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ON UNIQUE SOLVABILITY
OF THE PIECEWISE LINEAR EQUATION SYSTEM

SHUBHAM KUMAR∗ and DEEPMALA†

Abstract. In this article, we take the piecewise linear equation system x −
W |x| = b, which is also known as the absolute value equation, where W ∈ Rn×n,
b ∈ Rn are given and to determine the value of x ∈ Rn. The absolute value
equation (AVE) has many applications in various fields of mathematics like bi-
matrix games, linear interval systems, linear complementarity problems (LCP)
etc. By the equivalence relation of AVE with LCP, some necessary and suffi-
cient conditions proved the existence and unique solvability of the AVE. Some
examples are also provided to highlight the current singular value conditions for
a unique solution that may revise in the future.
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1. INTRODUCTION

Here we study the AVE (absolute value equation) of the type

(1) x − W |x| = b,

where W ∈ Rn×n, b ∈ Rn are known, and x ∈ Rn is unknown; | · | denotes
the absolute value operator. For a matrix W ∈ Rn×n and a vector x ∈ Rn,
|W | and |x| denote the component-wise absolute value of the matrix and the
vector, respectively.

The generalized absolute value equation (GAVE) is the standard form of
(1) defined as

(2) V x − W |x| = b,

where V, W ∈ Rn×n, b ∈ Rn are given while x ∈ Rn is to be determined.
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In the literature, many authors discussed its unique solvability (see [1, 16,
18, 22, 23] and the references therein) and its particular case, when W = I,
i.e.,
(3) V x − |x| = b,

is discussed in ([7, 8, 12, 20, 21] and the references therein).
To the best of our knowledge, another particular case of Eq.(2) as V = I

have not been discussed for the sufficient condition of unique solvability as-
pects in the literature in a strong way to date. In 2014, Jiri Rohn [19] took the
particular case of (1) as W ≥ 0 and discussed the unique solution condition
with restrictions on W and b. In [6], authors provided some conditions for the
bounding solution of AVE (1). The study of the AVE (1) is challenging and
interesting, as it contains non-linear and non-differential terms W |x|. Cur-
rently, many methods to solve AVE available in the literature, like the linear
programming method [11], globally and quadratically convergent method [3],
matrix multi-splitting Picard-iterative method [5], generalized Newton method
[10], iterative method [18] and for more, one may refer to [2, 13, 17]. In re-
cent years, some authors investigated the existence and uniqueness of different
types of AVE (see [8, 9, 15, 16, 20, 26] and references therein).

Throughout the paper, we will denote D̂ = diag(d̂i) with d̂i ∈ [0, 1] is a
diagonal matrix. For a matrix A, σ1(A) or σmax(A) and σn(A) or σmin(A)
will denote the maximum singular value and the minimum singular value of
A, respectively.

The structure of the paper is the following: in Section 2 we recall some
necessary definitions and results that will be used throughout the paper. In
Section 3, with the help of LCP, some unique solution results are established
for (1). Finally, the conclusions are discussed in Section 4.

2. PRELIMINARIES

Here, we recall some definitions and lemmas for additional results.
Definition 1. The LCP(q,M) is defined as [4]:

0 ≤ z ⊥ Mz + q ≥ 0(4)
where q, z ∈ Rn, M ∈ Rn×n.

Definition 2 ([14]). A square matrix is called a P-matrix if all its principal
minors are positive. Furthermore, every positive definite matrix is a P-matrix.

Lemma 3 ([4]). A matrix M is a P-matrix if and only if the LCP(q,M) has
a unique solution for any q.

Lemma 4 ([24]). Let A ∈ Cm×m satisfy the condition ∥A∥2 < 1. Then A±I
is non-singular.

Lemma 5 ([3]). Let ∥A−1∥2 < 1. Then A + D̄ is non-singular for any
diagonal matrix D̄ = diag(d̄i) with −1 ≤ d̄i ≤ 1.
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Lemma 6 ([22]). If the maximum singular value of the matrix W is strictly
less than 1, then AVE (1) has a unique solution.

Lemma 7 ([4]). A matrix M is called a Q-matrix if, for any q ∈ Rn,
LCP(q,M) has a solution.

Lemma 8 ([23]). The AVE (2) has a unique solution if and only if matrix
V + W − 2WD̂ or V − W + 2WD̂ is non-singular for any diagonal matrix D̂.

Lemma 8 is equivalent to the following lemma when W is a non-singular
matrix.

Lemma 9. The AVE (2) has a unique solution if and only if matrix

W (W −1V + I − 2D̂)

or
W (W −1V − I + 2D̂)

is non-singular for any diagonal matrix D̂.

Lemma 10 ([25]). For square matrices A and B, singular value inequality
σi(A + B) ≥ σi(A) − σ1(B), i = 1, 2, . . . , n holds.

3. MAIN RESULTS

In this section, we introduce significant results for the unique solution of
AVE (1) and GAVE (2) and establish an equivalence relation between AVE
and LCP. With the help of this relation, we get some results for the AVE (1).

Theorem 11. If matrix (I − W ) is non-singular, then the following results
are equivalent:
1. for any b, the AVE (1) has a unique solution;
2. matrix (I − W )−1(I + W ) is a P-matrix;
3. matrix (I − W )−1(I + W ) is a positive definite matrix;
4. all the principal minors of the matrix (I − W )−1(I + W ) are positive.

Proof. Let x+
i = maxi(0, xi) and x−

i = maxi(0, −xi). So

(5) x = x+ − x− and |x| = x+ + x−

Now by (5), AVE (1) is rewritten as

(6) x+ = (I − W )−1(I + W )x− + (I − W )−1b.

(6) is a LCP form, where M= (I − W )−1(I + W ).
Then, by Lemma 3 and Definition 2, our results hold. □

Based on Lemma 7, we get the existence result for (1) in Theorem 12.

Theorem 12. If (I − W ) is non-singular matrix then for any b, AVE (1)
has a solution, if (I − W )−1(I + W ) is a Q-matrix.
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Proof. If matrix (I − W ) is non-singular, then (1) can be written as the
given below form:

x+ = (I − W )−1(I + W )x− + (I − W )−1b,

where x+ and x− are defined in (5). Which is a linear complementarity prob-
lem form. Then, with the help of Lemma 7, we get our result. □

Now, by substituting V = I in Lemma 8, we will get the necessary and
sufficient conditions for AVE (1) see Theorem 13 and Theorem 14.

Theorem 13. For any diagonal matrix D̂, the matrix

(I − W + 2WD̂)
is non-singular if and only if for any b, AVE (1) has a unique solution.

Theorem 14. For any diagonal matrix D̂, the matrix (I + W − 2WD̂) is
non-singular if and only if there exists a unique solution of AVE (1) for any
b.

Based on the simple result “if the smallest singular value of a matrix is
greater than 0, then the given matrix is non-singular”, we get the following
two results, see Theorem 15 and Theorem 16.

Theorem 15. If σmin(I +W ) > 2σmax(WD̂) or σmin(I −W ) > 2σmax(WD̂)
for any diagonal matrix D̂, then there exists a unique solution of AVE (1) for
any b.

Proof. By Lemma 10, we have σmin(I + W − 2WD̂) ≥ σmin(I + W )−
2σmax(WD̂).

If σmin(I + W ) > 2σmax(WD̂), then matrix I + W − 2WD̂ is nonsingular
for any diagonal matrix D̂. So by the previous result of the Theorem 14,
AVE (1) has a unique solution. By Similar way with the help of Theorem 13
we can prove that if σmin(I − W ) > 2σmax(WD̂) then AVE (1) has a unique
solution. □

Moreover, the result of the Theorem 15 can be extended for the GAVE (2).

Theorem 16. If σmin(W (2D̂ − I)) > 1 for any diagonal matrix D̂, then
AVE (1) has a unique solution for any b.

Proof. Based on Lemma 10, we have

σmin(I − W + 2WD̂) ≥ σmin(2WD̂ − W ) − σmax(I).

Since σmax(I) = 1, so if σmin(2WD̂ − W ) > 1 then matrix I + W − 2WD̂ is
nonsingular for any diagonal matrix D̂, so the AVE (1) has a unique solution
for any b. □

Based on Lemma 4, we get the following result for GAVE (2).
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Theorem 17. For any diagonal matrix D̂, if ∥W −1V − 2D̂∥2 < 1 or
∥W −1V + 2D̂∥2 < 1 then for any b, the AVE (2) has a unique solution,
where W is a non-singular matrix.

Proof. By the help of Lemma 4, if ∥W −1V −2D̂∥2 < 1, then W −1V −2D̂+I

is non-singular, since W is non-singular, so W [W −1V − 2D̂ + I] is also non-
singular, then by Lemma 9, AVE (2) has a unique solution for any b.

Or, when ∥W −1V +2D̂∥2 < 1, then matrix W −1V +2D̂ −I is non-singular,
so W [W −1V + 2D̂ − I] is also non-singular, then by Lemma 9, AVE (2) has a
unique solution for any b. □

Corollary 18. There exists a unique solution of AVE (3) if ∥(V +2D̂)∥2 <

1 or ∥(V − 2D̂)∥2 < 1 for any diagonal matrix D̂.

By substituting W = I in Theorem 17, then Corollary 18 will become the
main result of the [21, Th. 3.4]).

Based on Theorem 13, Theorem 14 and Lemma 4, we get the following
result.

Theorem 19. For any diagonal matrix D̂, matrix W satisfies ∥W−2WD̂∥2 <

1 or ∥ − W + 2WD̂∥2 < 1 then for any b, AVE (1) has a unique solution.

Proof. With the aid of Lemma 4, if ∥W − 2WD̂∥2 < 1, then W − 2WD̂ + I
is non-singular, then by Theorem 14, AVE (1) has unique solution.

Or, when ∥−W +2WD̂∥2 < 1, then matrix −W +2WD̂+I is non-singular,
then by Theorem 13, AVE (1) has unique solution. □

Based on Lemma 5 and Lemma 8, we get the following result.

Theorem 20. If matrix V and non-singular matrix W will satisfy the con-
ditions ∥(W −1V − I)−1∥2 < 2 or ∥(W −1V + I)−1∥2 < 2 then for any b, AVE
(2) has a unique solution.

Proof. Let

(i) (V − W + 2WD̂) = 2W
[

1
2W −1(V − W ) + D̂

]
(ii) (V + W − 2WD̂) = 2W

[
1
2W −1(V + W ) − D̂

]
.

(7)

With the aid of Lemma 5, when ∥1
2(W −1V − I)−1∥2 < 1, then 1

2(W −1V −
I) + D̂ is non-singular. By (7) and Lemma 8 our proof is complete.

Or, when ∥1
2(W −1V + I)−1∥2 < 1, then matrix 1

2(W −1V + I) − D̂ is non-
singular. Then, by (7) and Lemma 8 our proof is completed. □

Corollary 21. There exists a unique solution of AVE (3) if ∥(V −I)−1∥2 <
2 or ∥(V + I)−1∥2 < 2.

By substituting W = I in Theorem 20, then Corollary 21 will become
Theorem 3.5 as a main result in [21].
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Corollary 22. If ∥(W −1 − I)−1∥2 < 2 or ∥(W −1 + I)−1∥2 < 2, then there
exists a unique solution of AVE (1).

We get our result by substituting V = I in Theorem 20.
Remark 23. Sometime the condition ∥(V −I)−1∥2 < 2 given in Corollary 21

is not satisfying even AVE V x − |x| = b has a unique solution. □

Let us consider the following example.
Example 24. The AVE V x − |x| = (2, −2)T (T denotes the transpose of

the vector (2, −2)) has a unique solution x = (20, −0.909091)T , for

V =
[
1.1 0.0
0.0 1.2

]
.

Clearly, ∥(V − I)−1∥2 = 10 ≮ 2. □

Remark 25. By the result σmax(W )σmin(W −1) = 1, the condition σmax(W ) <
1 of Lemma 6 is equivalent to the condition σmin(W −1) > 1. Sometimes, ma-
trix W does not satisfy the conditions σmax(W ) < 1 or σmin(W −1) > 1 but
AVE (1) has a unique solution for some b. □

Let us consider the following example.
Example 26. Consider the matrix

W =
[
−0.9 0.2
−0.4 −0.8

]
.

Here σmin(W −1) = 0.9870 ≯ 1 and σmax(W ) = 1.0132 ≮ 1, even AVE
x − W |x| = b has a unique solution x = (2.66667, −15.33334)T for some
b = (2, −2)T (T denotes the transpose).

Furthermore, the conditions σmin(W ) < 1 and σmax(W −1) > 1 maybe re-
place the existing conditions σmax(W ) < 1 and σmin(W −1) > 1 respectively,
because of we have inequalities σmin(W ) ≤ σmax(W ) < 1 and σmax(W −1) ≥
σmin(W −1) > 1. Also for Example 26 we have σmax(W −1) = 1.2665 > 1 and
σmin(W ) = 0.7896 < 1. So existing singular value conditions may be revised
in future. This needs further investigation. These conditions may be or may
not be superior then the current singular value conditions. □

4. CONCLUSION

This article discusses the existence of solution possibilities in the uniqueness
of the GAVE V x − W |x| = b and its particular cases. The conditions of
Lemma 6, Corollary 21 and Corollary 22 may be revised in the future. With
the help of the equivalence relation of LCP and AVE, we established some
more conditions for the unique solvability of (1). The numerical results for
the absolute value equations are also an interesting topic in the future.
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