
JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY
J. Numer. Anal. Approx. Theory, vol. 50 (2021) no. 2, pp. 108–125

ictp.acad.ro/jnaat

A CATALOGUE OF MATHEMATICAL FORMULAS INVOLVING π,
WITH ANALYSIS

DAVID H. BAILEY∗

Abstract. This paper presents a catalogue of mathematical formulas and it-
erative algorithms for evaluating the mathematical constant π, ranging from
Archimedes’ 2200-year-old iteration to some formulas that were discovered only
in the past few decades. Computer implementations and timing results for these
formulas and algorithms are also included. In particular, timings are presented
for evaluations of various infinite series formulas to approximately 10,000-digit
precision, for evaluations of various integral formulas to approximately 4,000-
digit precision, and for evaluations of several iterative algorithms to approxi-
mately 100,000-digit precision, all based on carefully designed comparative com-
puter runs.

MSC 2010. 00A05, 68U01, 01-A05.
Keywords. Pi, computation of pi, history of pi.

1. BACKGROUND

The mathematical constant known as π = 3.141592653589793 . . . is unde-
niably the most famous and arguably the most important mathematical con-
stant. Mathematicians since the days of Archimedes, up to and including the
present day, have analyzed its properties and computed its numerical value.

The question of whether π is given by a simple ratio or algebraic construc-
tion has transfixed mathematicians since ancient times. Squaring the circle,
i.e., constructing a square with the same area as a given circle using classical
ruler-and-compass procedures, was one of the three premier unsolved problems
of ancient Greek mathematics. In the 1760s, the Swiss-French mathematician
Johann Heinrich Lambert first proved that π is irrational [27]. Then in 1882,
the German mathematician Ferdinand von Lindemann proved that π is tran-
scendental [28], meaning that π is not the root of any polynomial with integer
or rational coefficients. Among other things, Lindemann’s result brought a
merciful end to the countless attempts over the centuries to square the cir-
cle. This is because any point or line segment that can be constructed using
classical ruler-and-compass procedures is provably given by a finite algebraic

∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (retired) and University of
California, Davis, Department of Computer Science, dhbailey@lbl.gov.

www.ictp.acad.ro/jnaat

2 A catalogue of mathematical formulas involving π 109

expression involving only the basic arithmetic operations and square roots,
and thus is the root of an integer coefficient polynomial of degree 2d for some
integer d.

Attempts to compute numerical values of π are as old as π itself. Archimedes
was the first to devise a rigorous scheme, based on inscribed and circum-
scribed polygons. He obtained the bounds 310

71 < π < 31
7 , or, in other words,

3.1408 . . . < π < 3.1428 . . . [4]. Subsequently other mathematicians, in Eu-
rope, India, China and the Middle East, used Archimedes’ approach to com-
pute more accurate values. For example, about 500 CE, the Indian mathe-
matician Aryabhata found π to four digits, and, at roughly the same time if
not before, the Chinese mathematician Tsu Chung-Chih found π to seven dig-
its. These and later computations were spurred by the invention of positional
base-10 arithmetic with zero, by unknown Indian mathematicians in the first
two or three centuries CE, a discovery which certainly deserves to be ranked
as among the most important mathematical discoveries of all time [7].

With the development of calculus by Newton and Leibniz in the 1600s,
and the discovery of infinite series and other formulas using calculus, π was
computed to tens, then hundreds of digits, culminating with Shanks’ 1874
hand computation to 707 digits (alas, only the first 527 were correct). With
the advent of the computer in the 1940s, π was computed first to thousands
of digits, then to millions, then to billions of digits by the end of the twentieth
century. Since then, the pace of progress has continued uninterrupted. In
the latest computation, announced on 18 August 2021, a record 62.8 trillion
decimal digits were computed by a team of Swiss researchers [22]. For other
details on the historical computation of π, see [9].

One intriguing development in this area was the discovery, in 1997, of a
formula for π that permits one to calculate a string of binary or base-16 digits
of π, beginning at an arbitrary starting position, without needing to calculate
any of the digits that came before [14]. Since 1997, numerous other formu-
las with this property have been found for a variety of other mathematical
constants. One of these formulas was used in 2010 to calculate a string of bi-
nary digits of π beginning at the two quadrillionth position [30]. Others were
used to calculate base-64 digits of π2, base-729 digits of π2, and base-4096
digits of Catalan’s constant, in each case beginning at position 10 trillion. For
additional details, see [13] and [3].

This paper presents a collection of 72 formulas and algorithms that have
been found by mathematicians over the years involving π. While a compre-
hensive collection is of course not possible, preference is given in this collection
for formulas that satisfy the following criteria:

• Formulas that give π or a very simple expression involving π explicitly,
as opposed to implicit relations such as eiπ + 1 = 0.

• Formulas that give π or a very simple expression involving π as an
infinite series, definite integral or simple iterative algorithm.

110 David H. Bailey 3

• Formulas that involve simple notation, such as summations, integrals,
binomial coefficients, exponentials, logarithms, etc., that would be fa-
miliar to anyone who has completed a beginning calculus course.

• Formulas that are relatively new, discovered within the last 100 years
or so.

Included in this listing are several formulas for π that have actually have
been used in large calculations of π, both before and since the rise of computer
technology. These include formulas (2) through (5) prior to the 20th century,
and formulas (6), (7), (11), (12), (13), (14), (16), (18), (69) and (71) in the
late 20th and early 21st century. Several of these formulas, as we will see,
are quite efficient. Formula (11) (known as the Ramanujan-Sato formula), for
example, adds roughly eight correct digits per term, while formula (12) (due
to the Chudnovskys) adds roughly 14 digits per term.

Formulas (13) through (18) have the intriguing property, mentioned above,
that they permit digits (in certain specific bases) of the constant specified on
the left-hand side to be calculated beginning at an arbitrary starting position,
without needing to calculate any of the digits that came before, by means
of relatively simple algorithms. Formulas (13) and (14) have been used in
computations of high-order binary digits of π [17, Sec 3.4–3.6], while formula
(16) has been used in computations of high-order binary digits of π2, and
formula (18) has been used in computations of high-order base-3 digits of π2

[13]. Numerous other recently-discovered formulas that possess the arbitrary
digit-computation property for various mathematical constants are catalogued
in [3].

Many of these formulas are relatively new, in the sense that they were dis-
covered only in the past few decades. The formulas mentioned in the previous
paragraph are certainly in this category, having been discovered only since
1996. Many of the formulas from (19) through (50) were not well known until
recently. Formulas (64) through (67) are also relatively new, in the sense that
they are part of a class of integral formulas that are the subject of current
research [10, 11, 12]. Formula (69) was discovered in 1976. Formulas (70),
(71) and (72) were first published in 1984.

2. A CATALOGUE OF FORMULAS FOR π

π
4 =

∞∑
n=0

(−1)n

(2n+1) (1)

π
4 =

∞∑
n=0

(−1)n

(2n+1)22n+1 +
∞∑

n=0

(−1)n

(2n+1)32n+1 (2)

π
4 = 4

∞∑
n=0

(−1)n

(2n+1)52n+1 −
∞∑

n=0

(−1)n

(2n+1)2392n+1 (3)

4 A catalogue of mathematical formulas involving π 111

π
4 =

∞∑
n=0

(−1)n

(2n+1)22n+1 +
∞∑

n=0

(−1)n

(2n+1)52n+1 +
∞∑

n=0

(−1)n

(2n+1)82n+1 (4)

π
4 = 3

∞∑
n=0

(−1)n

(2n+1)42n+1 +
∞∑

n=0

(−1)n

(2n+1)202n+1 +
∞∑

n=0

(−1)n

(2n+1)19852n+1 (5)

π
4 = 12

∞∑
n=0

(−1)n

(2n+1)492n+1 + 32
∞∑

n=0

(−1)n

(2n+1)572n+1 − 5
∞∑

n=0

(−1)n

(2n+1)2392n+1 (6)

+ 12
∞∑

n=0

(−1)n

(2n+1)1104432n+1

π
4 = 44

∞∑
n=0

(−1)n

(2n+1)572n+1 + 7
∞∑

n=0

(−1)n

(2n+1)2392n+1 − 12
∞∑

n=0

(−1)n

(2n+1)6822n+1 (7)

+ 24
∞∑

n=0

(−1)n

(2n+1)129432n+1

π =
√

12
∞∑

n=0

(−1)n

(2n+1)3n (8)

π = 3
√

3
4 − 24

∞∑
n=0

(2n
n)

(2n+3)(2n−1)42n+1 (9)

π
2 =

∞∏
n=1

4n2

4n2−1 (10)

1
π = 2

√
2

9801

∞∑
n=0

(4n)!(1103+26390n)
(n!)43964n (11)

1
π = 12

∞∑
n=0

(−1)n(6n)!(13591409+545140134n)
(3n)!(n!)36403203n+3/2 (12)

π =
∞∑

n=0

1
16n

(
4

8n+1 − 2
8n+4 − 1

8n+5 − 1
8n+6

)
(13)

π = 4
∞∑

n=0

(−1)n

4n(2n+1) − 1
64

∞∑
n=0

(−1)n

1024n

(
32

4n+1 + 8
4n+2 + 1

4n+3

)
(14)

π =
∞∑

n=0

(−1)n

4n

(
2

4n+1 + 2
4n+2 + 1

4n+3

)
(15)

π2 = 9
8

∞∑
n=0

1
64n

(
16

(6n+1)2 − 24
(6n+2)2 − 8

(6n+3)2 − 6
(6n+4)2 + 1

(6n+5)2

)
(16)

π
√

3 = (17)

= 1
9

∞∑
n=0

1
729n

(
81

12n+1 − 54
12n+2 − 9

12n+4 − 12
12n+6 − 3

12n+7 − 2
12n+8 − 1

12n+10

)

112 David H. Bailey 5

π2 = 2
27

∞∑
n=0

1
729n

(
243

(12n+1)2 − 405
(12n+2)2 − 81

(12n+4)2 − 27
(12n+5)2 − 72

(12n+6)2 (18)

− 9
(12n+7)2 − 9

(12n+8)2 − 5
(12n+10)2 + 1

(12n+11)2

)
3π + 8 =

∞∑
n=0

12n22n

(4n
2n) (19)

π2

6 − 2 log2 2 =
∞∑

n=1

(2n
n)

n24n (20)

15π + 52 =
∞∑

n=0

(126n2−24n+8)23n

(6n
3n) (21)

105π + 304 =
∞∑

n=0

(1920n3−928n2+424n−16)24n

(8n
4n) (22)

16π
√

3 + 81 =
∞∑

n=0

(49n+1)8n

3n(3n
n) (23)

162 − 6π
√

3 − 18 log 3 =
∞∑

n=0

(−245n+338)8n

3n(3n
n) (24)

π =
∞∑

n=0

(50n−6)
2n(3n

n) (25)

15π + 42 =
∞∑

n=1

(−4)n(2n)!2(3n)!(201−952n)
(6n)!n! (26)

15π
√

2 + 27 =
∞∑

n=0

8n(2n)!2(3n)!(350n−17)
(6n)!n! (27)

40π
√

3 + 243 =
∞∑

n=1

(−27)n(2n)!2(3n)!(81−1080n)
(6n)!n! (28)

20π
√

3 + 89 =
∞∑

n=1

(− 1
3)n(2n)!2(3n)!(4123−22100n)

(6n)!n! (29)

15π + 240 log 2 − 528 =
∞∑

n=1

(− 1
2)n(89012n3−77362n2+482n+3028)

(5n
2n) (30)

24516 − 360π
√

3 =
∞∑

n=1

9n(2743n2−130971n−12724)
(4n

n) (31)

45π + 1164 =
∞∑

n=1

8n(430n2−6240n−520)
(4n

n) (32)

40π
√

3 + 1872 =
∞∑

n=1

3n(7175n2−15215n+480)
(4n

n) (33)

6 A catalogue of mathematical formulas involving π 113

288π
√

3 − 576 log 2 + 324 =
∞∑

n=0

(9
8)n(5692+6335n−5415n2)

(4n
n) (34)

1008π
√

3 − 576 log 2 + 7587 =
∞∑

n=0

(9
8)n(7517+1145n+18050n2)

(4n
n) (35)

16
π =

∞∑
n=0

42n+5
4096n

(2n
n

)3 (36)

4
π =

∞∑
n=0

(−1)n(4n)!(20n+3)
44n(n!)422n+1 (37)

4
π =

∞∑
n=0

(−1)n(4n)!(260n+23)
44n(n!)4182n+1 (38)

4
π =

∞∑
n=0

(−1)n(4n)!(21460n+1123)
44n(n!)48822n+1 (39)

2
π

√
3 =

∞∑
n=0

(4n)!(8n+1)
44n(n!)432n+1 (40)

1
2π

√
2 =

∞∑
n=0

(4n)!(10n+1)
44n(n!)492n+1 (41)

4
π

√
3 =

∞∑
n=0

(−1)n(4n)!(28n+3)
44n(n!)43n42n+1 (42)

4
π

√
5 =

∞∑
n=0

(−1)n(4n)!(644n+41)
44n(n!)45n722n+1 (43)

1
3π

√
3 =

∞∑
n=0

(4n)!(40n+3)
44n(n!)4492n+1 (44)

32
π2 =

∞∑
n=0

(4n
2n)(2n

n)4(120n2+34n+3)
216n (45)

128
π2 =

∞∑
n=0

(−1)n(2n
n)5(820n2+180n+13)

220n (46)

2
π =

∞∑
n=0

(−1)n(2n
n

)3 4n+1
64n (47)

4
π =

∞∑
n=0

(2n
n

)3 6n+1
256n (48)

π + 4 =
∞∑

n=0

2n+1

(2n
n) (49)

114 David H. Bailey 7

6
π2 = 64

∞∑
n=0

(6n)!(532n2+126n+9)
(n!)6106n+3 (50)

π
4 =

∫ 1

0
dx

1+x2 (51)

π
4 =

∫ 1

0

√
1 − x2 dx (52)

π−2
4 =

∫ 1

0
x tan−1 x dx (53)

π(π−12)
48 + log 2

2 =
∫ 1

0
log x tan−1 x dx (54)

22
7 − π =

∫ 1

0

x4(1−x)4 dx
1+x2 (55)

π
8 =

∫ 1

0
x2 dx

(1+x4)
√

1−x4 (56)

π(1+2 log 2)
8 =

∫ ∞

0
xe−x

√
1 − e−2x dx (57)

4π log2 2 + π3

3 =
∫ ∞

0
x2 dx√
ex−1 (58)

π log 2 =
∫ π

2

0
x2 dx
sin2 x

(59)

π3

24 + π log2 2
2 =

∫ π
2

0
log2(cos x) dx (60)

8π3

81
√

3 =
∫ 1

0
log2 x dx
x2+x+1 (61)

π
2 − log 2 =

∫ 1

0

log(1+x2) dx
x2 (62)

√
π = Γ(1

2) =
∫ ∞

0
x− 1

2 e−x dx (63)

− π
4 + 3 log(2+

√
3)

2 =
∫ 1

0

∫ 1

0

∫ 1

0
dx dy dz√
x2+y2+z2

(64)

− π
24 +

√
3

4 + log(2+
√

3)
2 =

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + z2 dx dy dz (65)

− π
60 + 2

√
3

5 + 7 log(2+
√

3)
20 =

∫ 1

0

∫ 1

0

∫ 1

0
(x2 + y2 + z2)3/2dx dy dz (66)

5 − π2 − 4 log 2 + 16 log2 2 =
∫ 1

0

∫ 1

0

(
x−1
x+1

)2 (
y−1
y+1

)2 (
xy−1
xy+1

)2
dx dy (67)

8 A catalogue of mathematical formulas involving π 115

3. ITERATIVE ALGORITHMS FOR π

• (The Archimedes iteration). Set a0 = 2
√

3 and b0 = 3. Iterate, begin-
ning with k = 0,

ak+1 = 2akbk
ak+bk

, bk+1 =
√

ak+1bk. (68)

Then both ak and bk converge to π: each iteration decreases the dis-
tance between ak and bk (which interval contains π) by a factor of
approximately four.

• (The Brent-Salamin iteration). Set a0 = 1, b0 = 1/
√

2 and s0 = 1/2.
Iterate, beginning with k = 0,

ak+1 = ak+bk
2 , bk+1 =

√
akbk,

ck+1 = a2
k+1 − b2

k+1, sk+1 = sk − 2k+1ck+1,

pk+1 = 2a2
k+1

sk+1
. (69)

Then pk converges quadratically to π: each iteration approximately
doubles the number of correct digits.

• (The Borwein cubic iteration). Set a0 = 1/3 and s0 = (
√

3 − 1)/2.
Iterate, beginning with k = 0,

rk+1 = 3
1+2(1−s3

k
)1/3 , sk+1 = rk+1−1

2 ,

ak+1 = r2
k+1ak − 3k(r2

k+1 − 1). (70)
Then 1/ak converges cubically to π: each iteration approximately
triples the number of correct digits. The Borweins also published a
quadratically convergent algorithm, but that is not listed here.

• (The Borwein quartic iteration). Set a0 = 6 − 4
√

2 and y0 =
√

2 − 1.
Iterate, beginning with k = 0,

yk+1 = 1−(1−y4
k)1/4

1+(1−y4
k

)1/4

ak+1 = ak(1 + yk+1)4 − 22k+3yk+1(1 + yk+1 + y2
k+1). (71)

Then 1/ak converges quartically to π: each iteration approximately
quadruples the number of correct digits. Brent has shown that the
Borwein quartic iteration is in fact mathematically equivalent to two
iterations of the Brent-Salamin algorithm [20].

• (The Borwein nonic iteration). Set a0 = 1/3, r0 = (
√

3 − 1)/2, s0 =
(1 − r3

0)1/3. Then iterate, beginning with k = 0,

tn+1 = 1 + 2rn, un+1 = (9rn(1 + rn + r2
n))1/3

vn+1 = t2
n+1 + tn+1un+1 + u2

n+1, wn+1 = 27(1+sn+s2
n)

vn+1

an+1 = wn+1an + 32n−1(1 − wn+1)

sn+1 = (1−rn)3

(tn+1+2un+1)vn+1
, rn+1 = (1 − s3

n+1)1/3. (72)

116 David H. Bailey 9

Then 1/ak converge nonically to π: each iteration approximately nine-
times the number of correct digits.

4. CREDITS

• Formula (1) was discovered by Leibniz and Gregory in the 1600s. For-
mula (2) was attributed to Euler in 1738. Formula (3) was discovered
about the same time by Machin [17, 105]. The related arctangent-
based formulas (4), (5), (6) and (7) were used by Dase, Ferguson,
Kanada and Kanada, respectively [17, 106, 107, 111].

• Formula (8) is due to the Indian mathematician Madhava of Sangama-
gramma, who lived in the late 1300s and early 1400s [17, 107]. Formula
(9) was discovered by Newton in the mid-1600s [17, 106]. Formula (10)
was discovered by Wallis at about the same time.

• Formula (11) is due to Ramanujan, and was used by Gosper in 1986 to
compute π to over 17 million digits. The similar but more complicated
formula (12) is due to David and Gregory Chudnovsky, and was used
by them to compute π to over one billion decimal digits [17, 108].

• Formula (13) is known as the “BBP” formula for π, named for the
initials of the co-authors of the 1997 paper where it was first presented
[14], [17, 119–124]. It was discovered by a computer program running
the “PSLQ” algorithm of mathematician-sculptor Helaman Ferguson
[24, 15]. Formula (14) is a variant of the BBP formula due to Bellard
[17, 124]. Formula (15) was found by Helaman Ferguson and indepen-
dently by Adamchik and Wagon, who first published it [1].

• Formula (16) appeared in [14]. Formulas (17) and (18) are due to
David Broadhurst [21].

• Some of the summation formulas involving factorials and combinato-
rial coefficients (i.e., formulas (19) through (50)) were found by Ra-
manujan; others are due to David and Gregory Chudnovsky. The
Chudnovskys had these and many other formulas of this general type
inscribed on the floor of their research center at Brooklynn Polytechnic
University in New York City [23]. Four exceptions are formula (36),
which is due to Ramanujan but appeared in [19, 188], formulas (45)
and (46), which are due to Guillera [26], and formula (50), which is
due to Almkvist and Guillera [2].

• Formulas (51) through (63) have been known for many years; many
are from [18, 5, 48, 320–321].

• Formulas (64) through (66) are examples of recent discoveries, by com-
putational methods involving the PSLQ algorithm [24, 15], in the the-
ory of box integrals [11, 12]. Formula (65), for instance, can be thought
of as specifying the average distance from the origin to a point in the
unit 3-cube.

10 A catalogue of mathematical formulas involving π 117

• Formula (67) is an example of numerous formulas, also obtained by
computational methods involving the PSLQ algorithm [24, 15], in stud-
ies of the Ising theory of mathematical physics [10].

• Formula (68), is mathematically equivalent to Archimedes’ approach
involving computing the areas of inscribed and circumscribed regu-
lar polygons [4]. Archimedes’ scheme was used for all computations
of π in ancient times, including by the fifth century Chinese mathe-
matician Tsu Chung-Chih and, evidently, by the fifth century Indian
mathematician Aryabhata [7].

• Formula (69) is the Brent-Salamin iteration, the first quadratically con-
vergent scheme for π, which was discovered independently by Richard
Brent and Eugene Salamin in 1976 [17, 109–110]. Formula (70) (a
cubically convergent iteration), formula (71) (a quartically convergent
iteration) and formula (72) (a nonically convergent iteration) are due
to Jonathan and Peter Borwein [17, 110], [9].

5. PERFORMANCE RESULTS

One question that frequently arises in discussions of formulas and algorithms
for π is how they compare when implemented on the computer. To that end,
we present here timings for a carefully designed set of comparative computer
runs. Timings are presented for the infinite series summation formulas (using
10,000-digit precision), for the integral formulas (using 4,000-digit precision),
and for the iterative algorithm formulas (using 100,000-digit precision).

5.1. Software. The present author tried several different approaches to these
timings, including Mathematica software and various high-precision arithmetic
libraries. One difficulty with Mathematica implementations is that it is dif-
ficult to control how much symbolic manipulation and simplification is being
done “under the covers” of the user code. Also, evaluation of the integral
formulas is problematic using Mathematica, because it is difficult to control
details of the implementation, even when specifying the method to be used.

In the end, the author decided to base the timings below on Fortran imple-
mentations utilizing the author’s MPFUN-2015 package [5], in particular the
MPFUN-MPFR version of MPFUN-2015. This is a high-level multiprecision
package, in the sense that it permits one to perform arbitrarily high-precision
computations in a Fortran program by making only a few changes to stan-
dard double-precision code. For the most part, one only needs to declare
high-precision variables to be of a certain datatype, and then the software au-
tomatically calls the requisite lower-level routines from the package whenever
one of these variables appears in an expression. The package supports both
high-precision real and high-precision complex datatypes. The MPFUN-2015
package is entirely thread-safe, so that applications using the package can be
performed safely in shared-memory parallel implementations. For full details,
see [5].

118 David H. Bailey 11

The MPFUN-2015 package is available in two versions, MPFUN-Fort and
MPFUN-2015. The MPFUN-Fort version is written in Fortran, and thus it is
a simple matter to compile, install and use. The MPFUN-MPFR version has
the same functionality as MPFUN-Fort, but calls the MPFR library [25] for
all lower-level computations. At the present time the MPFR library features
the fastest runtimes of any arbitrary precision floating-point library [29]. It
also produces results that are correctly rounded to the last bit. Thus while
the the installation process of the MPFUN-MPFR is more involved (because
both the MPFR library and the GMP library must be installed first, using
administrator privilege), it features very fast run times.

A newer version of this package, MPFUN-2020, which features significantly
faster all-Fortran run times, is now available [6], although it was not used for
these computations.

5.2. Evaluation of summation formulas. The summation formulas (for-
mula (1) through formula (50)) were all evaluated using a consistent approach
and coding style. It is important to note that these are purely numerical
evaluations – symbolic manipulations and simplifications, such as by noting
that

∑
n≥0(−1)n/((2n + 1)82n+1) = arctan(1/8), were not employed. Some

straightforward computational simplifications were employed, typical of those
that would be utilized in any efficient implementation. For example, numer-
ators and denominators were separately evaluated, because they are integers,
and powers such as 22n+1 and binomial coefficients such as

(2n
n

)
were evaluated

incrementally from iteration to iteration in a loop. Each individual summation
was performed only until its terms were less than 10−10000.

It should be added, though, that advanced techniques such as “multisec-
tioning” and “divide and conquer” strategies were not performed. These terms
refer to evaluating sections of consecutive terms in the summation, with inte-
ger coefficients in the numerators and denominators factored out as much as
possible. Such techniques do not make much difference for runs up to 10,000
digits or so, as in these tests, but have been employed in computations of π to
many millions of digits. The most successful of these implementations is the
“y-cruncher” program of Alexander J. Yee [31], which has been used in the
most recent computations of π, based on the Chudnovsky formula (12). In
the latest computation, announced on 18 August 2021, a record 62.8 trillion
decimal digits were computed by a team of Swiss researchers [22].

The timings for the summation formula computer runs are presented in
Table 1. As mentioned above, these timings are based on runs to 10,000-digit
precision. In some cases, timings are not listed, because these formulas would
require astronomical numbers of terms to produce 10,000-digit results.

5.3. Tanh-sinh quadrature. From a computational standpoint, integral for-
mulas are no match to the most efficient summation formulas and iterative

12 A catalogue of mathematical formulas involving π 119

Formula Run time Terms of series Formula Run time Terms of series
1 — — 26 0.69 6693
2 2.49 16602, 10475 27 0.88 8855
3 0.83 7150, 2101 28 1.64 16627
4 2.62 16602, 7150, 5534 29 0.39 3988
5 1.23 8301, 3842, 1516 30 0.60 5685
6 0.79 2957, 2847, 2101, 991 31 45.53 442610
7 0.71 2847, 2101, 1764, 1216 32 14.05 135741
8 1.87 20950 33 2.07 20040
9 1.77 16590 34 1.12 10818

10 — — 35 1.12 10819
11 0.12 1253 36 2.00 5536
12 0.72 706 37 1.78 16607
13 2.93 8298 38 0.38 3983
14 2.65 16603, 3322 39 0.16 1698
15 5.83 16603 40 0.99 10477
16 1.98 5533 41 0.50 5239
17 0.40 3491 42 0.56 5947
18 0.43 3491 43 0.21 2266
19 1.61 16621 44 0.28 2958
20 — — 45 2.95 8304
21 1.12 11088 46 1.21 3322
22 0.88 8320 47 — —
23 2.43 24815 48 6.60 16607
24 2.43 24817 49 3.09 33229
25 0.86 8854 50 0.72 7510

Table 1. Timings for evaluations of summation formulas to approxi-
mately 10,000-digit precision.

algorithms, but are still nonetheless fairly reasonable if performed using an effi-
cient quadrature (numerical integration) scheme. To that end, the author used
variations of the tanh-sinh algorithm for all of the integral formulas (formulas
(51) through (67)). The tanh-sinh scheme, while often not quite as efficient as
Gaussian quadrature for entirely regular integrand functions, nonetheless has
significant advantages for this type of very high-precision computation [16].
Given a function f(t) defined on [−1, 1], the tanh-sinh quadrature rule is∫ 1

−1
f(x) dx =

∫ ∞

−∞
f(g(t))g′(t)dt ≈ h

N∑
j=−N

wjf(xj), (73)

where g(t) = tanh(π
2 · sinh t) and the abscissas xj and weights wj are given by

xj = g(hj) = tanh(π
2 · sinh(hj))

wj = g′(hj) = π
2 · cosh(hj)/ cosh2(π

2 · sinh(hj)) (74)

The tanh-sinh scheme can be used for functions on any finite interval. A
variation of the tanh-sinh scheme known as the exp-sinh scheme, based on the
function g(t) = exp(π

2 · sinh t), can be employed for integrals on a semi-infinite

120 David H. Bailey 13

interval such as (0, ∞). The sinh-sinh scheme, based on g(t) = sinh(π
2 · sinh t),

can be employed for integrals on the entire real line.
One advantage of the tanh-sinh scheme is that it can be readily used for

problems, such as formulas (56) and (58), whose integrand functions (or their
higher-order derivatives) have a vertical derivatives or singularities at one or
both endpoints. It is often not easy to determine whether or not an integral
has such a singularity. For example, consider the integral

∫ 1
0 sinp(πx)ζ(p, x) dt,

where ζ(p, x) denotes the Hurwitz zeta function. When p = 3, this integrand
function and its higher derivatives are all regular, and can be integrated using
Gaussian quadrature, but when p = 7/2 = 3.5, while the plot of this function
looks unremarkable, its fourth and higher derivatives have singularities at the
endpoints, and Gaussian quadrature fails badly. By contrast, the tanh-sinh
quadrature rule easily integrates this function to high precision [8].

Another major advantage of the tanh-sinh scheme for very-high-precision
computation is that the cost of computation of abscissas and weights, using
(74), increases only linearly with N , whereas the abscissa-weight computation
in Gaussian quadrature increases quadratically with N . Given that the num-
ber of evaluation points required to achieve a given precision increases roughly
linearly with the number of digits, this means that the cost of computing ab-
scissas and weights for the Gaussian scheme increases roughly cubically with
the precision desired, compared with quadratically with tanh-sinh, even before
the increases in the cost of the arithmetic with higher precision are consid-
ered. For example, computation of tanh-sinh abscissas and weights sufficient
to evaluate the integral problems in this paper to approximately 4,000-digit
accuracy required only 167 seconds, whereas the corresponding calculations for
Gaussian quadrature would require over 100 hours run time (and the Gauss-
ian scheme, as mentioned above, could not be used for formulas (56) and (58),
because of singularities at endpoints).

Timings for evaluations of the integral formulas are shown in Table 2. The
tanh-sinh scheme was employed for all formulas except formulas (57), (58) and
(63), which employed the exp-sinh scheme.

5.4. Evaluations of multiple integrals. As noted in the introduction, for-
mulas (64), (65) and (66) derive from a recent study of box integrals [11, 12].
In this study, high-precision numerical values of these integrals (and others)
were used, in conjunction with the PSLQ integer relation algorithm [24, 15],
to numerically discover the relations indicated. A similar approach was taken
to numerically discover evaluations of integrals such as formula (67) that de-
rive from the Ising theory of mathematical physics [10]. Indeed, such studies
overwhelmingly demonstrate the value of very high-precision quadrature in
experimental mathematics.

Numerical evaluations of formulas (64), (65) and (66) were facilitated by the
discovery [11, 12] that these multidimensional box integrals can be rewritten,
in most cases, in terms of 1-D integrals, and similarly for formula (67) from

14 A catalogue of mathematical formulas involving π 121

Formula Run time Subdivisions
51 1.85 4096
52 1.26 4096
53 34.15 4096
54 59.62 4096
55 2.46 4096
56 8.89 8192
57 100.45 16384
58 79.25 16384
59 82.58 4096
60 79.03 4096
61 28.11 4096
62 21.03 4096
63 82.43 16384
64 2.18 4096
65 6.39 4096
66 7.20 4096
67 35.20 4096

Table 2. Timings for evaluations of integral formulas to approxi-
mately 4,000-digit precision.

Ising studies [10]. In particular, the computations reported here for formulas
(64), (65), (66) and (67) are based, respectively, on the following reductions
to 1-D integrals:

1∫
0

1∫
0

1∫
0

dx dy dz√
x2+y2+z2

=3
1∫

0

√
t2+2−1
t2+1 dt (75)

1∫
0

1∫
0

1∫
0

√
x2 + y2 + z2 dx dy dz =1

2

1∫
0

(t2+2)3/2−1
t2+1 dt (76)

1∫
0

1∫
0

1∫
0

(x2 + y2 + z2)3/2dx dy dz =1
5

1∫
0

(t2+2)5/2−1
t2+1 dt (77)

1∫
0

1∫
0

(
x−1
x+1

)2(y−1
y+1

)2(xy−1
xy+1

)2dx dy =
1∫

0

[
t(−7+4 log(2))+t2(1+20 log(2))+t3(3+12 log(2))

t(t−1)(t+1)2 +

(78)

+ t4(3−4 log(2))−4(1+t)(−1+4t+t2) log(1+t)
t(t−1)(t+1)2

]
dt

5.5. Evaluations of iterative algorithms. In addition to the summation in-
tegral formulas, results are presented here for five iterative algorithms, namely
the Archimedes iteration (formula (68)), the Brent-Salamin iteration (formula
(69)), the Borwein cubic iteration (formula (70)), the Borwein quartic iteration
(formula (71)) and the Borwein nonic iteration (formula (72)).

122 David H. Bailey 15

The Archimedes iteration is mathematically equivalent to the scheme sketched
by the ancient Greek mathematician Archimedes in approximately 250 BCE.
For details on how this iterative formula is derived, and a rigorous proof that
it converges to π, see [4].

The remaining iterative algorithms have the remarkable property that they
converge quadratically (formula (69)), cubically (formula (70)), quartically
(formula (71)) and nonically (formula (72)), respectively, meaning that the
number of correct digits approximately doubles, triples, quadruples and nine-
times, respectively, with each iteration, provided of course that all iterations
are performed with a level of numeric precision that is at least as high as the
precision desired for the final result.

These iterations were implemented in an entirely straightforward fashion.
The only change from the formulas as stated were to save results of some
intermediate expressions, such as the value of (1 − y4

k)1/4 in (71)), rather than
recomputing them each time they appear.

6. TIMING RESULTS

Timing results for the summation formulas (using 10,000-digit precision),
the integral formulas (using 4,000-digit precision) and the iterative algorithms
(using 100,000-precision) are given in Table 1, Table 2 and Table 3, respec-
tively. These runs were performed on a single processor of a 2019 MacPro
with a 3 GHz 8-core Intel Xeon E5 processor and 32 GB RAM. It utilized the
MPFUN-MPFR package, version 9, with version 4.0.2 of the MPFR library
and version 6.1.2 of the GMP library.

The final results of each calculation were checked against the reference values
to verify that the relative errors met the prescribed tolerance. Each of the sum-
mation formula results met the relative error tolerance 10−10000, except formu-
las (9), (19), (31) and (50) (which met a relative error of 10−9998). Each of the
integral formula results met the relative error tolerance 10−4000, except for-
mula (51) (10−3948), formula (58) (10−3688) and formula (63) (10−3954). Each
of the iterative algorithm results met the relative error tolerance 10−100000.

These results clearly indicate a very wide range in timings, even among
formulas of the same class. Among the summation formulas, timings ranged
from 0.12 seconds for formula (11) (a formula due to Ramanujan that has been
used in some recent large computations of π) to 45.53 seconds for formula (31),
which in spite of its similar outward appearance to other formulas involving
binomial coefficients, converges very slowly. And, of course, several other
formulas ((1), (10), (20) and (47)) converge so slowly that no timings are
presented, since evaluations of π to 10,000-digit precision using these formulas
would require astronomically long run times. For example, evaluating π to
10,000-digit precision strictly using Gregory’s series for π (formula (1)) would
require evaluating roughly 1010000 terms and vastly more run time than the
age of the universe.

16 A catalogue of mathematical formulas involving π 123

From a computational perspective, the integral formulas are more challeng-
ing, as they require advanced techniques for evaluation to high precision, as
noted above. Even here, though, we observe vast differences in run time,
ranging from 1.26 seconds using the simple integral in formula (52) to 100.45
seconds for the integral in formula (57). The large run time here mostly reflects
the cost of computing the exponential function in (57). Note, however, that
a complicated integrand function by itself does not guarantee a very long run
time. The most complicated integral in the list, namely formula (67), which
was evaluated using the equivalent but still very complicated 1-D integral in
formula (78), required only 35.2 seconds to produce a 4,000-digit value.

The iterative algorithm formulas show a particularly dramatic contrast in
run times. Here, as mentioned above, the timings are for computations using
100,000-digit arithmetic. The Archimedean iteration, namely formula (68),
required 166,133 iterations and 1015.39 seconds run time to produce a result
accurate to 100,000 digits. But each of the more modern iterations, specif-
ically the Brent-Salamin algorithm ((69)) and the three Borwein algorithms
((70), (71), (72)), all required between 0.11 and 0.14 seconds, which are truly
remarkable speeds for 100,000-digit results.

It should be noted, however, that although the Brent-Salamin algorithm
(69) and the Borwein quartic algorithm (71) have been used in several recent
large computations of π, the Chudnovsky formula (12) is now the most widely
used formula for very large computations of π. Even though it is significantly
slower than the Brent-Salamin and Borwein formulas, by the tests reported
in this paper, advanced techniques such as multisectioning and divide-and-
conquer strategies can be employed with this formula, which techniques prevail
in computations to millions, billions or trillions of digits.

Formula Run time Iterations
68 1015.39 83093
69 0.13 16
70 0.11 9
71 0.11 7
72 0.14 5

Table 3. Timings for evaluations of iterative algorithm formulas to
approximately 100,000-digit precision.

124 David H. Bailey 17

REFERENCES

[1] V. Adamchik, S. Wagon, A simple formula for pi, Amer. Math. Monthly, 104 (1997),
852–855, https://www.maa.org/sites/default/files/pdf/pubs/amm supplements/M
onthly Reference 9.pdf.

[2] G. Almkvist, J. Guillera, Ramanujan-like series for 1/π2 and string theory, Exper-
imental Mathematics, 21 (2012) no. 3, pp. 223–234, https://doi.org/10.1080/1058
6458.2012.656059.

[3] D.H. Bailey, A compendium of BBP-type formulas for mathematical constants, up-
dated 15 Aug 2017, http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf.

[4] D.H. Bailey, Simple proofs: Archimedes’ calculation of pi, Math. Scholar, 9 Feb 2019,
https://mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-
pi/.

[5] D.H. Bailey, MPFUN2015: A thread-safe arbitrary precision package (full documen-
tation), manuscript, updated 7 Feb 2020, https://www.davidhbailey.com/dhbpapers
/mpfun2015.pdf.

[6] D.H. Bailey, MPFUN2020: A new thread-safe arbitrary precision package (full docu-
mentation), manuscript, updated 20 Jul 2021, https://www.davidhbailey.com/dhbpa
pers/mpfun2020.pdf.

[7] D.H. Bailey, J.M. Borwein, Ancient Indian square roots: An exercise in forensic
paleo-mathematics, Amer. Math. Monthly, 119 (2012) no. 8, 646–657, preprint draft at
https://doi.org/10.4169/amer.math.monthly.119.08.646.

[8] D.H. Bailey, J.M. Borwein, Hand-to-hand combat with thousand-digit integrals, J.
Computational Science, 3 (2012), 77–86, preprint draft at https://doi.org/10.1016/
j.jocs.2010.12.004.

[9] D.H. Bailey, J.M. Borwein, P.B. Borwein, S. Plouffe, The quest for Pi, Mathe-
matical Intelligencer, 19 (1997) no. 1, 50–56, https://doi.org/10.1007/BF03024340.

[10] D.H. Bailey, J.M. Borwein, R.E. Crandall, Integrals of the Ising class, J. Phys. A
Math. Gen., 39 (2006), 12271–12302, https://doi.org/10.1088/0305-4470/39/40/
001.

[11] D.H. Bailey, J.M. Borwein, R.E. Crandall, Box integrals, J. Comp. Appl. Math.,
206 (2007), 196–208, https://doi.org/10.1016/j.cam.2006.06.010.

[12] D.H. Bailey, J.M. Borwein, R.E. Crandall, Advances in the theory of box integrals,
Math. Comp., 79 (2010) no. 271, 1839–1866, https://doi.org/10.1090/S0025-5718
-10-02338-0.

[13] D.H. Bailey, J.M. Borwein, A. Mattingly, G. Wightwick, The computation of
previously inaccessible digits of π2 and Catalan’s constant, Notices of the AMS, 60
(2013) no. 7, 844–854, http://dx.doi.org/10.1090/noti1015.

[14] D.H. Bailey, P.B. Borwein, S. Plouffe, On the rapid computation of various poly-
logarithmic constants, Math. Comp., 66 (1997) no. 218, 903–913, https://doi.org/10
.1090/S0025-5718-97-00856-9.

[15] D.H. Bailey, D.J. Broadhurst, Parallel integer relation detection: Techniques and
applications, Math. Comp., 70 (2000) no. 236, 1719–1736, https://doi.org/10.1090/
S0025-5718-00-01278-3.

[16] D.H. Bailey, Xiaoye S. Li, K. Jeyabalan, A comparison of three high-precision
quadrature schemes, Experimental Mathematics, 14 (2005) no. 3, 317–329, https:
//doi.org/10.1080/10586458.2005.10128931.

[17] J.M. Borwein, D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the
21st Century, AK Peters, Natick, MA, 2008.

https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_9.pdf
https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_9.pdf
https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_9.pdf
https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_9.pdf
https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_9.pdf
https://doi.org/10.1080/10586458.2012.656059
https://doi.org/10.1080/10586458.2012.656059
https://doi.org/10.1080/10586458.2012.656059
https://doi.org/10.1080/10586458.2012.656059
https://doi.org/10.1080/10586458.2012.656059
http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf
http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf
http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf
http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf
https://mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-pi/
https://mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-pi/
https://mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-pi/
https://mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-pi/
https://mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-pi/
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf
https://doi.org/10.4169/amer.math.monthly.119.08.646
https://doi.org/10.4169/amer.math.monthly.119.08.646
https://doi.org/10.4169/amer.math.monthly.119.08.646
https://doi.org/10.4169/amer.math.monthly.119.08.646
https://doi.org/10.1016/j.jocs.2010.12.004
https://doi.org/10.1016/j.jocs.2010.12.004
https://doi.org/10.1016/j.jocs.2010.12.004
https://doi.org/10.1016/j.jocs.2010.12.004
https://doi.org/10.1016/j.jocs.2010.12.004
https://doi.org/10.1007/BF03024340
https://doi.org/10.1007/BF03024340
https://doi.org/10.1007/BF03024340
https://doi.org/10.1007/BF03024340
https://doi.org/10.1088/0305-4470/39/40/001
https://doi.org/10.1088/0305-4470/39/40/001
https://doi.org/10.1088/0305-4470/39/40/001
https://doi.org/10.1088/0305-4470/39/40/001
https://doi.org/10.1088/0305-4470/39/40/001
https://doi.org/10.1016/j.cam.2006.06.010
https://doi.org/10.1016/j.cam.2006.06.010
https://doi.org/10.1016/j.cam.2006.06.010
https://doi.org/10.1090/S0025-5718-10-02338-0
https://doi.org/10.1090/S0025-5718-10-02338-0
https://doi.org/10.1090/S0025-5718-10-02338-0
https://doi.org/10.1090/S0025-5718-10-02338-0
https://doi.org/10.1090/S0025-5718-10-02338-0
 http://dx.doi.org/10.1090/noti1015
 http://dx.doi.org/10.1090/noti1015
 http://dx.doi.org/10.1090/noti1015
 http://dx.doi.org/10.1090/noti1015
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-00-01278-3
https://doi.org/10.1090/S0025-5718-00-01278-3
https://doi.org/10.1090/S0025-5718-00-01278-3
https://doi.org/10.1090/S0025-5718-00-01278-3
https://doi.org/10.1090/S0025-5718-00-01278-3
https://doi.org/10.1080/10586458.2005.10128931
https://doi.org/10.1080/10586458.2005.10128931
https://doi.org/10.1080/10586458.2005.10128931
https://doi.org/10.1080/10586458.2005.10128931
https://doi.org/10.1080/10586458.2005.10128931

18 A catalogue of mathematical formulas involving π 125

[18] J.M. Borwein, D.H. Bailey, R. Girgensohn, Experimentation in Mathematics:
Computational Paths to Discovery, AK Peters, Natick, MA, 2004.

[19] J.M. Borwein, P.B. Borwein, Pi and the AGM: A Study in Analytic Number Theory
and Computational Complexity, CMS Series of monographs and Advanced Books in
Mathematics, John Wiley, Hoboken, NJ, 1987.

[20] R.P. Brent, The Borwein brothers, Pi and the AGM, in: Bailey D. et al. (eds)
From Analysis to Visualization. JBCC 2017. Springer Proceedings in Mathematics &
Statistics, 313, Springer, Cham., 2020, pp. 323–347, https://doi.org/10.1007/978-
3-030-36568-4 21.

[21] D.J. Broadhurst, Massive 3-loop Feynman diagrams reducible to SC* primitives of
algebras of the sixth root of unity, Eur. Phys. J. C., 8 (1999), pp. 311–333, https:
//doi.org/10.1007/s100529900935.

[22] I. Castella-McDonald, New record for pi calculation: Down to 62.8 trillion digits,
Impakter, 18 Aug 2021, available at https://impakter.com/new-record-for-pi-62-
trillion-digits/.

[23] D. Chudnovsky, G. Chudnovsky, Listing of Ramanujan-type formulas, copy in au-
thor’s possession, 2000.

[24] H.R.P. Ferguson, D.H. Bailey, S. Arno, Analysis of PSLQ, an integer relation
finding algorithm, Math. Comp., 68 (1999) no. 225, 351–369, https://doi.org/10.1
090/S0025-5718-99-00995-3.

[25] L. Fousse, G. Hanrot, V. Lefevre, P. Pelissier, P. Zimmermann, MPFR: A
multiple-precision binary floating-point library with correct rounding, ACM Trans. Math.
Soft., 33 (2007) no. 2, https://doi.org/10.1145/1236463.1236468.

[26] J. Guillera, Some binomial series obtained by the WZ-method, Adv. Appl. Math., 29
(2002) no. 4, 599–603 https://doi.org/10.1016/S0196-8858(02)00034-9.

[27] “Johann Heinrich Lambert”, Wikipedia article, viewed 8 Dec 2021, available at https:
//en.wikipedia.org/wiki/Johann Heinrich Lambert.

[28] “Ferdinand von Lindemann”, Wikipedia article, viewed 8 Dec 2021, available at https:
//en.wikipedia.org/wiki/Ferdinand von Lindemann.

[29] MPFR research team, Comparison of multiple-precision floating-point software, ac-
cessed 12 Mar 2020, https://www.mpfr.org/mpfr-4.0.1/timings.html.

[30] J. Palmer, Pi record smashed as team finds two-quadrillionth digit, BBC News, 16 Sep
2010, available at https://www.bbc.com/news/technology-11313194.

[31] A.J. Yee, y-cruncher - A multi-threaded pi-program, updated 12 Mar 2020, http:
//www.numberworld.org/y-cruncher/.

Received by the editors: December 5, 2021; accepted: December 29, 2021; published

online: February 17, 2022.

https://doi.org/10.1007/978-3-030-36568-4_21
https://doi.org/10.1007/978-3-030-36568-4_21
https://doi.org/10.1007/978-3-030-36568-4_21
https://doi.org/10.1007/978-3-030-36568-4_21
https://doi.org/10.1007/978-3-030-36568-4_21
https://doi.org/10.1007/978-3-030-36568-4_21
https://doi.org/10.1007/s100529900935
https://doi.org/10.1007/s100529900935
https://doi.org/10.1007/s100529900935
https://doi.org/10.1007/s100529900935
https://doi.org/10.1007/s100529900935
https://impakter.com/new-record-for-pi-62-trillion-digits/
https://impakter.com/new-record-for-pi-62-trillion-digits/
https://impakter.com/new-record-for-pi-62-trillion-digits/
https://impakter.com/new-record-for-pi-62-trillion-digits/
https://impakter.com/new-record-for-pi-62-trillion-digits/
https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1016/S0196-8858(02)00034-9
https://doi.org/10.1016/S0196-8858(02)00034-9
https://doi.org/10.1016/S0196-8858(02)00034-9
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
https://en.wikipedia.org/wiki/Ferdinand_von_Lindemann
https://en.wikipedia.org/wiki/Ferdinand_von_Lindemann
https://en.wikipedia.org/wiki/Ferdinand_von_Lindemann
https://en.wikipedia.org/wiki/Ferdinand_von_Lindemann
https://www.mpfr.org/mpfr-4.0.1/timings.html
https://www.mpfr.org/mpfr-4.0.1/timings.html
https://www.mpfr.org/mpfr-4.0.1/timings.html
https://www.bbc.com/news/technology-11313194
https://www.bbc.com/news/technology-11313194
https://www.bbc.com/news/technology-11313194
http://www.numberworld.org/y-cruncher/
http://www.numberworld.org/y-cruncher/
http://www.numberworld.org/y-cruncher/
http://www.numberworld.org/y-cruncher/

	1. Background
	2. A catalogue of formulas for
	3. Iterative algorithms for
	4. Credits
	5. Performance results
	5.1. Software
	5.2. Evaluation of summation formulas
	5.3. Tanh-sinh quadrature
	5.4. Evaluations of multiple integrals
	5.5. Evaluations of iterative algorithms

	6. Timing results
	References

