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GENERAL MULTIVARIATE ARCTANGENT FUNCTION ACTIVATED
NEURAL NETWORK APPROXIMATIONS
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Abstract. Here we expose multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RN, N € N, by
the multivariate normalized, quasi-interpolation, Kantorovich type and quadra-
ture type neural network operators. We treat also the case of approximation
by iterated operators of the last four types. These approximations are derived
by establishing multidimensional Jackson type inequalities involving the multi-
variate modulus of continuity of the engaged function or its high order Fréchet
derivatives. Our multivariate operators are defined by using a multidimensional
density function induced by the arctangent function. The approximations are
pointwise and uniform. The related feed-forward neural network is with one
hidden layer.
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1. INTRODUCTION

The author in [2] and [3], see chapters 2-5, was the first to establish neural
network approximations to continuous functions with rates by very specifically
defined neural network operators of Cardaliagnet-Euvrard and “Squashing”
types, by employing the modulus of continuity of the engaged function or its
high order derivative, and producing very tight Jackson type inequalities. He
treats there both the univariate and multivariate cases. The defining these
operators “bell-shaped” and “squashing” functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class
of smooth functions, see chapters 4-5 there.

For this article the author is motivated by the article [13] of Z. Chen and
F. Cao, also by [4], [5], [6], [7], [8], [9], [10], [11], [14], [15].

*Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152,
U.S.A., e-mail: ganastss@memphis.edu.


http://doi.org/10.33993/jnaat511-1262
http://ictp.acad.ro/jnaat

38 George A. Anastassiou 2

The author here performs multivariate arctangent function based neural
network approximations to continuous functions over boxes or over the whole
RN, N € N. Also he does iterated approximation. All convergences here
are with rates expressed via the multivariate modulus of continuity of the
involved function or its high order Fréchet derivative and given by very tight
multidimensional Jackson type inequalities.

The author here comes up with the “right” precisely defined multivariate
normalized, quasi-interpolation neural network operators related to boxes or
RY, as well as Kantorovich type and quadrature type related operators on
RY. Our boxes are not necessarily symmetric to the origin. In preparation to
prove our results we establish important properties of the basic multivariate
density function induced by arctangent function and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this chapter, are mathematically expressed as

Ny () =Y cjo({aj-z)+b;), xR’ seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - x) is the inner product of a; and
x, and o is the activation function of the network. In many fundamental
network models, the activation function is the arctangent function. About
neural networks read [16], [17], [18].

2. AUXILIARY NOTIONS

We consider the

€T
(1) arctan x :/0 %, z € R.
We will be using
%
(2) h(z):= 2 arctan (5z) = %/0 %, r €R,

which is a sigmoid type function and it is strictly increasing. We have that
h(0) =0, h(—z)=—h(x), h(+o00) =1, h(—o0)=—1,

and

(3) W (x) = gz >0, allz €R.

We consider the activation function

(4) w(x):zi(h(x—kl)—h(a:—l)), z eR,
and we notice that

(5) Y (—z) =9 (),

it is an even function.
Since x +1 >z —1,then h(z+1) > h(x—1), and ¢ (z) > 0, all x € R.
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We see that
(6) ¥ (0) = Larctan T = 0.319.
Let x > 0, we have that
— 7'('21‘
(7) q’D/ (.T) = % (h/ (SC + 1) - h/ (ﬂj‘ - 1)) = (4+7r2(x+1)24)(4+7|—2(x71)2) <0.
That is
(8) Y (z) <0, for z > 0.

That is 9 is strictly decreasing on [0,00) and clearly is strictly increasing on
(—00,0], and ¢’ (0) = 0.
Observe that

lim o (2) = 1 (h(+00) — h(+20)) =0,
9) and
lim 1 (2) = & (h(—o0) = h (~o0)) = 0.

That is the z-axis is the horizontal asymptote on 1.
All in all, v is a bell symmetric function with maximum v (0) 2 0.319.
We need

THEOREM 1 ([11, p. 286]). We have that

(10) i¢(m—z’):1, VzekR
THEOREM 2 ([11, p. 287]). It holds
(11) /OO Y (z)de = 1.

So that 1 (x) is a density function on R.
We mention

THEOREM 3 ([11, p. 288]). Let 0 < a < 1, and n € N with n'=® > 2. It
holds

(12) Z Y (ne —k) < m

Denote by |-| the integral part of the number and by [-] the ceiling of the
number.

We need

THEOREM 4 ([11, p. 289]). Letx € [a,b] C R andn € N so that [na| < |nb].
It holds

(13) m < gl 249737, V€ a,b].
k=[na]
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NoTE 1 ([11, pp. 290-291]). i) We have that

Lnb)
(14) lm > e —k) £ 1
k=[na]
for at least some x € [a,b].
ii) For large enough n € N we always obtain [na] < |nb]. Alsoa < £ <,
iff [na] <k < |nb].
In general, by Theorem 1, it holds
Lnb)
(15) S Yp(naz—k) <1

k=[na]

We introduce

N
(16) Z(x1,...,zN):=Z(x) = H?ﬁ (z;), == (21,...,an) ERY, N eN.
i=1

It has the properties:

(i) Z (z) >0, Yz € RN,

(i)
(17)

o Z@—k) = > > > Z(wi—ky, ey —ky) =1,

k=—00 ki=—ooko=—0c0 ky=—00
where k := (k1,...,k,) € ZN,V z € RV,

hence

(iif)
(18) > Znz-k)=1,

k=—00

VzeRN:neN,

and

(i)
(19) Z (x)dx =1,

RN

that is Z is a multivariate density function.

Here denote ||z|| := max {|z1], ..., |zn|}, € RV, also set 0o := (o0, ..., ),
—00 = (—00,...,—00) upon the multivariate context, and

[na] := ([na1], ..., [nan]),

[nb] :== (|nb1],..., [nbn]),

where a := (a1, ...,an), b := (b1,...,bn) .

(20)
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We obviously see that

|nb] [nd] N
(21) Z Z (nx — k) = Z (H U (na; — kz)>
i=1

k=[na] k=[na]
[nb1 | [nbn |

S S (ﬂwmi_;ﬁ))

ki=[na1] ky=[nay] \i=1
N [nb; |
=1 ki:(nai]
For 0 < B <1andn €N, a fixed z € RY, we have that
[nb] [nb] [nb)

(22) Z Y (ne —k) = Z Y (ne —k)+ Z Y (ne —k).
k=[na] . k=[na] ) . k=[na] )
% -2l <55 1% -2ll>75

In the last two sums the counting is over disjoint vector sets of k’s, because the
1

> -3,
n

condition H% — l‘H > n% implies that there exists at least one |
o

where r € {1,..., N}.
(v) As in [10, pp. 379-380], we derive that

[nb| (12) )
k=[na]
I%—llo>75

withn € N:n'8 > 2 2 € [IY [ai, b .
(vi) By Theorem 4 we get that

1 1~ N
(24) < S < G (4.9737)

Ve (H,f\il [ai,bi]), n € N.
It is also clear that

(vii)
X =—00
12 —alln>

0<pf<l,neN:n'"P>2 zecRVN,
Furthermore it holds
[nb]
(26) lim > Z(nz—k)#1,

n—00
k=[na]
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for at least some z € (vazl [a;, bl]) .
Here (X Il ) is a Banach space.

Let f € C(H@ 1[al,bl],X>, x = (r1,..,zN) € HZ 1 lai, bi], n € N such
that [na;| < [nb;|,i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (x := (x1,...,2N) € (Hi]\il [ai,bi])):

(27) An (f,.%'l,...,xN> =
= An (f,2)

L§J f( ) i

_ k=[na]
- Lnd]

E Z(nxz—k)

k=[na]

[nb1 ] Lnbo ] [nb ] N

k1=[nay] kg=[nag] kN:[naN] i=1

o N [,
I1 Yo Y(nwi—ki)

=1\ k;= ’—nal]

For large enough n € N we always obtain [na;] < |nb;], i = 1,..., N. Also
a; < ki < b, iff [na;| < k; < |nb;j],i=1,...,N.

When geC (Hl 1 lai, bz]) we define the companion operator

Lnb]
Z g(%)Z(nz—k)
(28) Ay, (g 7) =

> Z(naz—k)

k=[na]

Clearly A, is a positive linear operator. We have that

N
A, (L) =1, Vaz e (H [ai,bi]> .
i=1
Notice that A, (f) € C ( 1 lai, bi] ,X) and A, (g) € C (Hl 1 [az,bl]) .
Furthermore it holds

Lnb)
f % Z(nz—k)

N ) 1, .

(29) |4n (f )], < =0 = A, (If1, ),
Z Z(nx—k)

k=[na]

V:L' S Hivl [au z]'
Clearly [[£]1, € € (T, [as. b])
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So, we have that

(30) | An (£ )y < An (I1£]1 )

VeIl [ai b, Y n e NV f e (T [asb], X).

Let ce X and g € C (HZ 1 [al,bl]) then cg € C (H 1 lai, bi ,X) .
Furthermore it holds

(31) Ap(cg,z) = Ay ( a:,V:cEHaZ,Z

Since A, (1) = 1, we get that
(32) Ap(c)=¢, Vece X.

We call A, the companion operator of A,,.
For convinience we call

[nb)
(33) Ay (fia):= Y f(E)Z(ma—k) =

k=[na]

[nb1 | [nb2 | [nbn | N

ki=[nai] k2=[naz2] kn=[nan

Ve (nz 1 [ai, b))

That is
- AL (frz)
(34) Ap (fa SU) = T nb ’
> Z(naz—k)
k=[na]

Ve (Hz 1 [a,,bZD, n € N.
Hence

Lnb)
AZ(fw)—f@)( > Z(W-’ﬂ))
k=[na]
(35) Ap (fiz) = [ (2) = [nb] :
> Z(naz—k)
k=[na]

Consequently we derive

(36)

24

(24)
[An (f,2) = f (@), < (4.9737)N || A% (f,2) — Z Z (nx —k

Ve (Hz 1 [az,bz]) .
We will estimate the right hand side of (36).
For the last and others we need
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DEFINITION 1 ([11, p. 274]). Let M be a conver and compact subset of
(RN> H'Hp>, p € [1,00], and (X, HH7> be a Banach space. Let f € C(M,X).
We define the first modulus of continuity of f as

B7)  wi(f,0):= sup 1 (@) = f W)l 0<d < diam(M).
r,y €M
le =gl <4
If 6 > diam (M), then
(38) w1 (f,0) = w1 (f,diam (M)) .

Notice wi (f,0) is increasing in § > 0. For f € Cp (M, X) (continuous and
bounded functions) w; (f,0) is defined similarly.

LEMMA 1 ([11, p. 274]). We have wy (f,d) = 0 asd 0, iff f € C (M, X),
where M is a convex compact subset of (]RN7 ”'Hp>, p € [1,00].

Clearly we have also: f € Cy (]RN , X ) (uniformly continuous functions),
iff wy (f,0) — 0 as 6 | 0, where w; is defined similarly to (37). The space
Cg (RN , X ) denotes the continuous and bounded functions on R¥.

When f € Cp (RN, X) we define,
(39)

BTL (f,.l') = BTL (f7x1> -"7$N)

= i f(i)Z(nx—k)

k=—00
00 00 00 N

=3 Y Y (k) <H¢(nwi—ki)>,
k1=—00 kg=—00 kn=—00 =1

neN,Vz e RN, N €N, the multivariate quasi-interpolation neural network
operator.

Also for f € Cp (RN , X ) we define the multivariate Kantorovich type neu-
ral network operator

(40)
Cn(f,x) =Cn(f,x1,...,TN)

= i (nN/nf(t)dt>Z(n:c—k:)

k
k=—00 n

Y Yy T i

k1=—00 kg=—00 kny=—o00

00 o0 00 kitl o kotl kn+1
N

L ky T JRN

n n n

f (tl, ...,tN) dtl...dt]\/)
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N
: (Hw (nx; — kz)) ;

i=1
neN, VzeRN.
Again for f € Cp (RN , X ), N € N, we define the multivariate neural

network operator of quadrature type D, (f,z), n € N, as follows.
Let 0 = (01, ....,0N) € NN 7= (r1,...Tn) € Z, w, = wyy y, _ry > 0, such

0 01 062
that > w, = > > . Z Wy g vy = 15 k € ZY and
r=0 r1=07r2=0 T‘N—

(41)

Onk (f) 1= Op ko ko, ke Z’LWf( )

1 2
kL o kn N
Z Z Z Wry,ra,.. TNf(n nb1’ n +n92 Uon +n9N)’
r1=07r2=0 ry=0
r._(rL ra2 'N
where 5 := (91, AR 9N) .
We set

(42) Do(f2) i= Do (Forsnan) i= > 0w (F) Z (nz — )

k=—o00

S SR SIS SRy <H¢n:m )

k1=—00 kg=—00 kny=—00

vV 2z e RN,

In this article we study the approximation properties of A,, By, Cy, Dy
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3. MULTIVARIATE GENERAL NEURAL NETWORK APPROXIMATIONS

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give
N
THEOREM 5. Let f € C (Hl 1 lai, bi ,X) ,0<pB <1, ze <Hi:1 [ai,bi]) ,
N,n € N with n'=# > 2. Then
1)

(43) A (fo0) = f @), < @OTD) [ (£:55) + st | = (o),

and
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2)
(44) 140 (£) = £11,]| <2 ().
We notice that nan;OAn (f) HJ f, pointwise and uniformly.

Above wy is with respect to p = co.

Proof. We observe that

(45) A(z) = A% (f,x) Lﬁ:bj Z (nw —k
k [na]
[nb]
Z f(%)Z(m:— Z f(z
k=[na] k=[na]
[nb]
> (FE)-f@)z2ma—k).
k=[na]
Thus
|nb)
(6)  la@ly < X |7 () - f @) 2 -k
k=[na]
[nb]
= > fr() @] zee -k
k=[na]
|Eall <2
|nb)
SR HORVIE RIS
|£=all >
(18) )]
<w (fB)e2fifL]. Y zee-k
=[na]
&=l
(2§3) wi (f, n%) + ;'2'7'1{_;”0;).
So that
(47) 1A @1, <o (£ 3) + e,

Now using (36) we finish the proof.
We make
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ReMARK 1 ([11, pp. 263-266]). Let (RY, [[},), N € N; where [, is the

L,norm, 1 < p < oo. RY is a Banach space, and (RN )] denotes the j-
fold product space RY x ... x RY endowed with the max-norm HxH(RN)j =
_ . Ny
Jnax. |zxll,» where z := (21, ..., 25) € (R ) :
Let (X, HHV) be a general Banach space. Then the space L; := Lj ((RN)j;X)
of all j-multilinear continuous maps g : (RN)j — X, j=1,...,m, is a Banach
space with norm

o)
(48) loll = llgllz, =~ sup g @)ll, = sup g~y

(2l gvyi=1)

Let M be a non-empty convex and compact subset of R¥ and zq € M is
fixed.

Let O be an open subset of RV : M € O. Let f: O — X be a continuous
function, whose Fréchet derivatives (see [19]) fU) : O — L; = L; <<RN )J ; X >
exist and are continuous for 1 < j <m, m € N..

Call (z — x0)’ := (z — 20, ...,x — xg) € (RN)j, xeM.

We will work with f|/.

Then, by Taylor’s formula [12], [19, p. 124], we get

m

(49) flz)=>Y" %f(j) (z0) (x — 20)” + Ry (x,x0), all z € M,
=0

where the remainder is the Riemann integral
(50)

1 m—1
R (0) = [ SRt (£ (o + (o = 0)) = £ (@0) (@ = 20)" du

here we set f(© (z9) (z — x0)° = f (20) .
We consider

6y wima (f) = sup 10 @) - 1 )
z,yeM:
oyl <h
h > 0.
We obtain
(5 o+ e = 20)) = 5 (@) (& = )" | <

< [ £ (@0 + u (@ = 20)) = £ (@o)| - Il = wolly’
62 <wle -y |1

by Lemma 7.1.1, [1, p. 208], where [-] is the ceiling.
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Therefore for all x € M (see [1, pp. 121-122]):
1
m ul|lz—aol| —u)™ !
1R (2, 20) ., < w |z — ol /0 { =0 W e

(53) = wbp, (| = oll,)

by a change of variable, where

It] _gm—1 > .
(54) D (1) :=/0 (4] Edsds = 4 (Z (It] —Jh)’f) , VteR,
j=0
is a (polynomial) spline function, see [1, p. 210-211].
Also from there we get
Je[™ [t]™

m—1
(55) B (1) < (i + 55 + algy), ViEER,

with equality true only at ¢ = 0.
Therefore it holds

llz—woll;" ' lz—aol| hllz—aol/; !

(56) [ Bm (2, zo)ll, < w( O T o T s >, VreM.

We have found that

G |F @) =30 A9 (o) (o — o) | <
=0
v
z—xo|| ™! x—xo||7 hl|lz—zo|™ !
<o (70.1) (Bl + 5l Bl ) <o
Vx,xg € M.

Here 0 < wy ( fm), h) < 00, by M being compact and f(™ being continuous
on M.
One can rewrite (57) as follows:

D) () ()
(58) ||f () — Y Ll <
Jj=0 ~
—z m+1 —z m hll-—z m—1
S @i (f(m)’h> (”(mi'l'?!h + 1 273!”10 + Hs(m(i“f)z ) , Vo € M,

a pointwise functional inequality on M.

Here (- — )’ maps M into (]RN )] and it is continuous, also fU) (xg) maps

J A ‘
(RN ) into X and it is continuous. Hence their composition fU) (zq) (- — xo)
is continuous from M into X.

Clearly f ()= 3 W € C (M, X), hence || f (-) — 3 £2Eo)(==0) | ¢
J=0 j=0

J:

C (M).
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Let {E N}NEN be a sequence of positive linear operators mapping C (M)
into C (M) .
Therefore we obtain

~ m <A) - — .
(59) Ly | Ilf ()= Z fﬂ(oj)il(o)ﬂ (z0) <
7=0
N
~ Y (2 ~ ™)) (2
Swi (f(m)’ h) |:(LN( (mj-Hlp)!h ))( v + (LN(” 272|!‘p ))( i
h(ZN(H'—:coHZLfl))(zO)
S(m—l)! )
VNeN,Vzge M. 0

N - -
Clearly (59) is valid when M = ] [a;,b;] and L,, = A, see (28).

All the above is preparation forl tlhe following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [11, pp. 268-270]. The
operators A,, A, fulfill its assumptions, see (27), (28), (30), (31) and (32).

We present the following high order approximation results.

N
THEOREM 6. Let O open subset of (RN, ||-Hp>, p € [1,00], such that 1] [a;, b;] C
i=1

O C RY, and let (X,HHV) be a general Banach space. Let m € N and

feC™(0,X), the space of m-times continuously Fréchet differentiable func-

tions from O into X. We study the approximation of f| . Let xy €
[1la:,b:]
i=1

=1

1)

N
<H [ai,bi]> and r > 0. Then

(60)

(i 1= ol™)) 0) ™ [ty 5+ 5],
2) additionally if fO) (z¢) =0, j
(61) 1(An (f)) (@o) = f (o)

v
< st (10 (s (1 = ol ) ) ™)

1,...,m, we have

<
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(A (1= wol™)) o)™ [ty 5+ 27
3)

(62) 1(An (f)) (z0) = f (o), <

o

1

+ ke (£, (A (1 = woll)) (20) ™)

(G (1= ol ™)) o0)) ) [y + 5 4+ 22

and
4)
(63) H||A — £l H <
1[ b]
;' H( ( _gso)j))(aro)H7 oot Mot
=1
| £ (1 >><>n)
[ (& (1 = 2oll+)) <xo>|]io”f:€)ﬁ[%bi] [y + 5+
We need

LEMMA 2. The function (ﬁn (H - x0||;1)> (x0) is continuous in o € (lﬁl [ai, bl]> ,
m € N.

Proof. By Lemma 10.3, [11, p. 272]. O

We make

REMARK 2. By Remark 10.4, [11, p. 273], we get that

(64) |(Aa (I ==olly)) @) w <

oo,xoeil;ll[ai,bi]
<A (1 = 2ol )) o)

Y
00,20€ [ ] [as,bi)

forall k=1,...,m. O
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We give
COROLLARY 1. (to Theorem 6, case of m =1) Then
1)
(65) 1(An (f)) (o) = f (zo)ll, <
< 0 (50 600 0) o]
e (10 (8 (1= 1) (o))
(A (1= 012)) o)) [1 4+ 7]
and
2)
66) A (=S| ~ <
oo,il;ll[ai,b]
<l o=l | g
e (f(l)’r (3= l5)) o) ;xoeﬁ[ahbll)
G G =moi el  fres],
r > 0.
We make

REMARK 3. We estimate 0 < a <1, m,n € N:n!=®* > 2,

(67) An (- = 2ol Z5) (o) =

[nb] m

> %—:EOH +1Z(n330—l<:)
. k=[na] o0
N [nb]

> Z(nzo—k)
k=[na]

(24) Lnb] m+1
< 49737V 3 Hg —on Z (nao — k)
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[nb| —
= (4.9737)" > H% - on " Z (no ~ )
k—fna'\ ) >
15 =20l <7
Lnb]
m+1
D SR R L
k=[na]
Hi_IOHOO ’ﬂa
(25) 2|[b—a !
(68) < (4.9737)N {na(iﬁl) + ﬁ(nl”;"_m},

(where b —a = (by — aq,...,by — an)).

N
We have proved that (V z¢ € [] [a;, bi])

i=1

~ a m—+1
69) A (I = 20l (z0) < (49730 { by + 2l L = 1 ()

0O<a<1l,mmneN:n=>2),
And, consequently it holds
@) [ A (I =wolZ) @) & <

00,20€ [ ] [@,bi]
=1

m+1
< (4.9737)N{ a(iﬂ) + ﬂ'é’nf”a 2)} =¢1(n) — 0, asn — 4oo.

So, we have that ¢1 (n) — 0, as n — +o00. Thus, when p € [1,00], from
Theorem 6 we have the convergence to zero in the right hand sides of parts

(1) 2. o |
Next we estimate H (An (f(J) (o) (- — :1;0)]» (mo)H’Y,
We have that

(71)
nb .
- ‘ = LZJ FU) (o) (% — 330)] Z (nxg — k)
(An (f(j) (z0) (- — xo)y)) (w0) = Mna] -
k:%m Z (nxo — k)

When p =00, j =1,...,m, we obtain
: J
@ e (b o)
¥

We further have that

< 19 ol & ==l

(24)

@) (4 (59 @) (= a0))) o] <

Y
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2 (womanyy ( % 9 (20) (% - 5U0>j Z (nao — k))
k—[n(ﬂ v
L
< orany ( 19 )] | — o] 2 tne - @)
k=[na]
[nb] .
= (49737)N || @o)|| | 3 ||E = w0 2 (n0 - k))
k=[na]
[nb] .
SIS TCTR L D S Y e
Il
Lnb] ;
(74) + Z H% —onOOZ(nmo—k)

k=[na] )

7 —aoll o> 7

(25) . Ll
< (4.9737)N Hf(f) (:co)H {nlj + M} 50, as n — oo.

That is
H( ( ]) (wo) (- — ﬂ’fo)j)) (ﬂUO)H7 — 0, as n — oo.

Therefore when p = oo, for j = 1,...,m, we have proved:

(75) H( ( F9 (o) (- —xo)j>>($0)H7<
< (4.9737)N Hf(” H {W + %}

N 2||b—all
(4 9737 Hf ])H {nD‘J + M} =!2; (n) < 00,
and converges to zero, as n — 0o. O

We conclude:

In Theorem 6, the right hand sides of (62) and (63) converge to zero as
n — oo, for any p € [1, c0].

Also in Corollary 1, the right hand sides of (65) and (66) converge to zero
as n — oo, for any p € [1,00].

CONCLUSION 1. We have proved that the left hand sides of (60), (61), (62),
(63) and (65), (66) converge to zero as n — 0o, for p € [1,00|. Consequently
Ay — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
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see (61). Higher speed of convergence happens also to the left hand side of
(60).

We give

COROLLARY 2. (to (6)) Let O open subset of (RN,H-HOO), such that

N

I1 [ai,b;] € O C RN, and let (X,||H7> be a general Banach space. Let
i=1

m € N and f € C"™ (0, X), the space of m-times continuously Fréchet differ-
entiable functions from O into X. We study the approzimation of f| x

[ laibi]
i=1
N
Let zy € | II [ai, bi] | and r > 0. Here @1 (n) as in (69) and @25 (n) as in
i=1

(75), wheren € N:nl=*>2 0<a<1,j=1,..,m. Then

1)

(76) <

(An (1) (@0) = > 4 (A (F9 (20) (- = 20)")) (20)

o
1 m

< s (£ (o1 ()77 ) (o1 )T [ + 5+ 28
2) additionally, if fO) (xg) =0, j = 1,...,m, we have
(77 (A () (@0) = f (@)l <
< L (£, 1 (1 ()77 (o1 () 77 [hy + 5 + 227
3)
(78)
(AR .

[ 1 lai.bi]
i=1

_m

- i\n m L T mnr
< Yo Lo (£, r (o1 ()7 (1 (n))(@51) [y + 5 + 2]
i=1

=:¢3(n) — 0, as n — oc.
We continue with

THEOREM 7. Let f € Cp (RN,X), 0<B <1, zecRY NneN with
n'=P > 2 wy is for p=oo. Then

g
(19) 1B () = T @)l < (1) + Al = v ),
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2)
(80) [1Ba (£) = £ll,]| _ < re ().
Given that [ € (C’U (RN,X) NCp (RN,X)), we obtain nh—>H<}an (f) =1,
uniformly.

Proof. We have that

B) Bu(fo) - 1@ Y F(E) Za—b-f@) S Zna—k)
k=—0o0 k=—o00
=Y (7(5) -1 @) 2 —b
k=—o0
Hence
1B F) — F @l < 3 (£ ()~ F@)] 2 na—
k=—00
= X G -r@] zme -k
el =k
o X G -r@) zma
el >
Su@pm) e, X Zme-k
k=—00
el >
) Lo (1.) + Aty
proving the claim. O
We give

THEOREM 8. Let f € Cp (RN,X), 0<pB <1, zecRY, NnecN with
n'=P > 2 wy is for p=oo. Then

1)
63) 1) = f @I, <wn (£3+35) + il <),
Y

(84) G (F) = £11, ]| < 2a ().
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. N N . . _
Given that f € (CU (R ,X) NCg (R ,X)), we obtain nh_{]goCn (fy =1,
uniformly.

Proof. We notice that

k41 k141 kol Ey+1
n

/E" f(t)dt:/ﬁn /,2” /LN f(t1,ta, o ty) dirdts..dty =

(85)
1.1 1 "
0 0 0 ‘
Thus it holds (by (40))

(86) Cn(f,z) = i <nN/0nf(t—l-fl)dt>Z(nx—k‘).

k=—o00

[

We observe that

1o (f.2) — F (@), =

_ i (nN/if(H—k)dt)Z(nx—k)— i f(2)Z (n — k)
k=—o00 k=—00 5
S nv " k —f(z nr —
k:_:@(( /0 f(t+n)dt> f())Z( k)7
(87) = i <nN/OT1” (f(t+%) —f(x))dt>2(m—k)
k=00 o
< k_izo (nN/O Hf <t+ %) — f(x)Hvdt> Z (nx — k)
= kioo (nN/O}L Hf (t+ %) - f(a:)”7 dt) Z (nx — k)
|52l <55
+ kioo <nN /0% f<t+ g) —f(q:)det> Z (nx — k)
152l >75
< k;m (mv/on w1 (f,||t\|oo+ Hg foOO) dt) Z (nx — k)
|52l <55
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TR (T8 0 I SR AT
|5=2l> %
(88) gm(ﬁih#)t%’

proving the claim. O

We also present

THEOREM 9. Let f € Cp (RN,X), 0<B<1,2cRY, NneN wih
n'=P > 2 wi is for p=oco. Then

g

69 IDu(ha) ~ F@, S (554 ) + bl = i),
)

(90) 1w (1) = £1L|_ < M ().

Given that [ € (CU (RN,X) NCpg (RN,X)), we obtain nh_}rgoDn (=1,

uniformly.
Proof. We have that (by (42))
(91) [1Dn (f; ) = f ()|, =

S bz -b = Y F@ Z0w—h)
k=—0o0 k=—oc0 y
| S G = F@) 2z )
k=—o00 %
00 0
-y <ZwT(f(f;+,{9)—f(x))>Z(nw—k)
k=—00 \r=0 v
00 0
<y (zwr f(’“+,fg)—f(w)H7>Z(mr—k)
k=—o0c0 \r=0
7]
- X (gwr f(n+,;"9)f(fc)H,y>Z(n:vk)
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00 0
fE (el ea) el zee s
k=—00 r=0
I5—ell>75
oo 0
< Z (Zwrwl (f, ﬁ—xHoo—l—HJeHOO))Z(nx—k)
k=—o00 r=0
[5=]. <
o
+ 2171, >, Znw—k)
8-l >
02 sw(fi+d)+ ol
proving the claim. O

We make

DEFINITION 2. Let f € Cp (RN,X), N e N, where (X, ”H«,) is a Banach

space. We define the general neural network operator
(93)

. By (fox)., il () =1 (%),
S bk (f)Z(na—k) = Cn (fyz), if Lk (f ka
h=meo Dy (fyx), if Lk (f) = ok (F) -
Clearly L,k (f) is an X-valued bounded linear functional such that ||l (f)|., <

st N

Hence F,, (f) is a bounded linear operator with HHF” (f)HvH < H\|f||7H
We need = =

THEOREM 10. Let f € Cp <RN,X), N >1. Then F, (f) € Cp (RN,X) :

Proof. Clearly F, (f) is a bounded function.

Next we prove the continuity of F), (f). Notice for N =1, Z = 1 by (16).

We will use the generalized Weierstrass M test: If a sequence of positive
constants My, Ms, Mg, ..., can be found such that in some interval

(@) |lun ()|, < Mpn, n=1,2,3,...

(b) > M, converges,

then Y u, (x) is uniformly and absolutely convergent in the interval.

Also we will use:

If {un ()}, n =1,2,3, ... are continuous in [a,b] and if }° u, () converges
uniformly to the sum S (z) in [a,b], then S (x) is continuous in [a,b]. Le. a
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uniformly convergent series of continuous functions is a continuous function.
First we prove claim for N = 1.

We will prove that > 22l (f) ¢ (nx — k) is continuous in z € R.

There always exists A € N { such that na e [=\AL

Since nx < A, then —nx > —Aand k —nx > k— X > 0, when k£ > .
Therefore

9 D> vma—k) =) vh-—nx)<Y Pk-N)=) ()<
k=X k=X k=X k'=0
So for k > X\ we get

o (D (n = k) < [|IA1L | (k=)

and

[ 3wk =x < sty
k=X

Hence by the generalized Weierstrass M test we obtain that Y L,k (f) ¥ (nx — k)

k=X
is uniformly and absolutely convergent on {—%, %] .
Since Ik (f) ¥ (nx — k) is continuous in z, then > 72 Ik (f) ¢ (ne — k) is
continuous on [—%, %} .

Because nx > — A, then —nz < A\, and k —nx < k+ A <0, when k£ < —A.
Therefore

Y -2
Y e —k)= > o (k—na) Z VY (k+N) = Z Y (k

k=—00 k=—o00 k——oo k/=—o00
So for k < —\ we get
(95) ke (), 00 (= k) < [[I£1L ||k + ),
and

-2
sl 3 w+n < st

Hence by Weierstrass M test we obtain that Zk__ Lok (f) ¥ (nx — k) is uni-
formly and absolutely convergent on {—%, %} .

Since lnk (f) % (nx — k) is continuous in xz, then Z,;:A_OO Lok (f) ¥ (nx — k)

. . A A
1s continuous on [ g n} .

So we proved that S0, Lk (f) % (nx — k) and 32 Lk (f) ¥ (nz — k)

. . A—1 . .
are continuous on R. Since >2p~ "\ Ly (f) ¥ (nz — k) is a finite sum of con-
tinuous functions on R, it is also a continuous function on R.
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60
Writing
00 —-A
k=—0oc0 k=—0o0
A—1
(96) + Z Lok (f) Y (nx — k +Zlnk Y (nx — k)
k=—At1

we have it as a continuous function on R. Therefore F), (f), when N =1, is a

continuous function on R.
When N = 2 we have

n (fyr1,22) = Z Z lnk (f) Y (nwy — k1) 9 (nxe — k2)

ki=—00 ko=—00

i ¥ (nzy — ki) ( i lnie () ¥ (nw2 — k2))

k1=—0o0 ko=—00

(there always exist A1, A2 € N such that nx; € [\, A\1] and nxy € [—A2, \2])

[e'e] —Ag
> w(nxl—kl)[ > bk (f) ¢ (na2 — ko)

ki=—c0 ko=—00
Aa—1 [eS)
+ Z Ink (f) ¥ (nwa — ko) + Z Ink (f) ¥ (nag — kQ)]
ko=—X2+1 ko=M\2

“ o
Z > bk (f) % (na1 — k1) ¥ (nawg — ko)
k1=—00 ka=—00
Aa—1

+ Z N L () ¥ (nay — ki)Y (nxg — ko)

ki=—00 ka=—MAo2+1

+ i io: Lok (f) ¥ (nxy — k1) ¥ (nwe — ko) =: (x) .

k1=—00 ka=MX2

(For convenience call

F (k1, k2,21, 22) = bk, (f) ¥ (nz1 — k1) ¥ (nw2 — k2) . )

Thus
M\ —As A1—1 —A2
Z Z kl,kg,xl,wg)—i— Z Z kl,kg,xl,xg)
k1=—00 ko=—00 ki=—XM+1ko=—c0
—A2 —A1 A2—1
+ Z > F(ki ko, z,z2)+ > Y F(ki ko, a1, 22)

ki=M ka=—0c0 k1=—00 ko=—MXo+1
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A1—1 A2—1 Ao—1

+ ) > F(ki ko, 21, 10) + Z > F (ki ko, x1,m2)
ki=—XM+1ko=—Xo+1 ki=X ka=—Xo+1

(97)

-1 (9] A1—1 [e'9)

+ Z Z F kl,k2,$1,$2)+ Z Z F k17k27x17x2)
kl——ookg ki=—X1+1ko=Xo

+ Z Z (K1, k2, 21, 22) -
k1=X1 ka=M\2

Notice that the finite sum of continuous functions F' (ki, ko, z1, z2),
2211;1_/\1+1 sz;i/\ﬁ_l F (ki, ko, x1,22) is a continuous function.

The rest of the summands of F,, (f, z1,z2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.

We will prove that > 77_ 5, 21@_ Lok (f) % (nx1 — k1) ¥ (neg — k2) is con-

tinuous in (r1,z2) € R2
The continuous function

ke (DI ey = ko) (ny = ke) < [|ILFIL | G = M) @ (ko + Ao

and

(N Z S (k1 - ) (ks + ) =

k1=MA1 ka=—o00

= ||ur| ( > Wk - ) ( f? ¢<kz+A2>)

ki=M1 ko=—o00

< [usn, (i v (ki)) ( _i v (ké)) < [lnsm

So by the Weierstrass M test we get that
D k= Z,;’\:Q_Oo Lk (f) % (nxy — k1) ¥ (nxe — ko) is uniformly and absolutely
convergent. Therefore it is continuous on R2.

Next we prove continuity on R? of

S Sk ()Y (nwy — k1) 4 (ng — k).
Notice here that

[k (Il ¢ (n21 — k1) ¢ (nw2 — ko) <
< 11| v e = )0 Gz + o)
< [171,]| ) (ko + 20) = 0319 [[I1L |0 (ko + 20,
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nd
: A1—1 —A2
0.319'HHfH7HOO< D 1) ( > w(kz+Az)) =
ki=—A1+1 ko=—00
:o.319.H\|f||7HOO(2A1—1)( 203 ¢(ké))
kh=—o00
(98) <0319 2y = DI,

So the double series under consideration is uniformly convergent and contin-
uous. Clearly F), (f,x1,x2) is proved to be continuous on R2.

Similarly reasoning one can prove easily now, but with more tedious work,
that F,, (f,x1,...,xn) is continuous on RN, for any N > 1. We choose to omit
this similar extra work. ]

REMARK 4. By (27) it is obvious that HHA” (f)||7HOo < H||f||7HOO < 00, and

=

N
A, (f) € C | 11 lai, bi] , X |, given that f € C | I] [ai, bi] ,X)
i=1 i=1

Call L,, any of the operators A,, B, Cp, Dy.
Clearly then

CONN (A0

=iz < 1z ol < s

etc.
Therefore we get

(100) ‘

lzt ol | <, vren

the contraction property.
Also we see that

aon) ||zt )

HHLk L

<[z o] < [usi ]

Here LF are bounded linear operators. O

NOTATION 1. Here N € N, 0 < 8 < 1. Denote by

_J @omnY, if L, = A,,
(102) N = { 1, if Ln = By, Cp, Dy,

- nB’ @fLTL = A, B,
(103) @ (n) = { % 4 7T’ if Ly = Cp, Dy,

N .
1:1 a’Lv Z 7 ) Zf Ln - Any
RN X) if Ly, = By, Cy, Dy,

(104) Q:= and
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N
(105) Y = { il;ll [aivbi] ’ Zf Ln = An,
RN, if L, = B, Cy, D,,.
We give the condensed

THEOREM 11. Let f € Q, 0< <1,z € Y;n, N € N with n'=% > 2.
Then

(i)
A1 £1l

106) 1L (f.2) = £ @I, < e [wr (£ ) + sl ] =7 o),
where wy is for p = oo,

and

(i)
(107) (= (f)—fHVHOO <7(n) =0, as n — oo.
For f uniformly continuous and in Q we obtain

Jim L, (f) = f,

pointwise and uniformly.

Proof. By Theorems 5 and 7 to 9. O

Next we do iterated neural network approximation (see also [9]).
We make

REMARK 5. Let » € N and L,, as above. We observe that
Lnf—f=(Lnf =Ly ) + (Lt f = Ly %)
+ (L5723 ) ot (L2 = Lnf) + (Laf = £).

Then
lizos = 11, <
<|lzns - el |+ e -z

[ mesadi N o (12328 ) Y (TSN Y
=zt @t = ol |+l @ar - ol |+ et s -]
(108)

oo [V (Enf = D[+ 12 = S| < 7| 1Enf = 111
That is
(109) lneas = < v lizas =114 - O
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We give

THEOREM 12. All here as in Theorem 11 and r € N, 7(n) as in (106).
Then

(110) l1zss = £11,]| < v7 ().

So that the speed of convergence to the unit operator of L) is not worse than

of L.
Proof. By (109) and (107). O
We make

REMARK 6. Let my,....m E N:m; <mo < ...<m,,0< <1, feq.
Then ¢ (m1) > ¢ (ma) > ... > ¢ (m,), ¢ as in (103).

Therefore
(111) wi (f, ¢ (m1)) = w1 (fip(me)) = ... > wi (f, 0 (mr)).
Assume further that ml-l_ﬁ >2,i=1,...,7. Then
(112) Wz(mf,ﬁﬁ) > WQ(m;BJ) > .. > m
Let L,,, as above, i = 1,...,r, all of the same kind.

We write

Ly, (Lmrq ( ma ( mlf))) - /=
= Lm, (Lmrfl ( mz m1f )) Ly, (Lmr 1 (-'-Lm2f>)
+ Liny (L, (- Ly ) = Liny (Liny—y (- Loms )
(113)
+ Lmr ( ( msf)) - (Lmrf (-'-Lm4f)) +
+ L, (Lm 1f) Lo, f +Lmrf f
= L, (LmH (-+Lms)) (Lny f = ) + Lo, (L y (L)) (Liny f = f)
+ Loy, (L, (-Lona)) (L f = f) + oo+ L, (L, f = f) + L f — f-

Hence by the triangle inequality property of H Il VH we get
(0.0

1 Em, (L o om (B £)) = 1L <

< |12, Lo L)) (B = DL
1L, L,y CoLiny)) Emaf = DI |
|2, Eonrs CEmn)) Emaf = DI |+
Wy g £ = )L+ [ = 11|



29 General multivariate arctangent function activated neural network approximations 65

(repeatedly applying (99))
< Mz = £+ [ Emaf = £1L ]|+ |12 f = AL |+
9 | f = AL e f = 11|

115) =3t — 111
i=1

That is, we proved

(116) |||, (L, (oo (L £)) — 11| < 3 NZmef =1l - O
=1

We give

THEOREM 13. Let f € Q; N, my,mo,...m, E N:my <ms < ...<m,, 0<
8 <1 mil_ﬁ >2i=1,.,r,x €Y, and let (Lyy,...;Lm,) as (Amy, -y Am,)
or (Bmy s -oey Bm,) or (Cpyy oty Cn,) 07 (Dinyy ooy D), p = 00. Then

|Lon, (L, s oLy (L ) (&) = £ (@)]] <
< [1Eme Loy oL L ) = £,

< S 2t~ 11
=1
< CNzil [Wl (fyp (ms)) + M]

(117) <reny [wl (f, 0 (m1)) + M} :

Clearly, we notice that the speed of convergence to the unit operator of the
multiply iterated operator is not worse than the speed of Ly, .

Proof. Using (116), (111), (112) and (106), (107). O
We continue with

THEOREM 14. Let all as in Corollary 2, and r € N. Here @3 (n) is as in
(78). Then

(118) lans = £1L | <7 14nf = £1,] < resm).
Proof. By (109) and (78). O

APPLICATION 1. A typical application of all of our results is when (X, HH7) =

(C,|-|), where C are the complex numbers.
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