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BASKAKOV-KANTOROVICH OPERATORS
REPRODUCING AFFINE FUNCTIONS: INVERSE RESULTS

JORGE BUSTAMANTE"

Abstract. In a previous paper the author presented a Kantorovich modification
of Baskakov operators which reproduce affine functions and he provided an upper
estimate for the rate of convergence in polynomial weighted spaces. In this paper,
for the same family of operators, a strong inverse inequality is given for the case
of approximation in norm.
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1. INTRODUCTION

Let C[0,00) be the family of all real continuous functions on the semiaxis.
Denote e (t) = t*, k > 0.
Throughout the paper, we fix m € N, m > 2, and set

o(z) = W and @(z) =1/z(1+ z).
Moreover
={f€C0,00) : [fllo < o0},

where || f[l —Supx>olg( ) ()]
For a real A > 1, f : [0,00) — R and = > 0, the Baskakov operator is
defined by

xk
Zf Byoar(@), oapl@) = (M5 l)Wv

whenever the series converges absolutely.
For some functions f € C]0,00), a family of Kantorovich-Baskakov type
operators reproducing affine functions was introduced in [1] by setting

T) =\ i Qap(fluae(z), Qrr(f) = /] flaxt)dt,
k=0 A,k

’

*Benemérita Universidad Auténoma de Puebla, Faculty of Physic and Mathematics,
Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, C.P. 72570,
Puebla, Mexico, e-mail: jbusta@fcfm.buap.mx.


http://doi.org/10.33993/jnaat511-1264
http://ictp.acad.ro/jnaat

68 Jorge Bustamante 2

where
IA,k: [;,%] and ak:%, k € Np.
Approximation properties of the operators M) in some weighted spaces were
presented in [1]. The following notations are needed: for 0 < g <1, set

Cy,10,00) = {h € C[0,00) : h(0) =0, | hll, < o0}
and
(1) K(f,t)0p =t {IIf = gllos+ tI9*9" o 9 € D0, B},
where

D(0.8) = {9 € Cpl0,0) : 9,9' € ACioe : [|9%9"llos < o0}
The following result was proved in [1].

THEOREM 1. If 8 € [0,1] and m > 2, then there exists a constant C such
that, for all X > 2(1 4+ m) and every f € C, 5[0, 00),

||M/\(f) - 0,8 < CK(f> %)9,5

In this paper we present a strong inverse result related with Theorem 1.

The work is organized as follows. In Section 2 we present notations that
will be used throughout the paper, as well as some identities related with the
operators M) and their derivatives. Section 3 is devoted to prove inequalities
related with the moments of the operators M)y. In Section 4 we collect several
inequalities related with the weight o. In Section 5 we include some Bernstein
type inequalities. A Voronovskaya type theorem is given in Section 6. Finally
the main result is proved in Section 7.

In what follows C and C; (i € N) will denote absolute constants. They
may be different on each occurrence. We remark that our arguments allow to
obtain bounds for the constants, but not the best.

2. NOTATIONS AND IDENTITIES

We will use the notations

d d2
M//\(f,.l') = %MA(fax% Mg\/(f,.%') = dx2 My(f,z)

and

3
MY(f, ) = oMy ().

For A > 1, k€ Ngand = > 0, Wedeﬁne
2 X 21‘
(2) RM<>( —z) - WE(k_g) @)

(3) Iy (x v; kw( (% —x)27

y\w

Mg

k:l
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(4) Iya(x lmzlf—xl B
and

03 (x) - vk ()
(5) I>\73(l‘) - ];1 Q(%)KPQB(%)

For p,q > 0, set
_ & (T)
(6) Anpal@) = > e
For f € C[0,00) and k,j € N, we use the notation

Ak j t+]/)\ ]
Ik (f /I/\ ) /k (u) - ((ak+j(t + %) — u) du dt.

PROPOSITION 1. ([1, Prop. 2.4]) For each f € C,[0,00), A > 1 and x > 0,
one has

M) = 3 (@uiera(F) — Qakl))oasr (@)

k=0
= w?fw)ZQm (*—ﬂb’)vm( )-

If f(0) =0, the term corresponding to k = 0 should be omitted.

REMARK 1. The proof of Proposition 1 (see [1]) is a consequence of the
identities (vy,_; = 0)

(7) (@) = St k() = AMorep-1(2) = vap1r(2)). m

Here need the analogous of Proposition 1 for the second and the third
derivatives.

PROPOSITION 2. For each A > 1, f € C,[0,00), and = > 0, one has

(8) My (f,x)=N(A+1) i (Q,\,k+2(f) —2Qx 1 (f) + Q)\,k(f))v)\JrQ,k(x)
k=0
(9) = 4@ Z Qe () Bk (z)vrk(2),

where Ry was defined in (2).
Moreover, if g € C2(0,00) and h € C3(0,00), then

[e.e]

2
(10)  M{(g,2) = MO+ 1) Y (3 O/ 17 Iaks(g"))vrsan(@)
k

=0 j=0
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and

2 T " T [e¢) 2 '
M) 5 (3 O aks) (2~ 2)onsasto)

k=0 j=0

If f(0) =0 or g(0) = 0 the term corresponding to k = 0 should be omitted.
Proof. It follows from Proposition 1 and (7) that
MY(f2) =223 (Quksa () = Qur())vher (@)

k=0

=2 +1 i (Q,\ k1 (f Q/\,k(f)) (Uat2,k-1(2) — vrg2,k(2)))

k=0

=N+ (QA kr2(f) = 2Qxa k41 (f) + Q/\,k(f))vz\-i-lk(x)'

k=0
On the other hand,

2

x 2(z x T x
E M (f, ) L“(“" M (f,2)) — B2 E M (f, )

—¢ ()\ZQ,\k (§ )v,\k )\ZQ)\k Jork(z ))

1+21’ ZQ/\k (*—IIJ)’U)\k()

—AZQM J((E—2) = 2 (5 o) = £y, ().

Notice that, if

Ta(t k) = (arpa(t+3) = 5) = 2(art+3) = §) + (et = §),

then

%
2/ To(t, k)dt =

k

— a1~ (58209 — 20 (57 - (50P7) + (50 -
= 3 (@rpa (2 +5) = 2011 (2K + 3) + g (2k + 1))
= 5 (2(k +2) —4(k + 1) + 2k) = 0.

Hence, using the representation

gy =95 +dE)w -5+ ij 9" (u)(y — u)du,

one has

Qxk+2(9) —2Qxk+1(9) + Qax(g) =
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= [ (o ownte 4 27) — 20 (wnia e+ 1) + glat))a

/A
(k+1)/A apt2(t+2/2) 5
-/ (] g"(W)(aksa(t + 2) — u)
k/A k/A
a1 (t42/2) 1 agt
_ 2/ g (u)(aps1(t+ 5) —u) + g (u)(art — u))du
k/A k/A

2
Z Ink,j (9”)-

On the other hand

p* (@) MY (g,2) =
e’} 2
= P@NO+ DY (X Q1 rgle")) thian(a)
k=0 j=0
[e'¢) 2
— P2 (2)N* (A + 1) Z (3 OV 1) Jups () S vr sk (@)
k= 7=0
00 2
= XA+ 1DA+2) Y (X O Tnki(6") (555 — 2)vrgan(a). O
k=0 j5=0

3. ESTIMATES FOR THE MOMENTS
Here, for ¢ € N, we should consider the absolute moments
Vig(x) = Va(ler —z|%,2) and M) 4(z) = Mx(ler — z|?, z).
PROPOSITION 3. For each fized q € N, there exists a constant Cy such that,

ifA>1, a:>0and)\:n>2 then

VA,q( ) O Wq(q )

A2

Proof. It was proved in [3, Prop. 3.2] that, if ¢ = 2j, j € N, the assertion
holds whenever Az > 1. But the proof can be modified to include the case
Ar > % Of course, with a different constant.

If¢q=2j—1, 5 €N, then

. ) ) 1/2
Wl er—a [ 2) < (Valler =)0, 0)Va((er — 2)%, )
2(j—1) 25 1/2 2j—1
< C(<P j\jil(l) sﬂj\](iv)) _ C@)\j_lg)' 0

We need an extension of Proposition 3 to the case of the operators M)y, but
only for 1 < g <6.
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PROPOSITION 4. For each fizred ¢ € N, 1 < q < 6, there exists a constant
Cq such that, if A\ > 1, x>0 and Az > 3 2 then

M) 4(z) <C @Q(g )‘

A2

Proof. 1t was proved in [1, Cor. 2.3] that, for each A > 1 and x > 0, one has

2 T =
Mig(e) < B2E and Mya(e) < /B2

then M)y 4(x) < 1651742(36). Since 2 > (1 the

Moreover, if x > O

1
20 1)
inequality holds under the conditions assumed above.

Notice that

I)\ & 7ak
A 0 [ ax T ark i 1 0 N ( ak 61 ark v
:mz(z)<7> ()\ —:L') :72(1)(7) ()\ m)
1=0 1=0
6

i + (‘(zkfnx)i)

S HY O+ 023

==
(-
—
PN |
S—
[\)
.
/N
>l
~——
[=2]
~
/N

i
kgl
1=0 1=0
Therefore
6
7 7 ;
AZQM (e1 = 2)%)ori(@) < Zs + > D=Vl e — [ x)
k=1 i=1
; 6 ™ o ( )
2 2:C; o' (x
é W +Z (’L) 26—t /\z‘/2

= 7A6 + Z >\3+<6 z)/z

3323 213(6 z)/2c © (x)x(ﬁ—i)/2
e+ Z PIGEITERE

| /\

| /\

<p(x +CZ sO(x X <C2<P6(;L“)_
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Moreover, taking into account Proposition 3, one has
6
0= A [ (aot = 2)°dtvrg = a®vr0 < Val(er = @)% @) < Co 552
2,0

This yields the inequality for m = 6.
Finally the proof in the case m = 5 is obtained by using Hélder inequality.
O

4. PREPARATORY COMPUTATIONS

PROPOSITION 5. Suppose that m > 2, v € [0,2), f € C[0,00), f(0) = 0,
and ||¢* fll, < o0o. If A > 1 and k € N, then
2™ Ne* £l

‘ Q)\,k(f) ‘S TM

Proof. Tt was proved in [1, Prop. 3.4] that, if v € [0,2), m >+, A > 1 and
k > 0, then
(k+1)/2
___dat 2m 1
/k/)\ olaxt) o (axt) <X o(B)e(5)” O

PRrROPOSITION 6. Assume m € N, p,g > 0, mp > q > 0 and set s =
2(1+2mp —q). There exists a constant C(p,q) such that, if X > s and z > 0,
then

14-g)mP
A)\,p,q(x> S C<p7 q)(;(;) I
where Ay p, 4(x) is defined in (6).
Proof. Tt is known that (see [3, Prop. 3.8]), if a > —1, ¢ € R, and r =

max {2a, 2|, %}, then

S(2)" (14 5) oanle) < OOy s (1 4)
k=1

We apply this result with a = 4 and ¢ = mp — 4. Notice that ¢ < 2mp — q.

1,
Hence, if A > 2(1 + 2mp — q),

/NI o EY LY O S K S

=M d) o
U= 2 xzmp,% _ o)™ O
T2 ©1(x)
PROPOSITION 7. Assume 3 € [0,1] and m > 2. There exists a constant C
such that, if k >0, j € {0,1,2}, A > 2, and g € D(p,3), then

NS

C 16%9" 10,8

| Iaki(g") <
S G EGE) »
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Proof. Tt is sufficient to consider the case ||¢%g"||,5 = 1.
If we set g(z) = o(x)p*t?#(x), then

| Tk, (9")] </ /akﬂ(tﬂ) (@iss (4 5) ~ ) dudt.
Ing JR/A g(u)
(A) Let us first consider the case j € {1,2}. Since
B(L+2(k + 7)) < 2k(k +5) + 25(k + j) = 2(k +5)*,
if t > %, then

k k+3) (k&
xS <1+2 (F+7) (X +
t<

Moreover, if u < aj;(t + j/A) and

%) arj(t+ %)
(k+1)/A, then
(

EEED)™ < (1 ()

g(lu) =(1+uw)™ <1+ (artj

< (14 () <am(a 4 by

On the other hand, since ©?>72%(z) increases, i
1 1

< < :
902+2’8(“) 802+25(§) (pw(m)

Therefore,

” ap+5(t+5/N) )
’J)\ k,] ‘ = /\+2 /I /k akﬂ-(t + %) — u)dudt
Ak

__2m A iy _ k)2
T 29(:5) /Ik,k (ari(t+ %) — X)7dt
R/ .
2 ((t+4) - %) %at

~29(5%) Ji/a
23m (k-‘rl)/)\ (1j>2dt < 9.23m i
_29(%_,_2) k/A A - 29(%_,_2))‘3.
(B) Now assume j = 0. First notice that, if ¥ € N, then
(11) 2<a <
In this case, taking into account (11), for ¢ > k/A,
Pl(axt) = axt(l +ait) 2 $(1+ 5) 2 §o(5) = ge(tz):
On the other hand, since

Lk <o 822 <14 50,
one has

12) 1 om

(?) o5

\_/
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Moreover

_ 2k(k+1 2k+1
(k+1)ay = 2(1<;+1) Z (2k+1) =k

Therefore

agt
Jilon it
Ing |[Je/x 9

k/(Nag)  rk/X (k+1)/A
_ / / L+ / Gl
k/X k/x 9

dt =

k/(Mag)
k/(Ma) rk/X i (k+1)/A dud
< u — agt)dudt + / (art — u)dudt
k/ /\+2 /k; /akt ( K ) k/(nag) Jk/A g ) )
k/(Aax) (k+1)/X
- k _ apt)2dt + t—X)%dt
20(:57) </m (3~ ad) omy T )
_ O (B g3 (D) k)
= Gakg(l)\%) (Ad(l ak) + ( A /\) )
c k31 k+1 K 3 Cy 1
- 4g<%>(xs e+ (1 -4) ) < ESpl
where we use (12). -

PROPOSITION 8. If A > 2, 5 € [0,1), there exists a constant C' such that, if
x>0, ke{l,2}, and Az < 2/3, then

(k+1)/X apt (akt _ S)st
/x (03120 (s)

Proof. Since x < 2/(3)\) < ag/A < arpk/X and 0 < z < 1,

02 (2)v g () A dt < M.

k/A

(k+1)/X
(@) p(@)) [ e <

k/X
(k+1)/ t
< e /k 1+t)m(t—a:)2/x ds gt
— 2" 5 (kH)/)\(l +)™(t — x)2(Vt — Va)dt
DN N
(k+1)/A

< Crat (14 1) " (t — 2)2dt < Cy (’f“) . O

E/A
PROPOSITION 9. If m > 2 and B € [0,1), there exists a constant C such
that for i € {1,2,3}, A > 2(1 +2m), and \x > 2/3,
(1+2)™ ?(z)
I)\,i(x) < C‘PT@) 2\

where we use the notations in (3)—(5).
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Proof. We will use the notation in (6). Notice that 48 < 4 < 2m, thus we
can apply Proposition 6 with A > 2(1 + 2m) > 2(1 4 2m — 45).

Taking into account Holder’s inequality and using Proposition 6 and Propo-
sition 3, we have

hova) =3 P (5 e

On the other hand

>(\, ) 1+2x2’7_x’ U/\kx)n)

§1+2x A>\245( )(iUA,k(SU)(%*QS)Q)l/Q

14+x)™ (14=x z(1+x 14+x)™ x(14x
<C(2+B(l)(§) (f):Cz(z?()> (f) (1+1)4

C (1+1' /1+ < fC 1+$

Finally

5. BERNSTEIN TYPE INEQUALITIES

THEOREM 2. Suppose 3 € [0,1) and m > 2. There exists a constant C' such
that, if X > 2(1 +2m) and f € C,3[0,00), then

1M (Flle.s < C X1 f lloyp-

Proof. Taking into account the notations (3)—(5), it follows from (9), Propo-
sition 5, and Proposition 9 that

o(@)p* 7 ()| M5 (f, )| = W’ Z Quk(F) B k(2)0r ()

2
= W(Mkm + L\ z) + (A, 7))

< O fllg.s- =

THEOREM 3. Suppose € [0,1) and m > 2. There exist a constant Ay such
that, if A > 2(1 4+ 2m) and g € D(p, 3), then

1o° MY (9l < A1 VA Nl9%9" |5
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Proof. Set Z(f) = ||¢%*9"||,,5. From Propositions 2, 6 and 7 we obtain
(09" ") ()| MY (9, 2)| <

< C1 Z(f) (00" ") (@)A* i (Z G) [ I | ‘)\L_;_Q - x‘sz,k(l‘)

‘ Ur+2,k(T)
E E
Q(m)‘ﬁ?‘ﬂﬁ(m)

< G Z(f) (09" (w) WAH 22045 @)y Vasa((er — )2, 7)

< C3 Z(f) (09" ) (@) TR AR < Ca Z(f) VA O

6. A VORONOVSKAYA TYPE THEOREM

< C2Z(f) (09" ) () A Z ‘,\+2

We need a result given in Theorem 5.1 of [1].

THEOREM 4. If 8 € [0,1] and m > 2, there exists a constant As such that,
for all A > 2(1 +m) and every f € C,g[0,00), one has

[Mx(f)llop < A2

Let
C3500,00) = {g € Co0,0) : 9,4',9" € ACice, I|6g" [lo5 < o0}

THEOREM 5. Suppose € [0,1) and m > 3 (or’m =2 and f € [0,1/2]).
There exists a constant A3 such that, if g € C3 5510,00) and A > 2(1 + 2m),
then

3 _m

HMA(Q) —g9- gguMm

||@ﬂ'

Qﬁ — )\3/2 ||90
Proof. Let us denote
Ra(g,2) = My(g, ) — g(z) — TS My((t — )%, 2).

By Taylor’s expansion

g(t) = g(z) + g (x)(x — t) + 34" () 241 / "( )2ds,
one has
¢*P(z)o() | Rx(g, z) [=
(k+1)/ 2
= ¢*’(@)o(z) |3 D van(2) / / (at — ”’(s)ds)dt
k 0
.- (k+1)/ apt—s)2ds
< @I o X vnale) [ [ o a

3 _m

n(@),

=3 lle’y
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12

where

Fule) = ¢5 @ Y vnate) [ n
k=0

k/A

ot (apt—s)?ds
L (eePT(s)
Case 1. Assume \z < 2/3.
First we estimate the terms corresponding to k = 0,1, 2.
Since ag = 0, one has

28)( /A <2ds T
GO [ [ g < o) [ (14 5

< o(@)eP (1 + )™ / s1-20)/2g
0

_ 2gPg3/2-8 < 2 1
- (8=28) — (3—2pB) a3/2°

On the other hand, it follows from Proposition 8 that
(k+1)/X

2 ak
(apt—s)3d
T)A kgl vy k() /k//\ /m (@@3”/3(8)

Now we consider the tail of the series. It is known that (see [3])

dt < 01(22+32).

Koy p(@) = zors1pa (@),

In particular
k—1 k—2

AFL T2 UN k() = $37}/\4—3,/%—3(35)-
agt 5
(axt—s)“ds
)\ Z U, k € /k/,\ /x (00325 (s)

(k+1)/A (a s s)™ ds
)\ Z (W k /k / Kl 3)'*‘2;?3)) dt

>

From this we obtain

(k+1)/A
dt =

0 (k+1)/A

§ Zv,\7k$/ / (t—s)*(1 + s)™dsdt
k=3
> m (k+1)/A

< 14 51 oy k(e / t3dt

< gx ) ala)

Co o(x = ™3
<G5 X (1+3) S

m
< Cyo(x) 232 ZUA—H’)k 3(z )(1+A+3) < Osad? < gfm
k=3

where we use Proposition 6, with ¢ = 0 and p = 1.
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Case 2. Assume Az >2/3 and set c=m —3/2—f3
From Proposition 3.3 of [3] we know that

/“kt (agt — u)?du
x (0¥ (u)

u(3+28)/2

/akt (apt—u)?(14+u)du
x

apl—x 3 c c
< (37(1+|2;)t/2)g‘5<3+23>/2 ((1 + )"+ (1+1) )

If A\x > 2/3, since 3/2 + f < 5/2 < 3, one has

akt a 7U2u
F.(z) = )\Zm\kx/ /I %dt

k/X

26( (k+1)/A . )
_le(3+26/2 )\Z )\k / |akt—;p|3 ((1—'-33) +(1+t) )dt

_C1p*P(x)o(z )(1+w)CM)\3(x)

2 (3+28)/2

(k+1)/A

(k+1)/A
=+ le%zﬂgg%m A Z VX k T // lagt — $|3(1 + t)“dt
3(x)M)\ 3( )

(k+1)/A
C T c
xs/lz(llix)m A E (OWAE / laxt — 33|3(1 + t)“dt.

It follows from Proposition 4 that

My(|t—z [, z) < 53

1
©3(z) 23/2

For the other terms we first estimate the case & = 0. Notice that, for
te(0,%),
L+ <1+ 1)< (1+32) <261 +2)"
Here the condition m > 3 was used. Therefore
]‘/A c B3
2¢(1
% Avyo(@ )/O 2’ (L+1)dt < % uro(2)(1+z)°

2¢x3
2372 (14x)3/2 Ux 0(513)

< FaWallt—a’2) < G

On the other hand, since

(k+1)/X
/ |apt —x |2 (14+t)%dt <
k/A

(k+1)/X 1/2 (k4+1)/X 1/2
< (/ (axt — 2)°dt) / (/ (14 )%dt) ?
k/A k/A
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from Theorem 4 and Proposition 4 we obtain

B (k+1)/X
Zs/iﬁm /\va /A |agt —z |* (1 +1)%dt <

H‘ixm\/M)\ 141¢)2 \/MA (e1 — )8, )

— 23/2(1+x)
Cy(1+ —3/2— C.

This completes the proof.
REMARK 2. We do not know if Theorem 5 holds m = 2 and 8 € (3, 1).

7. INVERSE RESULT
THEOREM 6. Suppose € [0,1) and m > 3 (or m =2 and § € [0,1/2]).
There exist positive constants k and Ay such that, if f € C,[0,00) and X >
2(1 4 2m), then
ety
0.8

where M3(f) = Mx(Mx(f)).

Proof. Let A1 and A3 be constants such that the inequalities in Theorem 3
and Theorem 5 hold for A > 2(1 4+ 2m). Set

n = 16(A1A3)2 A
If A > 2(1+2m) and g = M3(f), from Theorems 2 to 5 we know that

< A3(IMA(F) = Fllos + 1Men(F) = Fllos):

<

et s
<HIMu2(M3) o
<||MuZp) = MRS ([ M) - MRy = R a)|
<MHM%—MJHWUMM—ﬁ+Mﬁ—ﬂJ—Mﬁ+Mﬁ—M%Mﬂ

A3z 1> (MRS,

gcl(uMuf — fllos +IIMAS = Fllos) + 22552 | ME(F) o8
<CL(IMuf = Fllos + IMAF = o)

+ 2 MY (f — MA() s + 228582 (1 M (M (£)) 5

<C1 (1M f = Fllgs + I1MAS - ng,a)
+ CABE ] = Ma(Dllo + 25 19° ML)l
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Therefore
LNV Flos < CoIMuf = Fllos+ IMAF = Fllos)

and it is sufficient to prove the result, because

6(A1A5)2
tle iy, = TG || AR 0

0B

THEOREM 7. Suppose 3 € [0,1), m >3 (orm =2 and B € [0, 3]), and & is
gwen as in Theorem 6. There exists a constant C' such that, if f € C,[0,00)
and XA > 2(1 4 2m), then

Ka (£.4), < C(IMA) = Fllog + 1Mia () = fllos).
where Kg(f,t), is defined as in (1).
Proof. Fix f € C,[0,00) and denote g = M3(f) = Mx(Mx(f)). From
Theorem 4 we know that g € C, [0, 00).

From the definition of the K-functional Kg(f,t),, Theorem 4 and Theorem 6
we know that

K5 (£.%), <IF = M3(H)llos + % 1 AR N
<IIf = My(Dllos + IMA(f = My()llo.5 + &[> (IF ()"
<(1+ M) f =MD, 5+ 32 MZ ()"

<C(IM(f) - f

0.8

0.8
00+ 1M (F) = Fllos). 0

REMARK 3. In the case § = 0 the K-functional can be replaced by a
weighted modulus of smoothness as in [4]. For the classical Baskakov ope-
rators V,, related results were given [6] and [5]. O
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