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ON THE SEMI-LOCAL CONVERGENCE
OF A SIXTH ORDER METHOD IN BANACH SPACE
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Abstract. High convergence order methods are important in computational
mathematics, since they generate sequences converging to a solution of a non-
linear equation. The derivation of the order requires Taylor series expansions
and the existence of derivatives not appearing on the method. Therefore, these
results cannot assure the convergence of the method in those cases when such
high order derivatives do not exist. But, the method may converge. In this
article, a process is introduced by which the semi-local convergence analysis of
a sixth order method is obtained using only information from the operators on
the method. Numerical examples are included to complement the theory.
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1. INTRODUCTION

Finding a locally unique solution of the system of non-linear equations of
the form
(1) G(x) = 0
is a major problem with extensive applications in the field of mathematical
and engineering sciences. Presently, there are numerous efficient methods to
solve (1) [1, 8–10, 13, 14, 16–18]. But, in most of the cases non-linear equa-
tions and systems arising from mathematical modeling of physical systems
does not have exact solutions. Because of this problem, scientists and re-
searchers have focused on proposing iterative methods for solving non-linear
systems. Newton’s method is a popular iterative process for dealing with
non-linear equations. Many novel, higher-order iterative strategies for dealing
with nonlinear equations have been discovered and are currently being used
in recent years [1, 3, 4, 7–10, 13–18]. However, the theorems on convergence
of these schemes in most of these publications are derived by applying high
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order derivatives. Furthermore, no results are discussed regarding the error
distances, radii of convergence or the region in which the solution is unique.

The study of local and semi-local analysis of an iterative formula allows to
estimate the convergence balls, bounds on error and uniqueness region for a
solution. The results of local and semi-local convergence of efficient iterative
procedures have been deduced in [2, 3, 5–7, 11]. In these works, important
results containing convergence radii, measurements on error estimates and
expanded utility of these iterative approaches have been given. Outcomes of
these type of analysis are valuable because they illustrate the complexity of
selecting initial points.

In this article, we develop semi-local convergence theorem for a method
with sixth order convergence proposed in [1]. The method can be stated as

yn = xn − G′(xn)−1G(xn)
zn = yn − G′(yn)−1G(yn)

xn+1 = zn − G′(yn)−1G(zn), x0 ∈ Ω, ∀n = 0, 1, 2, . . .

(2)

where G : Ω ⊂ B1 → B2 is a Fréchet differentiable and continuous non-linear
operator, B1 and B2 are Banach spaces and Ω ̸= ϕ is a convex and open set.
Let x∗ represent a root of the equation (1) which is locally unique.

The local convergence of method (2) was established assuming that the seve-
nth derivative (at least) of the operator G exists. As a consequence, productivi-
ty of this method is limited. To see this, we define G on Ω = [−0.5, 1.5] by

(3) G(t) =
{

t3 ln(t2) + t5 − t4, if t ̸= 0
0, if t = 0

Now, it is easy to find that due to the unboundedness of G′′′ the results on
convergence of (2) does not hold for this example. Also, previous research
articles do not produce any formula for approximating the error ∥xn − x∗∥,
the convergence region or the uniqueness and accurate location of the root x∗.
This is the major motivation for developing the ball convergence theorems by
considering assumptions only on G′. Our research provides important formulas
for the estimation of ∥xn−x∗∥ and convergence radii. This study also discusses
about an exact location and the uniqueness of x∗.

The other contents of this material can be summarized as follows: Section 2
discusses the development of majorizing sequence for the method (2). Section 3
discusses the semi-local convergence properties of the prsented method (2).
Numerical testing of convergence outcomes are placed in Section 4. Concluding
remarks are also stated.

2. MAJORIZING SEQUENCE

A scalar sequence is introduced in this section that is shown to be majorizing
for the method (2) in Section 3. Let M = [0, +∞).
Suppose:
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There exists a function ϕ0 : M → R which is continuous and non-decreasing
such that the equation

ϕ0(t) − 1 = 0
has a smallest positive solution. Denote such a solution by α. Set M0 = [0, α].
Let ϕ : M0 → R be a continuous and non-decreasing function. Let d ≥ 0
denote a given parameter.

Define the scalar sequences {tn}, {sn} and {vn} for each n = 0, 1, 2, . . . by
t0 = 0, s0 = d,

an =
∫ 1

0
ϕ(λ(sn − tn))dλ(sn − tn),

vn = sn + an

1 − ϕ0(sn) ,

bn = (1 +
∫ 1

0
ϕ0(sn + λ(vn − sn))dλ)(vn − sn) + an,

tn+1 = vn + bn

1 − ϕ0(sn) ,

cn+1 =
∫ 1

0
ϕ(λ(tn+1 − tn))dλ(tn+1 − tn) + (1 + ϕ0(tn))(tn+1 − sn)

and sn+1 = tn+1 + cn+1
1 − ϕ0(tn+1) .

(4)

Next, we develop a general convergence result for the sequence {tn} given
by the formula (4).

Lemma 1. Suppose that for each n = 0, 1, 2, . . . there exists a parameter
δ > 0 such that
(5) ϕ0(sn) < 1, ϕ0(tn+1) < 1 and tn+1 ≤ δ.

Then, the following assertions hold
(6) 0 ≤ tn ≤ sn ≤ vn ≤ tn+1 and lim

n→∞
tn = t∗ ≤ δ.

Proof. The definition of the sequences {tn}, {sn}, {vn} and the condition
(5) imply that the sequence {tn} is bounded above by λ and non-decreasing.
Hence, it converges to its unique least upper bound t∗ satisfying t∗ ∈ [0, δ]. □

Remark 2. (i) If the function ϕ0 is strictly increasing, then we can set
δ = ϕ−1

0 (1).
(ii) Another possible choice for δ is any number γ0 ∈ [0, δ] or γ0 ∈ [0, α).

□

3. CONVERGENCE ANALYSIS

The semi-local convergence analysis of the method (2) is developed in this
section. For this, we need an auxiliary Ostrowski-type result for the method
(2), which is stated below.
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Lemma 3. Suppose that the iterates {xn}, {yn} and {zn} appearing in the
method (2) exist for each n = 0, 1, 2, . . .. Then, the following assertions hold:

G(yn) = pn =
∫ 1

0
(G′(xn + λ(yn − xn))dλ − G′(xn))(yn − xn),(7)

zn − yn = −G(yn)−1pn,(8)

qn =
∫ 1

0
G′(yn + λ(zn − yn))dλ(zn − yn),(9)

G(zn) = qn + pn,(10)
xn+1 − zn = −G′(yn)−1(qn + pn),(11)

G(xn+1) = δn+1 =
∫ 1

0
(G′(xn+λ(xn+1−xn))−G′(xn))dλ(xn+1 − xn)(12)

+ G′(xn)(xn+1 − yn) and(13)
yn+1 − xn+1 = −G′(xn+1)δn+1.(14)

Proof. We can write by the second sub-step of the method (2) in turn that
G(yn) = G(yn) − G(xn) − G′(xn)(yn − xn)

=
∫ 1

0
(G′(xn + λ(yn − xn))dλ − G′(xn))(yn − xn) = pn

showing (7) and consequently (8).
Moreover, by using (7), (9) and the following identity,

G(zn) = G(zn) − G(yn) + G(yn)

=
∫ 1

0
G′(yn + λ(zn − yn))dλ(zn − yn) + G(yn)

we obtain (10).
Hence, the identity (11) holds by the third sub-step of the method (2) and

(10).
Furthermore, by the first sub-step of the method (2), we get (13) as follows:

G(xn+1) =
= G(xn+1)−G(xn)−G′(xn)(yn−xn)−G′(xn)(xn+1−xn)+G′(xn)(xn+1−xn)
= (G(xn+1) − G(xn) − G′(xn)(xn+1 − xn)) + G′(xn)(xn+1 − yn)

=
∫ 1

0
(G′(xn + λ(xn+1 − xn))dλ − G′(xn))(xn+1 − xn) + G′(xn)(xn+1 − yn)

= δn+1.

Finally, the identity (14) follows from the first sub-step of the method (2) and
(13). □

The following conditions are required to prove the semi-local convergence
analysis of the method (2). Further, these conditions that guarantee the exis-
tence of the iterates {xn}, {yn} and {zn}. Suppose:
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(H1) There exists an element x0 ∈ Ω and a parameter d ≥ 0 such that
G′(x0)−1 ∈ L (B2, B1) and ∥G′(x0)−1G(x0)∥ ≤ d.

(H2) ∥G′(x0)−1(G′(u) − G′(x0))∥ ≤ ϕ0(∥u − x0∥) for each u ∈ Ω.
Set Ω0 = U(x0, α) ∩ Ω.

(H3) ∥G′(x0)−1(G′(u2) − G′(u1))∥ ≤ ϕ(∥u2 − u1∥) for each u1, u2 ∈ Ω0.

(H4) The conditions (5) hold and

(H5) U [x0, t∗] ⊂ Ω, where the parameter t∗ is given in the Lemma 1.
Next, we state and prove the semi-local convergence result for method (2).

Theorem 4. Suppose that the conditions (H1)–(H5) hold. Then, the se-
quences {xn}, {yn}, {zn} generated by the method (2) are well-defined, remain
in U [x0, t∗] and converge to a solution x∗ ∈ U [x0, t∗] of the equation G(x) = 0.
Moreover, the following assertions hold

∥yn − xn∥ ≤ sn − tn,(15)
∥zn − yn∥ ≤ vn − sn,(16)

∥xn+1 − zn∥ ≤ tn+1 − vn and(17)
∥x∗ − xn∥ ≤ t∗ − tn.(18)

Proof. Mathematical induction on n is applied to first show that the iterates
{xk}, {yk}, {zk} exist and the estimates (15)–(17) hold.

It follows by the condition (H1) and the first sub-step of the method (2) for
n = 0 that

∥y0 − x0∥ = ∥G′(x0)−1G(x0)∥ ≤ d = s0 − t0 = s0 < t∗,

so, the estimate (15) holds for n = 0. Let w ∈ U(x0, t∗). Then, by applying
the condition (H2), we get in turn that
(19) ∥G′(x0)−1(G′(w) − G′(x0))∥ ≤ ϕ0(∥w − x0∥) ≤ ϕ0(t∗) < 1.

The estimate (19) together with the Banach lemma on linear operators that
have inverses [12] imply that G′(w) ∈ L (B2, B1) and
(20) ∥G′(w)−1G′(x0)∥ ≤ 1

1−ϕ0(∥w−x0∥) .

In particular, for w = y0, G′(y0)−1 ∈ L (B2, B1). Consequently, the iterates
z0 and x1 exist by the second and the third sub-step of the method (2). Then,
by Lemma 1, (H3), (20) for w = y0 and (4), we obtain in turn

∥zk − yk∥ ≤ ∥G′(yk)−1G′(x0)∥∥G′(x0)−1G(yk)∥

≤
∫ 1

0 ϕ(λ∥yk − xk∥)dλ∥yk − xk∥
1 − ϕ0(∥yk − x0∥)

≤
∫ 1

0 ϕ(λ(sk − tk))dλ(sk − tk)
1 − ϕ0(sk) = vk − sk,
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∥zk − x0∥ ≤ ∥zk − yk∥ + ∥yk − x0∥
≤ vk − sk + sk − t0 = vk ≤ t∗,

∥xk+1 − zk∥ ≤ ∥G′(yk)−1G′(x0)∥∥G′(x0)−1G(zk)∥

×
((1 +

∫ 1
0 ϕ0(∥yk − x0∥ + λ∥zk − yk∥)dλ)∥zk − yk∥

1 − ϕ0(sk)

+
∫ 1

0 ϕ(λ∥yk − xk∥)dλ∥yk − xk∥
1 − ϕ0(sk)

)
≤ bk

1−ϕ0(sk) ,

∥xk+1 − x0∥ ≤ ∥xk+1 − yk∥ + ∥yk − x0∥
≤ tk+1 − sk + sk − t0 = tk+1 ≤ t∗,

∥yk+1 − xk+1∥ ≤ ∥G′(yk + 1)−1G′(x0)∥∥G′(x0)−1G(xk+1)∥
≤ ck+1

1−ϕ0(tk+1) = sk+1 − tk+1,

∥yk+1 − x0∥ ≤ ∥yk+1 − xk+1∥ + ∥xk+1 − x0∥
≤ sk+1 − tk+1 + tk+1 − t0 = sk+1 ≤ t∗,

where we also used∥∥∥∥ ∫ 1

0
G′(x0)−1(G′(yk + λ(zk − yk))dλ)

∥∥∥∥ =

=
∥∥∥∥G′(x0)−1(G′(yk + λ(zk − yk))dλ − G′(x0) + G′(x0))

∥∥∥∥
≤ 1 +

∫ 1

0
ϕ0(∥yk − x0∥ + λ∥zk − yk∥)dλ

≤ 1 +
∫ 1

0
ϕ0(sk + λ(vk − sk))dλ

and

∥G′(x0)−1G(xk+1)∥ ≤
∥∥∥∥∥

∫ 1

0
G′(x0)−1(G′(xk + λ(xk+1 − xk))dλ

− G′(xk))(xk+1 − xk)
∥∥∥∥∥

+ ∥G′(x0)−1(G′(xk) − G(x0) + G′(x0))(xk+1 − yk)∥

≤
∫ 1

0
ϕ(λ∥xk+1 − xk∥)dλ∥xk+1 − xk∥

+ (1 + ϕ0(∥xk − x0∥))∥xk+1 − yk∥
≤ δk+1.
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Therefore, the assertions (15)–(17) hold and the iterates {xk}, {yk}, {zk} ∈
U [x0, t∗]. Moreover, it follows that the sequence {xk} is fundamental in a
Banach space B1 and as such it converges to some x∗ ∈ U [x0, t∗].

By letting k → ∞ in the estimate ∥G′(x0)−1G(xk+1)∥ ≤ δk+1 and using the
continuity of G, we deduce that G(x∗) = 0. Let m ≥ 0 be an integer. Then,
we can write in turn that

∥xn+m − xn∥ ≤ ∥xn+m − xn+m−1∥ + ∥xn+m−1 − xn∥
≤ tn+m − tn+m−1 + tn+m−1 − tn

≤ . . . ≤ tn+m − tn.

By letting m → ∞ in the preceding estimate we show the assertion (18). □

Next, the uniqueness of the solution x∗ in a certain region is determined.

Proposition 5. Suppose:
(i) There exists a solution Λ ∈ U(x0, ρ) of the equation G(x) = 0 for some

ρ > 0.
(ii) The condition (H2) holds on U(x0, ρ).
(iii) There exists R ≥ ρ such that∫ 1

0
ϕ0((1 − λ)ρ + λR)dλ < 1.

Set Ω1 = U [x0, R] ∩ Ω.
Then, the equation G(x) = 0 is uniquely solvable by Λ in the region Ω1.

Proof. Let A =
∫ 1

0 G′(Λ + λ(Λ1 − Λ))dλ for some Λ1 ∈ Ω1 with G(Λ1) = 0.
Then, in view of (ii) and (iii), we have in turn that

∥G′(x0)−1(A − G′(x0))∥ ≤
∫ 1

0
ϕ0((1 − λ)∥Λ − x0∥ + λ∥Λ1 − x0∥)dλ

≤
∫ 1

0
ϕ0((1 − λ)ρ + λρ1)dλ

< 1.

It follows that the linear operator A is invertible. Therefore, we can write

Λ1 − Λ = A−1(G(Λ1) − G(Λ))
= A−1(0 − 0) = A−1(0)
= 0,

showing that Λ1 = Λ. □

Remark 6. (1) The conditions (H1 − H5) were not used in the Propo-
sition 5. But if they were used, then we can set ρ = t∗.

(2) The limit point t∗ in the condition (H5) can be replaced by δ. □
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4. NUMERICAL EXAMPLES

Example 7. We reconsider the motivational example from the introduction
part of this work. Select x0 = 0.9955. Conditions (H1)-(H3) are verified for

∥G′(x0)−1G(x0)∥ = 0.00456182 = d,

ϕ0(t) = 12.8089t, α = 0.0780704, Ω0 = U(x0, α) ∩ Ω, ϕ(t) = 1.12091t. Let
δ = 0.06. The conditions (5) are tested and the results are given in Table 1.
Hence, we can observe that conditions (H4) and (H5) hold and therefore we

n 0 1 2 3

ϕ0(sn) 0.0584319 0.0596158 0.0596159 0.0596159
ϕ0(tn+1) 0.0589276 0.0596158 0.0596159 0.0596159
tn+1 0.00460052 0.00465425 0.00465426 0.00465426

t∗ = 0.00465426.
Table 1. Estimates for Example 7.

can conclude that the sequence {xn} generated by the method (2) converges
to a solution x∗ of the equation G(x) = 0 in U [x0, t∗]. □

Example 8. The applicability of our work in the real world can be demon-
strated by considering the quartic equation for fractional conversion which
represents the fraction of the nitrogen-hydrogen feed that gets converted to
ammonia. At 500◦C and 250atm, this equation can be formulated as

G(x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x − 1.674.

Let Ω = (0.3, 0.4) and x0 = 0.3. Then, the conditions (H1) - (H3) are valid if
∥G′(x0)−1G(x0)∥ = 0.0217956 = d,

ϕ0(t) = ϕ(t) = 1.56036t, α = 0.640877 and Ω0 = U [x0, α]∩Ω. Choose δ = 0.3.
Conditions (5) are tested and the outcomes are given in Table 2.

n 0 1 2 3

ϕ0(sn) 0.034009 0.0384204 0.0384459 0.0384459
ϕ0(tn+1) 0.0358473 0.038431 0.0384459 0.0384459
tn+1 0.0229737 0.0246296 0.0246391 0.0246391

t∗ = 0.0246391.
Table 2. Estimates for Example 8.

Thus, we can observe that conditions (H4) and (H5) hold and therefore we
can conclude that the sequence {xn} generated by the method (2) converges
to a solution x∗ of the equation G(x) = 0 in U [x0, t∗]. □

Example 9. Define the cubic polynomial
G(x) = x3 − a.
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on the open ball Ω = U(x0, 1 − a) for some a ∈ [0, 1). If one chooses x0 = 1,
then the conditions (A1)-(A3) are verified for d = 1−a

3 , ϕ0(t) = (3 − a)t,
α = δ = 1

3−a , Ω0 = U(x0, 1
3−a) and ϕ(t) = 2(1 + 1

3−a)t. Let a = 0.95. Table 3
depicts the outcomes on testing of conditions (5).

n 0 1 2 3

ϕ0(sn) 0.0341667 0.0358153 0.0358166 0.0358166
ϕ0(tn+1) 0.0348607 0.0358158 0.0358166 0.0358166
tn+1 0.0170052 0.0174711 0.0174715 0.0174715

t∗ = 0.0174715.
Table 3. Estimates for Example 9.

Thus, we find that conditions (H4) and (H5) also hold and therefore we can
conclude that the sequence {xn} generated by the method (2) converges to a
solution x∗ of the equation G(x) = 0 in U [x0, t∗]. □

Example 10. Consider the non-linear system

G(w1, w2) =
(
w1 + ew2 − cos w2, 3w1 − w2 − sin w2

)T

defined on Ω = U(0, 1) for w = (w1, w2)T . We obtain the operator G′ as
follows

G′(w) =
[
1 ew2 + sin w2
3 −1 − cos w2

]
.

We find x∗ = (0, 0)T is a solution. Choose x0 = (0.1, 0.1)T . Then, by applying
method (2), we find that the above system converges to x∗ and the error
estimates are given Table 4. □

∥x0 − x∗∥ ∥x1 − x∗∥ ∥x2 − x∗∥ ∥x3 − x∗∥ ∥x4 − x∗∥

0.100 6.28455 ∗ 10−3 3.99276 ∗ 10−10 2.62582 ∗ 10−53 2.12431 ∗ 10−312

Table 4. Error Estimates for Example 10.

Example 11. Consider the 4 × 4 system of non-linear equations defined on
the open ball Ω = U(0, 1) given by

vi − cos
(
2vi −

4∑
i=1

vi

)
= 0, i = 1, 2, 3, 4.

x∗ = (0.5149, . . . , 0.5149)T is a solution. We choose the initial approximation
as x0 = (0.5, . . . , 0.5)T . Then, the method (2) is applied to this system and
is found to be convergent to x∗ and the error estimates obtained are given in
Table 5. □
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∥x0 − x∗∥ ∥x1 − x∗∥ ∥x2 − x∗∥ ∥x3 − x∗∥ ∥x4 − x∗∥

0.01490 1.21463 ∗ 10−3 3.87516 ∗ 10−10 4.08658 ∗ 10−49 5.62059 ∗ 10−283

Table 5. Error Estimates for Example 11.

Example 12. Let us solve the non-linear system of logarithmic type where
for w = (q1, q2, . . . , qm)T and Q(w) = ln(qi + 1) − qi

20 , i = 1, 2, . . . , m,

Q(w) = 0

Select m = 100 and x0 = (1
2 , 1

2 , . . . , 1
2)T (50 times). Then, by applying the

method (2), the solution x∗ = (1, 1, . . . , 1)T (50 times) is obtained after three
iterations. □

5. CONCLUSION

The semi-local convergence analysis for the method (2) is established by ap-
plying generalized Lipschitz condition only on the first derivative. Estimates
on convergence balls, measurable error distances and the existence-uniqueness
regions for the solution are deduced. At the end, the suggested theoretical
outcomes are verified on numerical examples including one application prob-
lem. The major advantage is that the technique does not really depend on the
method (2). Hence, it can be extended on other single and multi-step methods
in the same manner.
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