the obtained surface might
not be “good enough”.

Despite of these limitations one should use the tensor product method as
often as it makes sense; as de Boor mentions in his book [16], this method is
extremely efficient when it comes to implement it in comparison with other sur-
face approximation techniques. Furthermore, two recent preprints by Höllig,
Reif and Wipper [43], [44] show in an impressive way that the tensor product
method is not dead at all. The method also remains useful in fitting functions
given on the sphere. This was demonstrated in a talk given by Sbibih [64]
at the 2001 International Conference on Numerical Algorithms (Marrakesh,
Morocco).

The method of using the product of parametric extensions of univariate
operators is quite a classic one. It was first used to a larger extent in the
context of multivariate polynomial interpolation. Much historical information
and many early references on the subject can be found in an article by Gasca
and Sauer [23]. Here we mention in particular the 1926 paper by Neder [58].
To our knowledge the tensor product of the (noninterpolatory) Bernstein poly-
nomial operators was first considered in 1933 by Hildebrandt and Schoenberg
[41]. An early use of the tensor product method in combination with spline
interpolation was made in de Boors 1962 article [14] on bicubic splines and–
almost simultaneously–by Ferguson [22]. Both authors were guided by the
work of Birkhoff and Garabedian [6].

The tensor product of two linear operators was considered for example by
Stancu [74] in 1964. For further references and results concerning the method
(and other multivariate ones) see, e.g., a paper by Coatmelec [11], the disser-
tation of Haussmann [39], an article of Haussmann and Pottinger [40], and the
ones by Mastroianni [54] and Lancaster [49]. Many other notes treated the
method as well. Our bibliography lists several of these, although our paper
does not refer to them explicitely; there is no claim for completeness at all.

A recent deep result concerning d-variate tensor product Bernstein oper-
ators was given by Xinlong Zhou who proved a strong converse inequality
(see [87]). Similar results for d-variate tensor product Jackson operators were
proved by Knoop and Zhou [48].

For the bivariate case the method of parametric extensions can be described
as follows (see [37], [17], [19]); de Boor calls this the naive approach. We
emphasize that this approach is the only one which is of interest in this note.

Let I and J be nontrivial compact intervals of the real axis R. For i = 1, 2
let Gi be linear subspaces of RI = {g : I ∋ x → g(x) ∈ R}, and Hi be such of
RJ = {h : J ∋ y → h(y) ∈ R}. We consider linear operators

L : G1 → G2 and M : H1 → H2.



128 Laura Beutel and Heiner Gonska 3

For f : I → R we define the partial functions fx : J → R and fy : I → R by
fx (y) := f (x, y) =: fy (x) , for all (x, y) ∈ I × J.

Furthermore, putting
F := {f ∈ RI×J : fy ∈ G1, ∀y ∈ J} ∩ {f ∈ RI×J : fx ∈ H1, ∀x ∈ I},

the parametric extension of L is given by xL : F → RI×J ,

xL (f ; x; y) := L (fy; x) , for all (x, y) ∈ I × J.

Symmetrically, the parametric extension of M has the form yM : F → RI×J ,

yM (f ; x; y) := M (fx; y) , for all (x, y) ∈ I × J.

We assume, furthermore, that xL : F → F and

yM : F → F

so that the linear operators

xL ◦ yM and yM ◦ xL

are both defined, mapping F into itself. The product of these parametric
extensions is called the tensor product of L and M (M and L, respectively).

An answer to the question under which conditions the parametric exten-
sions commute is known in certain cases. For example, Gordon and Cheney
(see Theorem 9 in [37]) and, independently Potapov and Jimenez Pozo (see
Theorem 1 in [61]) observed that this is so if G1 = G2 = C(X), H1 = H2 =
C(Y ), F = C(X × Y ), where X and Y are compact metric spaces, and if
L : C(X) → C(X), M : C(Y ) → C(Y ) are continuous linear operators with
respect to the sup norms. Other conditions are discussed by de Boor [17,
pp. 50–52], and by Lancaster [49, Th. 3], for example.

The situation relevant to us is described as follows: For k, l ∈ N0 := N ∪
{0}, let the symbol D(k,l) denote the partial differential operator ∂k+l/∂xk∂yl;
occasionally we will write f (k,l) instead of D(k,l)f . We define

Cp,q (I × J) :=

:= {f : I × J → R : D(k,l)f is continuous for (0, 0) ≤ (k, l) ≤ (p, q)}.

The notation (k, l) ≤ (p, q) indicates that k ≤ p and l ≤ q. The corresponding
symbols used for the univariate case will be Cp (I) , Dk, dk/dxk and f (k). For
p = q = 0 we obtain the spaces C(I), C(J) and C(I × J) of real-valued
functions which are continuous on I, J and I × J , respectively. Similarly, D0

and D(0,0) mean the one and two dimensional identity operators.
Although we will not restrict our attention to these, many of our univariate

building blocks will be discretely defined, a notion to be explained next.
Let I = [a, b] and △n; a ≤ x0 < x1 < . . . < xn ≤ b be a partition of [a, b].

With this sequence of points we associate an incidence matrix
E = (ei,j)i=0,...,n;j=0,...,p
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where p is a nonnegative integer. Such matrices have as entries |E| ≥ n + 1
ones and (n + 1)(p + 1) − |E| zeros and are such that in each row there is at
least one entry equal to one. We also assume that the last column contains at
least one entry equal to one.

Now suppose that L△n,E = L : Cp (I) → R is of the form

L (g; x) =
∑

ei,,j=l

g(i) (xi) · Ai,j (x) , x ∈ I,

where Ai,j ∈ RI are the fundamental functions of L. If, analogously, M△m,F =
M : Cq (J) → RJ is given by

M (h; y) =
∑

fi′,,j′ =1
h(j′) (yi′) · Bi′,j′ (y) , y ∈ J,

then for f ∈ Cp,q (I × J) one has

(xL ◦ yM) (f ; x, y) =
∑

ei,,j=1

∑
fi′,,j′ =1

(
∂

∂x

)j (
∂

∂y

)j′

f (xi, yi′) · Ai,j (x) · Bi′,j′ (y)

=
∑

fi′,,j′ =1

∑
ei,,j=1

(
∂

∂y

)j′ (
∂

∂x

)j
f (xi, yi′) · Bi′,j′ (y) · Ai,j (x)

= (yM ◦ xL) (f ; x, y) .

In our applications the univariate building blocks will be mostly of the form
of L and M , respectively, so that in these cases it will be justified to speak
about the tensor product of {L, M}.

For discretely defined operators on Cp,q(I × J) there also hold the following
commutativity properties:

(1) D(0,q) ◦ xL = xL ◦ D(0,q) and D(p,0) ◦ yM = yM ◦ D(p,0).

We note here that the functionals g → g(j)(xi), ei,j = 1, g ∈ Cp(I), figuring
in the representation of L△,E and occuring, for example, in Birkhoff inter-
polation problems, can be replaced by more general linear functionals. This
is, for instance, the case when dealing with the tensor product of two linear
interpolation problems. See, e.g., [15], [16], [17] or [49] for details.

The space Cp (I) will be equipped with the norm

∥f∥Cp(I) := max
{

∥f (k)∥∞; 0 ≤ k ≤ p
}

;

here ∥·∥∞ denotes the Čebyčëv norm on I. Clearly, ∥·∥C(I) = ∥·∥∞. If L is a
continuous linear operator mapping

(
Cp (I) , ∥·∥Cp(I)

)
into

(
Cq (J) , ∥·∥Cq(J)

)
,

its operator norm will be denoted by ∥·∥Cp(I)→Cq(J). This norm is defined as
follows:

∥L∥Cp(I)→Cq(J) = sup
f∈Cp(I)

∥f∥Cp(I)≤1

max
0≤k≤q

max
x∈J

∣∣∣(Lf)(k) (x)
∣∣∣ .
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For p = q = 0 we simply write ∥L∥.
The main results of this paper and some applications will be given in terms

of so-called partial moduli of smoothness of order r, given for the compact
intervals I, J ⊂ R, for f ∈ C (I × J) , r ∈ N0 and δ ∈ R+ by
ωr (f ; δ, 0) :=

:= sup
{∣∣∣∣∣

r∑
v=0

(−1)r−v (r
v

)
· f (x + vh, y)

∣∣∣∣∣ : (x, y) , (x + rh, y) ∈ I × J, |h| ≤ δ

}
and symmetrically by
ωr (f ; 0, δ) :=

:= sup
{∣∣∣∣∣

r∑
v=0

(−1)r−v (r
v

)
· f (x, y + vh)

∣∣∣∣∣ : (x, y) , (x, y + rh) ∈ I × J, |h| ≤ δ

}
.

Some other applications will be formulated in terms of total moduli of smooth-
ness of order r, defined by

ωr(f ; δ1, δ2) := sup
{ ∣∣∣∣∣

r∑
v=0

(−1)r−v(r
v

)
· f(x + vh1, y + vh2)

∣∣∣∣∣ :

(x, y), (x + rh1, y + rh2) ∈ I × J, |h1| ≤ δ1, h2 ≤ δ2

}
,

for the compact intervals I ×J ⊂ R,for f ∈ C (I × J) , r ∈ N0 and δ1, δ2 ∈ R+.
The third type of moduli figuring in this note will be the mixed moduli of

smoothness, given for r, s ∈ N0 by

ωr,s (f ; δ1, δ2) := sup
{∣∣∣∣∣

r∑
v=0

s∑
µ=0

(−1)r+s−v−µ (r
v

)(s
µ

)
· f (x + vh1, y + µh2)

∣∣∣∣∣ :

(x, y) , (x + rh1, y + sh2) ∈ I × J, |hi| ≤ δi, i = 1, 2
}

.

Several properties of these moduli can be found in L.L. Schumakers book [67]
and in [29]. Further notations will be introduced below when needed.

In this note we will first summarize how quantitative properties of certain
univariate operators are inherited by the product of their parametric exten-
sions, and this in a form as simple as possible. Details can be found in [2] and
[3]. In order to illustrate what is meant by this we cite the following special
case (for n = 1) of Theorem 4.1 in the article [31] on generalized n-th order
blending as

Theorem 1. Let I and J be nontrivial compact intervals of the real axis R.
For (p, q) ≥ (p′, q′) ≥ (0, 0) let linear operators

L :
(
Cp (I) , ∥·∥Cp(I)

)
→
(
Cp′ (I) , ∥·∥Cp′(I)

)
,
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M :
(
Cq (J) , ∥·∥Cq(J)

)
→
(
Cq′ (J) , ∥·∥Cq′(J)

)
,

by given such that for fixed r, s ∈ N0∣∣∣(g − Lg)(k) (x)
∣∣∣ ≤ Γr,k,L (x) · ωr

(
g(p); Λr,L (x)

)
for 0 ≤ k ≤ p′ ≤ p, for any x ∈ I and any g ∈ Cp (I) ,

and ∣∣∣(h − Mh)(l) (y)
∣∣∣ ≤ Γs,l,M (y) · ωs(h(q); Λs,M (y)),

for 0 ≤ l ≤ q′ ≤ q, for any y ∈ J and any h ∈ Cq (J) .

Here, Γ and Λ are bounded functions.
Then for any (x, y) ∈ I ×J , for all f ∈ Cp,q (I × J) and for (0, 0) ≤ (k, l) ≤

(p′, q′) ≤ (p, q) the following pointwise inequalities simultaneously hold:∣∣∣[f − (xL ◦ yM) f ](k,l) (x, y)
∣∣∣ ≤

≤ Γr,k,L (x) · ωr

(
f (p,l); Λr,L (x) , 0

)
+ Γs,l,M (y) · ωs

(
f (k,q); 0, Λs,M (y)

)
+ Γr,k,L (x) · Γs,l,M (y) · ωr,s

(
f (p,q); Λr,L (x) , Λs,M (y)

)
.

The quantities p′ and q′ were introduced mainly for two reasons. On the
one hand we wanted a theorem applicable to a cubic spline operator defined
on C4(I), say. In this case p = 4, p′ = 2 are the proper choices. On the other
hand, we also want to be able to cover such methods which map Cp(I) into
itself, but where good inequalities are only available for 0 ≤ k ≤ p′ < p.

As was indicated before, generalized n-th order blending is one possible
generalization of the tensor product method. For further extensions and mod-
ifications which have been of some interest in the past see our concluding
remark. We emphasize here the fact that this is not intended to be a paper
on scattered data interpolation (Where would the univariate building blocks
be?).

Tensor product operators totally depend upon the quality of their building
blocks, that is, they live on good or the best possible univariate results avail-
able by inheriting many of them, sometimes in a modified fashion. This is why
in our sections on applications we will mention in detail some rather recent
and very good results from the theory of functions of one variable which-due
to the permanence principles below - more or less immediately carry over to
tensor product operators.

The organization of the remainder of this report is as follows: In Section 2
we give a summary of recent theoretical results and conclude the section with
several remarks on the differences between the theorems presented. Sections 3
and 4 contain applications of Theorems 2 to 4, respectively. In this way we
arrive at new results for tensor products of several univariate operators which
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have been attracting the interest of many researchers for many years. We
have chosen to add a rather extensive bibliography, also in order to draw the
reader’s attention to some less-known articles dealing with the tensor product
construct.

2. DEGREE OF SIMULTANEOUS APPROXIMATION BY PRODUCTS OF

PARAMETRIC EXTENSIONS. RECENT THEORETICAL RESULTS.

In this section let I, J, I ′ J ′ be non-trivial compact intervals of the real
axis R, such that I ′ ⊆ I and J ′ ⊆ J. For (p, q) ≥ (0, 0) let linear operators

L : (Cp(I), ) ∥·∥Cp(I) →
(
Cp′(I ′). ∥·∥Cp′ (I′)

)
,

M : (Cq
(
J), ∥·∥Cq(J)

)
→ (Cq′(J ′), ∥·∥Cq′ (J ′))

be given. Γ and Λ are non-negative, bounded functions and R, S ⊂ N0 are
finite, nonempty sets (preferably with few elements).

Theorem 2 (see Theorem 1 in [3]). If the operators L and M satisfy the
conditions

|(g − Lg)(k)(x)| ≤
∑
r∈R

Γr,k,L (x)) · ωr

(
g(p); Λr,L(x)

)
,(2)

for 0 ≤ l ≤ p′ ≤ p, for any x ∈ I ′ and any g ∈ Cp(I)

and ∣∣∣(h − Mh)(l) (y)
∣∣∣ ≤

∑
s∈S

Γs,l,M (y) · ωs

(
h(q); Λs,M (y)

)
for 0 ≤ l ≤ q′, for any y ∈ J ′ and any h ∈ Cq(J)

then we have for any (x, y) ∈ I ′ × J ′, for all f ∈ Cp,q (I × J) and for (0, 0) ≤
(k, l) ≤ (p′, q′) ≤ (p, q) the following pointwise inequalities:∣∣∣[f − (xL ◦ yM) f ](k,l) (x, y)

∣∣∣ ≤(3)

≤
∑
r∈R

Γr,k,L (x) · ωr

(
f (p,l); Λr,L (x) , 0

)
+
∥∥∥Dk ◦ L

∥∥∥
Cp(I)→C(I′)

· sup
0≤i≤p

∑
s∈S

Γs,l,M (y) · ωs

(
f (i,q); 0, Λs,M (y)

)
and ∣∣∣[f − (xL ◦ yM) f ](k,l) (x, y)

∣∣∣ ≤(4)

≤
∑
s∈S

Γs,l,M (y) · ωs

(
f (k,q); 0, Λs,M (y)

)
+
∥∥∥Dl ◦ M

∥∥∥
Cq(J)→C(J ′)

· sup
0≤j≤q

∑
r∈R

Γr,k,L (x) · ωr

(
f (p,j); Λr,L (x) , 0

)
.
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Proof. Can be found in [2], [3]. In the case of discretely defined operators
we are in a much more convenient situation: it suffices to only consider one
fixed partial of order (p, q) and its univariate predecessors. This is due to the
fact that the equalities (1) are trivially satisfied for such operators. □

Theorem 3 (see Theorem 31 in [4]). For p = p′, q = q′ let L and M be
discretely defined operators as given above such that∣∣∣(g − Lg)(p)

∣∣∣ ≤
∑
r∈R

Γr,p,L (x) · ωr

(
g(p); Λr,p,L (x)

)
, x ∈ I ′, g ∈ Cp (I) ,

and ∣∣∣(h − Mh)(q) (y)
∣∣∣ ≤

∑
s∈S

Γs,q,M (y) · ωs

(
h(q); Λs,q,M (y)

)
, h ∈ Cq (J) .

(i) Then for (x, y) ∈ I ′ × J ′ and f ∈ Cp,q (I × J) the following hold:∣∣∣[f − (xL ◦ yM) f ](p,q) (x, y)
∣∣∣ ≤

≤
∑
r∈R

Γr,p,L (x) · ωr

(
f (p,q); Λr,p,L (x) , 0

)
+ ∥Dp ◦ L∥∗ ·

∑
s∈S

Γs,q,M (y) · ωs

(
f (p,q); 0, Λs,q,M (y)

)
.

Here
∥Dp ◦ L∥∗ := inf{c : ∥(Dp ◦ L) q∥∞,I′ ≤ c ·

∥∥∥g(p)
∥∥∥

∞,I
, ∀g ∈ Cp (I)}.

(ii) A symmetric upper bound is given by∑
s∈S

Γs,q,M (y) · ωs

(
f (p,q); 0, Λs,q,M (y)

)
+ ∥Dq ◦ M∥∗ ·

∑
r∈R

Γr,p,L (x) · ωr

(
f (p,q); Λr,p,L (x) , 0

)
.

Observe that in the upper bound of Theorem 3–as compared to Theorem 2–
there is no sup any more.

The following result is similar to Theorem 2, but makes different assump-
tions for the univariate building blocks. Before discussing these further we
state it as

Theorem 4 (see Theorem 6 in [3]). Let the operators L and M be given
such that∣∣∣(g − Lg)(k) (x)

∣∣∣ ≤
∑
r∈R

Γr,k,L (x) · ωr

(
g(k); Λr,k,L (x)

)
,

for 0 ≤ k ≤ p′ ≤ p, for any x ∈ I ′ and any g ∈ Cp (I) ,

and ∣∣∣(h − Mh)(l) (y)
∣∣∣ ≤

∑
s∈S

Γs,l,M (y) · ωs

(
h(l); Λs,l,M (y)

)
,
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for 0 ≤ l ≤ q′ ≤ q, for any y ∈ J ′ and any h ∈ Cq (J) .

Then we have for any (x, y) ∈ I ′ ×J ′, for all f ∈ Cp,q (I × J ) and for (0, 0) ≤
(k, l) ≤ (p′, q′) ≤ (p, q) the following pointwise inequalities:∣∣∣[f − (xL ◦ yM) f ](k,l) (x, y)

∣∣∣ ≤

≤
∑
r∈R

Γr,k,L (x) · ωe

(
f (k,l); Λr,k,L (x) , 0

)
+
∥∥∥Dk ◦ L

∥∥∥
Cp(I)→C(I′)

· sup
0≤i≤p

∑
s∈S

Γs,l,M (y) · ωs

(
f (i,l); 0, Λs,l,M (y)

)
and∣∣∣[f − (xL ◦ yM) f ](k,l) (x, y)

∣∣∣ ≤

≤
∑
s∈S

Γs,l,M (y) · ωs

(
f (k,l); 0, Λs,l,M (y)

)
+
∥∥∥Dl ◦ M

∥∥∥
Cq(J)→C(J ′)

· sup
0≤j≤q

∑
r∈R

Γr,k,L (x) · ωr

(
f (k,j); Λr,k,L (x) , 0

)
.

Proof. Can be found in [2]. □

Remark 1. A word is in order concerning the difference between Theo-
rems 2 and 4. In Theorem 2 we assumed that the order of the derivatives
(in the univariate cases) on the left varies, while the order on the right hand
side is fixed. It can, for example, be applied to tensor products of certain
interpolatory spline operators (two special instances will be discussed below)
or of algebraic polynomial operators satisfying inequalities of the Brudny̆ı-
Gopengauz-type. See, e.g., the 1985 paper [30] for the use of such inequalities
in the framework of approximation by Boolean sums of parametric extensions.
Much more is known today about univariate operators satisfying such inter-
polatory pointwise estimates; see [35] for details.

In contrast to that, in Theorem 4 we assume that the order of the derivatives
on the left and on the right are the same. This is the appropriate assumption
for tensor products of the Bernstein operators or of Bernstein-Durrmeyer op-
erators, just to mention two examples. Theorem 2 is not a suitable tool to
cover these situations. □

Remark 2. (i) For p = q = 0 Theorems 2 and 4 coincide. Interesting for
us are the cases where this does not occur, because we are mainly interested
in simultaneous approximation.

(ii) The assumptions in both Theorems 2 and 4 are not artificial ones.
Indeed, there exist interesting univariate building blocks L for which one-term
upper bounds such as Γr,k,L(x) · ωr(g(p); Λr,L(x)) are not quite appropriate in
order to describe their approximation behavior properly. For example, if L is a
univariate positive linear operator satisfying Le0 = e0, but Le1 ̸= e1(ei (x) :=
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xi, i ∈ N0), then the appropriate upper bound is given in

|L (f, x) − f (x)| ≤h−1 · |L (e1 − x; x)| · ω1 (f ; h)

+
[
1 + 1

2 · h−2 · L
(
(e1 − x)2

)
; x
]

· ω2 (f ; h)

for 0 < h ≤ 1
2 (b − a). See [59, Corollary 1] for this result.

One further related situation in which moduli of smoothness of several or-
ders occur in the right hand side of the inequality is that of ”approximation of
derivatives by derivatives”. Here we refer to a recent paper by D. Kacsó [45];
Theorem 3 there contains a three term expression which is the appropriate
quantity in the context of Kacsó’s paper. That this is so was first discovered
in [28]. Details are given below.

(iii) Both Theorems 2 and 4 are proved under the assumptions that infor-
mation is available for the derivatives of order 0 ≤ k ≤ p′ and 0 ≤ l ≤ q′. This
is needed in order to apply Lemma 2 in [3]. If the operators L and M are dis-
cretely defined (like, for example, the Bernstein operators), then Theorem 3 is
also applicable and a more efficient tool. Below we list several results from our
paper [4] where Theorem 3 was applied to variation-diminishing Schoenberg
spline operators.

(iv) For p = q = 0, |R| = |S| = 1, r = s we obtain from Theorem 4 the
same upper bounds as in Corollary 3 in [3]. □

3. APPLICATIONS OF THEOREM 2

3.1. Brudny̆ı-Gopengauz operators Qn. The univariate operators Qn we
use here are the result of many years of research which culminated in papers
by Gonska and Hinnemann [34] and by Dahlhaus [13]. Guided by early work
(in chronological order) of Timan, Dzjadyk, Trigub, Brudny̆ı, Teljakovskĭı,
Gopengauz and DeVore on the subject, the authors mentioned investigated
linear polynomial operators satisfying certain interpolation conditions at the
endpoints of I = [−1, 1]. We decided to call the Qn below Brudny̆ı-Gopengauz
operators because–according to our knowledge–Brudny̆ı was the first to ob-
serve the possibility of using moduli of smoothness of arbitrary order in point-
wise Jackson-type estimates for algebraic polynomial approximation. Further-
more, Gopengauz first used higher order moduli for estimates on simultane-
ous approximation and observed (correctly!) that in inequalities with the first
modulus the quantity

√
1−x2

n can be used in simultaneous estimates. For the
sake of completeness we mention here one further paper by Gonska et al. [35]
in which the problem of pointwise interpolatory inequalities was treated in
combination with questions concerning shape preservation.

We describe the work of Gonska, Hinnemann and Dahlhaus briefly in order
to make the subsequent statements comprehensible. The first named two
authors constructed in [34] a new linear operator Qn (not necessarily being
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discretely defined), namely

Qn :
(
Cp (I) , ∥·∥Cp(I)

)
→ Πn (I) ; here Qn : Rn ⊕ L̄n := Rn + L̄n − Rn ◦ L̄n.

For details regarding this definition see [34, p. 247]. The linearity of Qn follows
straightforward from the linearity of its building blocks Rn and Ln.

Extending the work in [34], Dahlhaus showed in [13] that for p, r ∈ N0 fixed,
n ≥ max{4 (p + 1) , p + r}, 0 ≤ k ≤ min{p − r + 2, p}, f ∈ Cp (I) and x ∈ I
there holds the inequality

(5)
∣∣∣(f − Qnf)(k) (x)

∣∣∣ ≤ cp,r ·
(√

1−x2

n

)p−k
· ωr

(
f (p),

√
1−x2

n

)
.

Furthermore, Dahlhaus proved that his assertion is best possible in a most
meaningful sense. The above inequality is of type (2) with bounded Γr,k,Qn (x) =
cp,r ·

(√
1−x2

n

)p−k
, Λr,Qn (x) =

√
1−x2

n and p′ := min{p − r + 2, p} ≤ p.
Choosing a second copy Qm, say, mapping Cq (I) into Πm (I) and satisfying∣∣∣(f − Qmf)(l) (y)

∣∣∣ ≤ cq,s ·
(√

1−y2

m

)q−1
· ωs

(
f (q),

√
1−y2

m

)
,

for 0 ≤ l ≤ q′ := min{q − s + 2, q}, all the assumptions of Theorem 2 are
fulfilled. Thus we have, for example, for (x, y) ∈ I2, f ∈ Cp,q

(
I2) and for

(0, 0) ≤ (k, l) ≤ (p′, q′) the inequality∣∣∣[f − (xQn ◦ yQm) f ](k,l) (x, y)
∣∣∣ ≤

≤ cp,r ·
(√

1−x2

n

)p−k
· ωr

(
f (p,l);

√
1−x2

n , 0
)

+
∥∥∥Dk ◦ Qn

∥∥∥
Cp(I)→C(I)

· cq,s

(√
1−y2

m

)q−1
· sup

0≤i≤p
ωs

(
f (i,q); 0,

√
1−y2

m

)
.

It follows from (5) that there is a constant dp,r which does not depend on
n such that ∥∥∥Dk ◦ Qn

∥∥∥
Cp(I)→C(I)

≤ dp,r.

Hence the above upper bound of∣∣∣[f − (xQn ◦ yQm) f ](k,l) (x, y)
∣∣∣

simplifies accordingly.

3.2. Cubic interpolatory splines. As a second application of Theorem 2 we
deal with two types of cubic interpolatory splines. Part of the results presented
here can also be found in [3].

Let △n be a partition of the real interval I = [a, b]. By S△n we denote
the Type I cubic spline operator which attaches to each function f ∈ C1I
the corresponding clamped cubic spline interpolant sf ∈ C2 (I). Further,
let T△n be the cubic spline operator which attaches to each f ∈ C (I) the
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corresponding natural cubic spline interpolant tf ∈ C2 (I). For more detailed
definitions see, e.g., [32].

In order to give two-dimensional estimates we use one-dimensional ones.
These are, in the case of the Type I cubic spline operator, Theorem 3.4 in [32],
and Theorem 1 in [38] for the natural cubic spline operator. We recall them
briefly.

Theorem 5. Let S△n be given as above, and let p = 1, 2, 3, or 4. Then for
any f ∈ Cp (I) the following inequalities hold:∥∥∥(S△nf − f)(k)

∥∥∥
∞

≤ c (p, k) · δp−k · ω4−p

(
f (p), δ

)
, 0 ≤ k ≤ min{p, 2}.

Here, the constants c(p, k) depend only on p and k.

Theorem 6. If T△n is given as above, then for all f ∈ C2 (I) and k = 0, 1
there holds ∥∥∥(T△nf − f)(k)

∥∥∥
∞

≤ 15 · δ2−k · ω0
(
f ′′, δ

)
.

In both theorems δ = δn is the mesh gauge of △n.
Let now be S△n and S△m two Type I cubic spline operators. By Theorem 5

we have ∥∥∥(S△nf − f)(k)
∥∥∥

∞
≤ Γ4−p,k,S△n

· ω4−p

(
f (p), Λ4−p,S△n

)
for p = 1, 2, 3, or 4, f ∈ Cp (I) , 0 ≤ k ≤ min{p, 2}, Γ4−p,k,S△n

:= c (p, k) ·
δp−k

1 , Λ4−p,S△n
:= δ1 (the mesh gauge of △n), and∥∥∥(S△mf − f)(l)

∥∥∥
∞

≤ Γ4−q,l,S△m
· ω4−q

(
f (q), Λ4−q,S△m

)
for q = 1, 2, 3, or 4, f ∈ Cq (J) , 0 ≤ l ≤ min{q, 2}, Γ4−q,l,S△m

:= c (q, l) ·
δq−1

2 , Λ4−q,S△m
: δ2 (the mesh gauge of △m). Applying now Theorem 2 we

obtain the following

Theorem 7 (see Theorem 5 in [3]). With the above notation,∥∥∥[f − (xS△n ◦ yS△m) f ]k,l
∥∥∥

∞
≤

≤ c (p, k) · δp−k
1 · ω4−p

(
f (p,l); δ1, 0

)
+ d (p, k, δ1) · c (q, l) · δq−1

2 · sup
0≤i≤p

{
ω4−q(f (i,q); 0, δ2)

}
,

for p, q ∈ {1, 2, 3, 4}, f ∈ Cp,q (I × J) , 0 ≤ k ≤ min{p, 2} and 0 ≤ 1 ≤
min{q, 2}. Here, d (p, k, δ1) := 1 + c (p, k) · δp−k

1 · 24−p.

In order to arrive at the latter inequality it is only necessary to observe that

∥Dk ◦ S△n∥Cp(I)→C(I) ≤ 1 + c (p, k) · δp−k
1 · 24−p.
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Further let T△n and T△m be two natural cubic spline operators. According
to Theorem 6 we have the one-dimensional estimates∥∥∥(T△nf − f)(k)

∥∥∥
∞

≤ Γ0,k,T△n
· ω0

(
f ′′, Λ0,T△n

)
for f ∈ C2 (I) , k ∈ {0, 1}, Γ0,k,T△n

:= c · δ2−k
1 , Λ0,T△n

:= δ1 (the mesh gauge
of △n), and ∥∥∥(T△mf − f)(l)

∥∥∥
∞

≤ Γ0,l,T△m
· ω0

(
f ′′, Λ0,T△m

)
for f ∈ C2 (J) , l ∈ {0, 1}, Γ0,l,T△m

:= c · δ2−l
2 , Λ0,T△m

:= δ2 (the mesh gauge
of △m). Applying again Theorem 2 there follows

Theorem 8. With the notation from above we have∥∥∥[f − (xT△n ◦ yT△m) f ](k,l)
∥∥∥

∞
≤

≤ 15 · δ2−k
1 · ω0(f (2,l); δ1, 0)

+
(
1 + 15 · δ2−k

1

)
· 15 · δ2−l

2 · sup
0≤i≤2

{
ω0(f (i,2); 0, δ2)

}
,

for f ∈ C2,2 (I × J) and k, l ∈ {0, 1}.

3.3. Applications of Theorem 3. We now turn to three classes of discretely
defined operators and thus to applications of Theorem 3.

3.3.1. Bivariate operators of binomial type. A sequence (pn)n∈N where for all
n the polynomial pn is exactly of degree n is called a polynomial sequence. A
polynomial sequence is said to be of binomial type, iff for all x, y and all n ∈ N
it satisfies the identity

pn (x + y) =
n∑

k=0

(n
k

)
pk (x) · pn−k (y) .

For a survey on this issue see [53]. Three further recent contributions on the
subject are [78], [80] and [79].

We consider now a linear approximation operator of degree n associated
with the sequence (pn)n∈N of binomial type by

(6) Tn (f ; x) := 1
pn(1)

n∑
k=0

(n
k

)
pk (x) · pn−k (1 − x) · f

(
k
n

)
for all f ∈ C[0, 1], provided that pn (1) ̸= 0 for all n ∈ N0. These oper-
ators are called by D.D. Stancu and A.D. Vernescu in [81] Popoviciu type
operators (see [60]) and by P. Sablonnière in [63] Bernstein-Sheffer operators.
See these and the further paper [78] for additional references. The well-known
Bernstein-Stancu operator Sα

n (introduced in [75]) corresponds to the sequence
of factorial powers

pn (x) = x (x + α) . . . (x + (n − 1) α)
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and the classical Bernstein operator Bn to the sequence of monomials pn (x) =
xn.

Theorem 2 (ii) in [63] states that Tnei = ei for i = 0, 1, and Tne2 = e2 +
bn
n (e1 − e2), where

bn = 1 + (n − 1) · rn−2 (1)
pn (1) .

For the specification of the sequence (rn (x))n∈N0
see [63]. If for all n ∈ N0

and for x ∈ [0, 1] one has pn (x) ≥ 0, then the operator Tn is positive and
we can apply Păltănea’s Corollary 1 in [59]. With p = 1, b = 0, λ = 0 and
h =

√
x (1 − x) bn

n it yields

|Tn (f ; x) − f (x)| ≤ 3
2 · ω2

(
f ;
√

x (1 − x) bn
n

)
,

for all f ∈ C[0, 1]. If rn−2(1)
pn(1) = o (1), then bn

n → 0, and the latter inequality
implies uniform convergence of Tnf towards f for all f ∈ C[0, 1], at the same
time constituing a significant refinement of Theorem 3 by Sablonnière [63] (see
also [53, Th. 2.11]).

Further we consider a second operator of binomial type Tm with the corre-
sponding estimate, namely

|Tm (f ; y) − f (y)| ≤ 3
2 · ω2

(
f ;
√

y (1 − y) bm
m

)
,

for all f ∈ C[0, 1]2. Applying Theorem 3 with I = I ′ = J = J ′ = [0, 1], p =
q = 0, R = S = {2}, Γ2,0,Tn (x) = Γ2,0,Tm (y) = 3

2 , Λ2,0,Tn (x) =
√

x (1 − x) bn
n ,

Λ2,0,Tm (y) =
√

y (1 − y) bm
m it follows that∣∣∣[f − (xTn ◦ yTm) f ] (x, y)

∣∣∣ ≤

≤ 3
2

{
ω2

(
f ;
√

x (1 − x) bn
n , 0

)
+ ω2

(
f ; 0,

√
y (1 − y) bm

m

)}
(7)

≤ 3 · ω2

(
f ;
√

x (1 − x) bn
n ,
√

y (1 − y) bm
m

)
,

for all f ∈ C[0, 1]2. This improves the estimate of the error given in [81] in
the sense that now a second order modulus instead of a first order one is used.

For the Bernstein-Stancu operators Sα
n we have bn = 1+nα

1+α and thus∣∣∣[f −
(

xSα
n ◦ ySβ

m

)
f ] (x, y)

∣∣∣ ≤(8)

≤ 3 · ω2

(
f ;
√

x(1−x)
n · 1+nα

1+α ,

√
y(1−y)

m ·
√

1+mβ
1+β

)
.

This inequality can be viewed as a pointwise version of Theorems 3 and 4 in
Stancu’s paper [76].
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The best-known examples of tensor product Bernstein-Stancu operators are
the tensor product Bernstein operators themselves. As mentioned earlier,
these were investigated as early as 1933 by Hildebrandt and Schoenberg in
order to prove the Weierstraß approximation theorem in C[0, 1]2. Subsequently
their research was supplemented by a number of authors who, among other
results, proved quantitative assertions of different kinds. See [29, sect. 6.2.1]
for references and a brief discussion of those published until the mid 80’s.

If we put α = β = 0 in (8) we arrive at

|[f − (xBn ◦ yBm) f ] (x, y)| ≤ 3 · ω2

(
f ;
√

x(1−x)
n ,

√
y(1−y)

m

)
which improves Corollary 9.2 in [29] for the case d = 2. The latter estimate
holds for any f ∈ C[0, 1]2.

Remark 3. From (7) we also have

|[f − (xBn ◦ yBm) f ]| (x, y) ≤

≤ 3
2 ·
(

ω2

(
f ;
√

x(1−x)
n , 0

)
+ ω2

(
f ; 0,

√
y(1−y)

m

))
≤ 3

2 ·
(

ω̄2

(
f ;
√

x(1−x)
n

)
+ ω̄2

(
f ;
√

y(1−y)
m

))
=: A,

where
ω̄2 (f ; δ) := sup

h∈R2,∥h∥2≤δ

x±h∈[0,1]2

|f (x + h) − 2f (x) + f (x − δ)|

and ∥·∥2 is the Euclidian norm in R2.
Since

A ≤ 3 · ω̄2

(
f ; max

{√
x(1−x)

n ,
√

y(1−y)
m

})
≤ 3 · ω̄2

(
f ; 1√

2·min{n,m}

)
we have thus improved a recent result of López-Moreno and Muñoz-Delgado
[51]. □

Remark 4. We also use the Bernstein operators in order to emphasize the
differences between Theorem 2 and the three theorems from Section 2. To
that end we only consider the case p = q = 0. From Theorem 1 we arrive at
the 3-term upper bound

3
2 · ω2

(
f ;
√

x(1−x)
n , 0

)
+ 3

2 · ω2

(
f ; 0,

√
y(1−y)

m

)
+

+ 9
4 · ω2,2

(
f ;
√

x(1−x)
n ,

√
y(1−y)

m

)
.

The three assertions in Section 2 lead to the 2-term sum
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3
2 · ω2

(
f ;
√

x(1−x)
n , 0

)
+ 3

2 · ω2

(
f ; 0,

√
y(1−y)

m

)
showing that the term involving the mixed modulus ω2,2 is superfluous. This
observation sheds a light on the principal differences between the two ap-
proaches. The second one uses the decomposition

Id − xL ◦ yM = Id − xL + xL ◦ (Id − yM) ,

or the symmetric one, namely

Id − xL ◦ yM = Id − yM + (Id − xL) ◦ yM.

Both representations lead to 2-term upper bounds. In the proof of Theorem 1
we decomposed the error a priori into

Id − xL ◦ yM = (Id − xL) + (Id − yM) − (Id − xL) ◦ (Id − yM)
= (Id − xL) ⊕ (Id − yM) ,

that is, the Boolean sum of the individual errors. This creates the 3-term
bound. □

3.4. Tensor Product Schoenberg Splines. As a second application of The-
orem 3 we summarize several results on the degree of simultaneous approxi-
mation by the tensor product of variation-diminishing Schoenberg spline op-
erators. For details the reader is refered to [4]. We briefly recall some of the
basic definitions and of the fundamental univariate results.

Consider the knot sequence △n = {xi}n+k
−k (n > 0, k > 0) with

x−k = x−k+1 = . . . = x0 = 0 < x1 < . . . < xn = . . . = xn+k = 1.

For a function f ∈ R[0,1], the variation-diminishing spline of degree k w.r.t.
△n is given

S△n,k
f (x) :=

n−1∑
j=−k

f (ξj;k) · Nj,k (x) for 0 ≤ x < 1 and

S△n,k
f (1) := lim

y→1
y<1

S△n,k
f (y) ,

with the nodes (Greville abscissas) ξj,k := xj+1+...+xj+k

k , −k ≤ j ≤ n − 1, and
the normalized B-splines as fundamental functions

Nj,k (x) := (xj+k+1 − xj) [xj , xj+1, . . . , xj+k+1] (· − x)k
+ .

If the knots are equidistant, i.e., xj = j
n , 0 ≤ j ≤ n, the k-th degree Schoenberg

spline operator will be denoted simply by Sn,k.
The following inequalities will be given predominantly in terms of the so-

called mesh gauge ∥△n∥ := maxj (xj+1 − xj).
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Proposition 1 (see Corollary 7 in [4]). For all f ∈ C[0, 1] one has the
following uniform estimates∥∥∥S△n,k

f − f
∥∥∥

∞
≤
(
1 + k+1

24

)
· ω2 (f ; ∥△n∥) .

Proposition 2 (see Corollary 23 in [4]). Let f ∈ C1[0, 1. Then, for n ≥
1, k ≥ 2, one has∣∣∣DS△n,k

f (x) − Df (x)
∣∣∣ ≤ ω1 (Df ; ∥△n∥) + 3

2

(
1 +

√
k
12

)2
· ω2 (Df ; ∥△n∥) .

For splines with xj = j
n , 0 ≤ j ≤ n, and second order derivatives one has

uniform convergence on compact subsets of (0, 1) only. In this case we have,
for example,

Proposition 3 (see Corollary 26 in [4]). Let f ∈ C2 [0, 1] , x ∈ [k−1
n , 1− k−1

n ]
and 3 ≤ k ≤ n

2 + 1. Then there holds:∣∣∣D2Sn,kf (x) − D2f (x)
∣∣∣ ≤ ω1

(
D2f ; 1

n

)
+ 3

2

(
1 +

√
k−1
12

)2
· ω2

(
D2f ; 1

n

)
.

For m, l ≥ 1, we now consider a second operator S△m,l
defined for func-

tions on [0, 1] and satisfying inequalities analogous to those in Proposition 1–
Proposition 3. Hence all the univariate inequalities have the appropriate form
to apply Theorem 3.

For the tensor product of two Schoenberg spline operators we first state
Theorem 9 (see Theorem 38 in [4]). For n, m ≥ 1 and k, l ≥ 1 we have∥∥∥f −

(
xS△n,k

◦ yS△m,k

)
f
∥∥∥

∞,I×J
≤

≤
(
1 + k+1

24

)
· ω2 (f ; ∥△n∥ , 0) +

(
1 + l+1

24

)
· ω2 (f ; 0, ∥△m∥)

≤
(
2 + k+l+2

24

)
· ω2 (f ; ∥△n∥ , ∥△m∥) .

Proof. This is the case p = q = 0, R = S = {2}. With Γ2,0,S△n,k
(x) = 1 +

k+1
24 , Λ2,0,S△n,k

(x) = ∥△n∥ and analogous choices with respect to the variable y

we arrive at the above upper bound, also observing that∥∥∥D0 ◦ S△n,k

∥∥∥∗
= 1. □

For the partial derivatives up to order (1, 1) we obtain
Theorem 10 (see Theorem 39 in [4]). For n, m ≥ 1 and k, l ≥ 2 we have

the following inequalities for any f ∈ C2,2 [0, 1]2.
(i)

∥∥∥f −
(

xS△n,k
◦ yS△m,l

)
f
∥∥∥

∞
= O

(
∥△n∥2 + ∥△m∥2

)
;

(ii)
∥∥∥∥(f −

(
xS△n,k

◦ yS△m,l

))(1,0)
∥∥∥∥

∞
= O

(
∥△n∥ + ∥△m∥2

)
;

(iii)
∥∥∥∥(f −

(
xS△n,k

◦ yS△m,l

))(0,1)
∥∥∥∥

∞
= O

(
∥△n∥2 + ∥△m∥

)
;



18 Simultaneous approximation by tensor product operators II 143

(iv)
∥∥∥∥(f −

(
xS△n,k

◦ yS△m,l

))(1,1)
∥∥∥∥

∞
= O (∥△n∥ + ∥△m∥).

In all four cases O depends on k and l, and the sup norms are those over
[0, 1]2.

Proof. It is mainly a consequence of properties of the partial moduli of
smoothness; for details see [4]. □

For the remaining partials up to order 2 again we consider only the case
of equidistant knots and the smaller intervals

[
k−1

n , 1 − k−1
n

]
×
[

l−1
m , 1 − l−1

m

]
.

We now have

Theorem 11 (see Theorem 40 in [4]). For 3 ≤ k ≤ n
2 + 1, 3 ≤ l ≤ m

2 + 1
the following are true for f ∈ C3,3 [0, 1]2.

(i)
∥∥∥(f − (xSn,k ◦ ySm,l) f)(2,0)

∥∥∥
∞

= O
(

1
n + 1

m2

)
;

(ii)
∥∥∥(f − (xSn,k ◦ ySm,l) f)(2,1)

∥∥∥
∞

= O
(

1
n + 1

m2

)
;

(iii)
∥∥∥(f − (xSn,k ◦ ySm,l) f)(2,2)

∥∥∥
∞

= O
(

1
n + 1

m

)
.

Analogous statements hold for the partials of orders (0, 2) and 2; O depends
on k and l in all cases and the sup norms are those over the smaller subinterval
given above.

Proof. Proof. See [4] for details. □

3.5. Discretely defined H-operators. We finish this section with certain
operators which are of particular interest in the theory of positive linear op-
erators. All three theorems from above are applicable in this case.

In order to solve the strong form of Butzer’s Problem, Gavrea, Gonska and
Kacsó introduced in [25] a new class of discrete, linear and positive operators
of the following form

H∗
n+s+2 (f ; x) := (1 − x)2 · f (0) ·

∫ 1

0
P ∗

n+s (t (1 − x)) dt

+ x2 · f (1) ·
∫ 1

0
P ∗

n+s (xt) dt +
n+s∑
k=1

Ak · Kn+s (x, xk) · f (xk) .(9)

For details regarding the quantities appearing in the above definition see [25],
[26], [24].

Theorem 7 in [26] states that the operater H∗
n+s+2 : C [0, 1] → Πn+s+2

satisfies the DeVore-Gopengauz inequality∣∣H∗
n+s+2 (f ; x) − f (x)

∣∣ ≤ c (s) · ω2

(
f ;

√
x(1−x)

n

)
.

In particular,
∥∥H∗

n+s+2
∥∥ = 1. We consider a second operator H∗

m+t+2 which
satisfies an analogous inequality in the variable y. Proceeding as in the case
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of binomial-type operators we get for f ∈ C [0, 1]2 the following:∣∣∣ [f −
(

xH∗
n+s+2 ◦ yH∗

m+t+2
)

f
]
(x, y)

∣∣∣ ≤

≤ [c (s) + c (t)] · ω2

(
f ;

√
x(1−x)

n ,

√
y(1−y)

m

)
.

4. APPLICATIONS OF THEOREM 4

4.1. Simultaneous Approximation by Bernstein Operators. We return
to the classical Bernstein operators which we already considered in Section 4.1
as special operators of binomial type. Here we supplement the results from
there by deriving assertions for the approximation of derivatives by derivatives.

Uniform convergence of certain mixed partial derivatives [f−
(xBn ◦ yBm)f ](k,l) to 0 was considered in the past by many authors. As
a more advanced paper we mention one by I. Badea and C. Badea [1] in which
the following was shown.

Theorem 12. If f ∈ Cp,q [0, 1]2 and n > p, m > q, then∥∥∥[f − (xBn ◦ yBm) f ](p,q)
∥∥∥

∞
≤

≤ t (p, q) · ω1
(
f (p,q); 1√

n−p
, 1√

m−q

)
+ Mp,q

n,m (f) .

Here t(p, q)is a certain real-valued function providing small constants, and

Mp,q
n,m (f) := max

{
p(p−1)

n , q(q−1)
m

}
·
∥∥∥f (p,q)

∥∥∥
∞

.

The article by the two Badeas contains numerous references to earlier pa-
pers dealing with simultaneous approximation by tensor product Bernstein
operators. In order to modify the above inequality we first cite a result of
Kacsó, namely Theorem 5 in [46]:

|[Dp (f − Bnf)] (x)| ≤ p(p−1)
2n · |Dpf (x)| + 1

h · p
2n · ω1 (Dpf ; h)

+
(
1 + 1

2h2 · 3n−2p
12n2

)
· ω2 (Dpf ; h) .

The above holds for p ∈ N0, n ≥ max{p + 2, p (p + 1)}, f ∈ Cp [0, 1] , x ∈ [0, 1]
and h > 0.

Taking h = 1√
n

leads to

∥Dp (f − Bnf)∥∞ ≤p(p−1)
2n ∥Dpf∥∞ + p

2
√

n
· ω1

(
Dpf ; 1√

n

)
+ 27n−2p

24n · ω2
(
Dpf ; 1√

n

)
≤cp

[
1
nω0

(
Dp; f 1√

n

)
+ 1√

n
ω1
(
Dpf ; 1√

n

)
+ ω2

(
Dpf ; 1√

n

)]
,

for p ≥ 0. This shows that Theorem 4 is applicable if we consider Bn as an
operator from Cp[0, 1] into itself and make an analogous assumption for Bm.
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For simplicity we only discuss the derivative of fixed order (p, q) and derive∥∥∥f − (xBn ◦ yBm) f ]
(p,q)∥∥∥ ≤

≤
2∑

r=0
cp · n

r
2 −1 · ωr

(
f (p,q); 1√

n
, 0
)

+ ∥Dp ◦ Bn∥Cp[0,1]→C[0,1] · sup
0≤i≤p

2∑
s=0

cq · m
s
2 −1 · ωs

(
f (i,q); 0, 1√

m

)
.

Due to the representation

(DpBnf) (x) = (n)p

np · p!
n−p∑
v=0

[
v
n , . . . , v+p

n ; f
]

·
(n−p

v

)
xv (1 − x)n−p−v

we obtain ∥DpBnf∥∞ ≤
∥∥∥f (p)

∥∥∥
∞

, so that ∥Dp ◦ Bn∥Cp[0,1]→C[0,1] ≤ 1. Thus∣∣∣[f − (xBn ◦ yBm) f ](p,q) (x, y)
∣∣∣ ≤

≤ max{cp, cq} ·
{ 2∑

r=0
n

r
2 −1 · ωr

(
f (p,q); 1√

n
, 0
)

+ sup
0≤i≤p

2∑
s=0

m
s
2 −1 · ωs

(
f (i,q); 0, 1√

m

)}
.

Clearly the latter inequality shows that∥∥∥[f − (xBn ◦ yBm) f ](p,q)
∥∥∥

∞
= o (1) for all f ∈ Cp,q [0, 1]2 when n, m → ∞.

Moreover, assuming that f ∈ Cp+2,q+2 [0, 1]2 the inequality implies∥∥∥[f − (xBn ◦ yBm) f ](p,q)
∥∥∥

∞
= O

(
1
n + 1

m

)
, n, m → ∞.

This order cannot be derived from Theorem 12.

Remark 5. For the discretely defined Bernstein operators it would also have
been possible to apply Theorem 3. This would have avoided the appearence
of the sup in the upper bound. However, the o (1) and the O

(
1
n + 1

m

)
orders

would have remained unchanged. □

4.2. Simultaneous approximation by Bernstein–Durrmeyer operators
with Jacobi weights. In this subsection we consider certain operators which
are not discretely defined so that, according to our above presentation, only
Theorem 4 will be applicable.

The univariate building blocks were recently investigated again by Kacsó
[47] and we briefly recall here the basic definition and the result which we will
use. For details, historical remarks and useful references the reader should
consult [47].
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Consider the positive linear operators

M ⟨α,β⟩
n : C [0, 1] ∋ f 7−→

n∑
k=0

pn,k (·) ·
∫ 1

0 ω(α,β) (t) · pn,k (t) f (t) dt∫ 1
0 ω(α,β) (t) · pn,k (t) dt

∈ Πn,

where pn,k (x) =
(n

k

)
xk (1 − x)n−k , ω(α,β) (x) = xβ (1 − x)α and α, β > −1.

These are the Bernstein-Durrmeyer operators w.r.t. the Jacobi weight ω(α,β).
Kacsó [47, Th. 2.2] showed that∣∣∣[Dp

(
f − M ⟨α,β⟩

n

)]
(x)
∣∣∣ ≤ p·(α+β+p+1)

n · |Dpf (x)|

+
√

n(max{α,β}+p+1)
b+α+β+p+2 ω1

(
Dpf ; 1√

n

)
+ 5

4ω2
(
Dpf ; 1√

n

)
,

for p ∈ N∪{0}, any f ∈ Cp [0, 1] , x ∈ [0, 1] and n sufficiently large.
We consider a second copy of the operators in question, namely M

⟨ᾱ,β̄⟩
m

acting on functions in Cq [0, 1], and the variable is y ∈ [0, 1].
For brevity again we only consider the derivative of order (p, q). Theorem 4

implies in this case∥∥∥∥[f −
(

xM ⟨ᾱ,β̄⟩
n ◦ yM ⟨ᾱ,β̄⟩

m

)
f
](p,q)

∥∥∥∥
∞

≤

≤ c (p, α, β) ·
2∑

r=0
n

r
2 −1 · ωr

(
f (p,q); 1√

n
, 0
)

+
∥∥∥Dp ◦ M ⟨α,β⟩

n

∥∥∥
Cp[0,1]→C[0,1]

· c
(
q, ᾱ, β̄

)
sup

0≤i≤p

2∑
s=0

m
s
2 −1 · ωs

(
f (i,q); 0, 1√

m

)
.

Recall that n and m have to be sufficiently large in the above.
In order to turn the latter inequality into a more compact and instructive

assertion, we consider the quantity∥∥∥Dp ◦ M ⟨α,β⟩
n

∥∥∥
Cp[0,1]→C[0,1]

.

The representation we need here can also be found in [47].

Dp ◦ M ⟨α,β⟩
n f (x) = (n)p

(n+α+β+p+1)p
· M

⟨α,p,β+p⟩
n−p f (p) (x) ,

where the Pochhammer symbol (a)b is defined as

(a)0 : 1, (a)b :=
b−1∏
k=0

(a − k) , a ∈ R, b ∈ N.

From this representation it follows that∥∥∥Dp ◦ M ⟨α,β⟩
n

∥∥∥
Cp[0,1]→C[0,1]

≤ 1,

hence ∥∥∥∥[f −
(

xM ⟨α,β⟩
n ◦ yM ⟨ᾱ,β̄⟩

m

)
f
](p,q)

∥∥∥∥
∞

≤
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≤ c (p, α, β) ·
2∑

r=0
n

r
2 −1 · ωr

(
f (p,q); 1√

n
, 0
)

+ c
(
q, ᾱ, β̄

)
sup

0≤i≤p

2∑
s=0

m
s
2 −1 · ωs

(
f (i,q); 0, 1√

m

)
.

Again we have∥∥∥∥[f −
(

xM ⟨α,β⟩
n ◦ yM ⟨ᾱ,β̄⟩

m

)
f
](p,q)

∥∥∥∥
∞

= o (1) , when n, m → ∞,

and for f ∈ Cp+2,q+2 [0, 1]2 the inequality implies∥∥∥∥[f −
(

xM ⟨α,β⟩
n ◦ yM ⟨ᾱ,β̄⟩

m

)
f
](p,q)

∥∥∥∥
∞

= O
(

1
n + 1

m

)
, n, m → ∞.

5. CONCLUDING REMARK

(i) Tensor product operators (products of parametric extensions) as con-
sidered in this note were modified in the past in several ways in order to also
handle less regularly spaced data. We mention here in chronological order
the work on interpolation by Biermann [5], Steffensen [83], Stancu [70], [74],
Delvos and Posdorf [18], and that of Coman et al. [12], among others. For ex-
ample, Stancu considers bivariate Lagrange interpolation at an array of points
{(xij , yij) : 0 ≤ i ≤ m, 0 ≤ j ≤ n}, thus generalizing Steffensen interpolation.

(ii) Furthermore, also generalizing the notion of a tensor product, Bos et al.
[8] introduced pseudo-tensor products of univariate schemes. In this context
“pseudo” refers to the fact that xL (f ; x, y) = L (fy; x) may change with y
and that yM (f ; x, y) = M (fx; y) may change with x. This method was also
investigated in the diploma thesis of Dyllong [20] to some extent.

For neither of the above methods significant quantitative inheritance state-
ments seem to have been stated according to the authors knowledge until [2]
and [3] were written.
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