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NEW TECHNIQUE FOR SOLVING
MULTIVARIATE GLOBAL OPTIMIZATION

DJAMEL AAID∗ and ÖZEN ÖZER†

Abstract. In this paper, we propose an algorithm based on the Branch and
Bound method to underestimate the objective function and reductive transfor-
mation which transformed all multivariable functions into univariate functions.
We also propose and demonstrate several quadratic lower bound functions, which
are better/preferable to the ones mentioned in the literature. In this regard, our
experimental results are more effective when we face different nonconvex func-
tions.
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1. INTRODUCTION

In convex optimization, we seek a local solution (widely enough) to deter-
mine the optimal solution [1, 2, 20], when the objective of global optimization
is to find the globally best solution of possibly nonlinear models, in the possi-
ble or known presence of multiple local optima. Formally, global optimization
seeks global solutions of a constrained optimization model [19]. Nonlinear
models are ubiquitous in many applications such as advanced engineering de-
sign, biotechnology, data analysis, environmental management, financial plan-
ning, process control, risk management, scientific modeling, etc. Their solution
often requires a global search approach [18, 4, 22, 3, 21]. A variety of adaptive
partition strategies has been proposed to solve global optimization models.
They are based upon partition, sampling and subsequent lower with upper
bounding procedures. These operations are applied iteratively to the collec-
tion of active subsets within the feasible set. In this connection, several works
have been proposed among others. Adjiman et al. [5] presented the detailed
implementation of the alpha BB approach and computational studies in the
process design problems such as heat exchange networks, reactor-separator
networks and batch design under uncertainty. Akrotirianakis and Floudas [7]
presented computational results of the new class of convex underestimators
embedded in a branch-and-bound framework for box constrained NLPs. They
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also proposed a hybrid global optimization method that includes the random-
linkage stochastic approach with the aim of improving computational perfor-
mance. Caratzoulas and Floudas [9] proposed novel convex underestimators
for trigonometric functions. Recently, years of univariate global optimization
problems have attracted common attention since they arise in many real-life
applications and the obtained results can be easily generalized to the multi-
variate case [6, 8, 13, 16]. In this paper, we propose two approaches to find a
global minimum of a univariate objective function with multivariate functions.
In the following, we will present our two techniques.

1. A Piecewise Quadratics Underestimations (KBBm):
The main idea consists of constructing piecewise quadratic underestima-

tion functions closer to the given nonconvex f in a successive reduced interval
[ak, bk] with their minimums explicitly given. Instead of using a single large
square away from the objective function [15], the determination of its mini-
mum implies a local method [5]. We propose an explicit method of quadratic
relaxation for building global optimization problems with bounded variables.
This construction is based on the work of authors in [15], using the quadratic
splines. The generated quadratic programs have exactly explicit optimal solu-
tions in each interval in the target underestimated by several quadratic splines
reliable to calculate the lower bounds.

2. A Coupling Branch and Bound with Alienor method:
The main idea of this technique is to transform the multivariate optimiza-

tion problem into a univariate problem, using a reductive transformation in
order to apply the proposed algorithm to a single dimension [24]. In this
technique, we focus on the multivariate global optimization problems and
generalization of previous techniques used in the Branch and Bound algo-
rithm by underestimation of the objective it gives a limit of the directions of
research and preserves the enormous advantage of the underestimation rep-
resented by the explicit solutions of the generated quadratic problems. In
this way, we combine the advantages of the two methods introduced by cou-
pling the Alienor method [23] with Branch and Bound. The advantage of this
adaptation is to reduce the dimension which causes one direction of search
for the minimum f . Secondly, this process still allows us to apply the most
effective methods designed for the one-dimensional global optimization. The
structure of the rest of the paper is defined as follows: Section 2 presents the
two underestimators proposed in [15, 5]. Section 3 discusses the construction
of a new lower bound on the objective function and describes a proposed algo-
rithm (KBBm) to solve the univariate global optimization problem with box
constrained. Section 4 describes a coupling (KBBm) with Alienor methods
to solve a multivariate global optimization problem. Section 5 also presents
some numerical examples of different nonconvex objective functions while we
conclude the paper in Section 6.
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2. BACKGROUND

It can be considered the following global minimization problem:

(1) (Pu)
{

α = min f(x)
x ∈ X = [a, b] ,

where f is a nonconvex twice differentiable function on X.
In what follows we give two underestimators developed by the authors,

respectively in [5, 15].

2.1. Underestimator in (αBB) method [5]. The underestimator in αBB
method on the interval [a, b] is determined as follows;

(2) L(x) = α
2 (x− a)(b− x),

where α ≥ max{0,−f
′′(x)} for all x ∈ [a, b].

This underestimator satisfies the following properties:
(1) It is convex (i.e. L

′′(x) = f
′′(x)+α = f

′′(x)+max{0,−f
′′(x)} ≥ 0,for

all x ∈ [a, b].
(2) It coincides with the function f(x) at the endpoint of the interval [a, b].
(3) It is an underestimator of the objective function f(x).
(4) To determine the values of the lower bound of the objective function

f(x), solving the convex problem min L(x) are required for all x ∈ [a, b]
(for more details, see [5]).

2.2. Quadratic Underestimator in (KBB) Method [15]. The quadratic
underestimator developed in [15] on the interval [a, b] is given by

(3) q(x) = f(a) b−x
b−a + f(b)x−a

b−a −
K
2 (x− a)(b− x),

where |f ′′(x)| ≤ K for all x ∈ [a, b].
This quadratic underestimator satisfies the following properties:
(1) it is convex (i.e. q

′′(x) = K ≥ 0, for all x ∈ [a, b]).
(2) It coincides with the function f(x) at the endpoint of the interval [a, b].
(3) It is an underestimator of the objective function f(x).
(4) The values of the lower bound are given explicitly. For more details,

see [15].

2.3. Advantages and Disadvantages of Two Methods.
(1) The advantage of αBB is the best initial lower bound obtained. Also

the underestimator is close to the objective function (see Table 2, Ta-
ble 3).

(2) The disadvantage of αBB is that it uses a local method for determining
the values of the lower bounds.

(3) The advantage of KBB is the values of the lower bounds given explic-
itly.
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(4) The disadvantage of KBB is the initial lower which is very far from the
optimal solution. Also the underestimator is far away from objective
function (see Table 2, Table 3).

3. THE PROPOSED UNDERESTIMATOR(KBBm)

In this section, we present a new lower bound. In this lower bound, we
merge the advantages of KBB and αBB.

Let X = [a, b] be a bounded and closed interval in the set of the real numbers
R, f be a continuously twice differentiable function on X, x0 and x1 be two
real numbers in [a, b] such that x0 ≤ x1 and also l0, l1 be real valued functions
defined by

(4) l0(x) = x1−x
x1−x0 if x0 ≤ x ≤ x1, l1(x) = x−x0

x1−x0 if x0 ≤ x ≤ x1.

for all x in the interval [x0, x1]. Thus we have l0(x) + l1(x) = 1. We have
also defined li(xj) equals to 0 if i ̸= j, and 1 otherwise. Additionally, h =
x1−x0 and Lhf are piecewise linear interpolant to f at points x1, x0 [10, 12]
such that

(5) Lhf(x) =
1∑

i=0
li(x)f(xi).

It is known that f(x) is a univariate function that needs to be underesti-
mated in the interval [a, b]. Suppose that the nodes are chosen to be equally
spaced in [a, b], so that xi = a + ih, h = b−a

n , i = 0, . . . , n for every interval
[xi, xi+1]. We construct the corresponding local quadratic underestimator as
follows

(6) pi(x) = Lhf(x)−Qi(x),

where Qi(x) = 1
2Ki(x−xi)(xi+1−x), and Ki is an upper bound of the second

derivative which is valid for [xi, x+1]. Instead of considering one quadratic
lower bound over [a, b], we construct a piecewise quadratic lower bound.

Therefore, in the following theorem, we show that the new lower bound is
tighter than the lower bound constructed in the reference [15].

Theorem 1. Let function p(x) be a piecewise convex valid underestimator
of f(x) for all x ∈ [a, b]. A function p(x) is tighter than the underestimator
q(x) introduced in the reference [15] since

(7) q(x) ≤ p(x) ≤ f(x) for all x ∈ [a, b],

is satisfied for p(x) = pi(x) for all x ∈ [xi, xi+1] , i = 0, . . . , n.

Proof. For every interval [xi, xi+1] it is obtained that

(8) E(x) = q(x)− pi(x) = 1
2(Ki −K)(x− xi)(xi+1 − x).
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Fig. 1. Comparison of our underestimator p(x) and q(x) for n = 2.

On the other hand E′′(x) = K −Ki ≥ 0 for all x ∈ [xi, xi+1]. Hence E is a
convex function for all x ∈ [xi, xi+1] so that we have,
(9) E(x) ≤ max{E(x), x ∈ [xi, xi+1]} = E(xi) = E(xi+1) = 0.

it is implied that first inequality of (7) is verified. To justify the second
inequality we consider the function ϕ defined on [xi, xi+1] by (10) as follows.
(10) ϕ(x) = f(x)− pi(x) = f(x)− Lhf(x) + 1

2Ki(x− xi)(xi+1 − x).
It is clear that, ϕ′′(x) = f ′′(x) −Ki ≤ 0 for all x in [xi, xi+1] and it gives

us ϕ is a concave function. Hence, we obtain the following inequality.
(11) ϕ(x) ≥ min{ϕ(x), x ∈ [xi, xi+1]} = ϕ(xi) = ϕ(xi+1) = 0.

The second inequality of (7) is also proved. □

One has to compute a quadratic lower bound underestimator of the objective
function f in each sub-interval [xi, xi+1], (i = 0, . . . , n) as follows,

(12) x∗
i =


u = 1

2(xi + xi+1)− 1
Ki

f(xi+1)−f(xi)
xi+1−xi

, if u ∈ [xi, xi+1]
xi, if u ≤ xi

xi+1, if u ≥ xi+1

Now, we compute the values of pi(x∗
i ) in order to detect the best lower

bound we compare all lower bounds and preserve the smallest one as follows:
(13) LBk = min pi(x∗

i ).
The upper bound is calculated by the following comparisons and maintain the
best ever. The objective function is evaluated at different points so has to
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determine the upper bound.
(14) UBk = min{f(x∗

i ), f(xi)}

Corollary 2. The proposed underestimator KBBm verifies the following
properties:

(1) It is piecewise convex on [a, b].
(2) It coincides with the function f(x) at the endpoint of the interval

[xi, xi+1] for all i = 1, . . . , n.
(3) It is an underestimator of the objective function f(x).
(4) The values of the lower bound are given explicitly.
(5) When we double the quadratic we obtained a good lower bounds, see

Table 5.
The different steps for solving the problem (Pu) are summarized in the follow-
ing proposed algorithm:

Algorithm
Input:
• [a, b]: A real interval.
• ε: The accuracy.
• f : The objective function.
• n: The number of quadratic.

Output:
• x∗: The global minimum of f .

(1) Initialization step k = 0
(a) for all i = 0, . . . , n Compute xi = a + b−a

n i, and set M =⋃n−1
i=0 {[xi, xi+1]}

(b) Compute Ki such that |f ′′(x)| ≤ Ki on each [xi, xi+1] for all
i = 1, . . . , n

(c) Compute x∗
i by using (12) for all i = 1, . . . , n

(d) Compute UBk = min{min f(x∗
i ), min f(xi)}

(e) Set LBk = min LBk
i with LBk

i = pi(x∗
i )

(f) i←− the index corresponding to min LBk
i

(2) Iteration step
While (UBk − LBk > ε and M ̸= ∅) do

(a) a←− xi, b←− xi+1 and apply step a, b, c and d
(b) Update UBk

(c) For all i = 1, . . . , m; (m = card (M))
• Elimination step: if (UBk−LBk

i < ε) then remove [xi, xi+1]
from M
• Selection step: if (UBk −LBk

i ≥ ε) then min LBk
i ; i←−

the index corresponding to minLBk
i

(d) k = k + 1
end While
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(3) x∗ = xk is the optimal solution corresponding to the best UBk found.
end algorithm
Theorem 3 (Convergence of the algorithm). The algorithm mentioned

above is classified as follow:
• Algorithm is finite or
• Algorithm generates a bounded sequence {xk}.

Additionally any accumulation point of the sequence is a global optimal solution
of (Pu), and UBk ↘ α, LBk ↗ α are satisfied.

Proof. Assume that the algorithm is infinite. Then, it generates an infinite
sequence of intervals {T k} whose lengths hi (with i = 1, . . . , n) decreases
to zero. So, the terms of sequence {T k} shrink to a singleton. Since the
values of UBk are obtained by evaluating f(x) in different points of [a, b], the
sequence {UBk} is bounded below by α = min f(x). On the other hand, the
values of LBk are the minimum quadratic underestimate the objective function
and it can not exceed α. Then the sequence {LBk} is bounded above by α.
Subsequently, LBk ≤ α ≤ UBk is verified. It suffices to prove that {UBk}
is a decreasing sequence and {LBk} is a an increasing sequence. From the
description of the algorithm we see that the value of UBk+1 is selected as the
lesser between current UBk and the new value to be determined which always
results UBk+1 ≤ UBk, ∀k ≥ 0 at each iteration k + 1, k ≥ 0. So, {UBk}
is a decreasing sequence. Similarly, the value of the lower bound LBk+1 is
selected as the minimum of a certain quadratic located in the interior of a
big quadratic covering the current interval [ak+1, bk+1], and underestimate the
objective on the [ak+1, bk+1], which automatically leads LBk+1 ≥ LBk,∀k ≥ 0
at each iteration k +1, k ≥ 0. Then the sequence {LBk} is increasing on [a, b].
Therefore the theorem is proved. □

4. COUPLING THE ALIENOR METHOD WITH KBBm

The fundamental principle of the method for the reductive transformation
[12] is to perform a transformation which will be returned the multidimensional
problem to one dimensional problem for implementing the most effective op-
timization methods adapted to the case of a single variable. The basic idea is
to draw all feasible by a parametric (α-dense) curve continuous and fairly reg-
ular. Multivariate function is transformed into a function of a single variable.
So our problem is reduced to a problem easier to solve since there is only one
direction to explore.

We combine the Alienor method which is developed by the authors [19] with
our algorithm (KBBm).

Let us f be a nonconvex function twice differentiable on a box X =
Πn

i=1[ai, bi] and consider the following global optimization problem

(15) (P )
{

min f(x1, . . . , xn)
(x1, . . . , xn) ∈ X

,
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The idea is to transform a function of several variables to a function of a
single variable. Then it becomes quite simple to determine the global mini-
mum.

Definition 4. A subset S of Rn is α-dense for any point M in Rn if there
exists at least a point N in S such that d(M, N) ≤ α, where d is the Euclidian
distance in Rn. Furthermore, if S is defined by xi = hi(θ), i = 1, . . . , n then
h(θ) = (h1(θ), h2(θ), . . . , hn(θ)) is satisfied.

Now, we apply the Alienor method to global optimization [23, 24].
Let x1, . . . , xn be n variables. So, method is to express these variables

using one densifying X = Πn
i=1[ai, bi] with simple curve. Then, we construct

a parametric curve.
The transformation is
xi(θ) = cos(ωiθ + φi), i = 1, . . . , n where (ωi) and (φi) are slowly increasing

sequences densifies I = [−1, 1]n.
It is easy to extend this curve to X = Πn

i=1[ai, bi].
It is sufficient to set:

(16) xi = 1
2 [(bi − ai)hi(θ) + bi + ai],

where hi(θ) = cos(ωiθ + φi), i = 1, . . . , n.
Hence, the original minimization problem (P ) is approximated by the one-

dimensional minimization problem as follow

(17) (Pt)
{

min f∗(θ)
θ ∈ [0, θmax] .

for f∗(θ) = f(h1(θ), . . . , hn(θ)).
θmax can be taken the largest value, for (x1, x2, . . . , xn) describing all

Πn
i=1[ai, bi].
Now, we can use our algorithm (KBBm), to arrive at θ∗ the optimal solution

to the transformed problem. Finally, we must apply the “Step back” to get the
approximated solution of the original problem as follows: Step back; should
be found that
(18) x∗

i = 1
2 [(bi − ai)hi(θ∗) + bi + ai],

where hi(θ∗) = cos(ωiθ
∗ + φi), i = 1, . . . , n.

5. COMPUTATIONAL ASPECTS AND RESULTS

To measure the performances of our KBBm algorithm, we perform a com-
parative study with KBB and αBB. These algorithms are implemented in
C−programming language with double precision floating point by running on
a computer with an Intel (R) core (TM) i3-311MCP4 with CPU 2.40GHz.
Numerical tests are performed as three parts on the set of test functions. In
the first experiment, we compare the performances of the KBB, αBB and the
KBBm algorithms on the set of 10 functions. Here, we include a method that
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Fig. 2. The Rastrigin Function for n = 2.
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Fig. 3. The transformed Rastrigin function for n = 2.

computes the positive numbers α and K [14]. The number of the quadratic
functions are used in KBBm at each iteration as fixed to n = 16 as well as
the accuracy fixed to ε = 10−6. In the second experiment we test the KBBm

algorithm according to the initial lower bound obtained for different numbers
of quadratic function used on the set of 20 functions. In the third experiment,
we compared the performance of our approach with the generalization to the
case of multivariate function developed by authors in [17] through the Rastri-
gin function which has special features [11].

In our results, we consider the following notations as you see in the table:

• f∗ is the optimum obtained,
• LB0 is the initial lower bound,
• TCP U is the execution time in seconds,
• m is the total number of interval,
• me is the number of intervals eliminated,
• LM is the number of local minimum,
• GM is the number of global minimum,
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• (∗), an asterisk denotes that the bond is equal to the known global
optimum f∗ within six decimal digits of accuracy.

Exp f(x) [xL, xU ] LM GM opt

1 e−3x − sin3 x [0, 20] 4 1 −1
2 cos x − sin(5x) + 1 [0.2, 7] 6 1 −0.952897
3 x + sin(5x) [0.2, 7] 7 1 −0.077590
4 e−x − sin(2πx) [0.2, 7] 7 1 −0.478362
5 ln(3x) ln(2x) − 0.1 [0.2, 7] 1 1 −0.141100
6

√
x sin2 x [0.2, 7] 3 2 0

7 2 sin xe−x [0.2, 7] 2 1 −0.027864
8 2 cos x + cos (2x) + 5 [0.2, 7] 3 2 3.5
9 sin x [0, 20] 4 3 −1
10 sin x cos x − 1.5 sin2 x + 1.2 [0.2, 7] 3 2 −0.451388
11

(
x − x2)2 + (x − 1)2 [−10, 10] 1 1 0

12 x2

20 − cos x + 2 [−20, 20] 7 1 1
13 x2 − cos (18x) [−5, 5] 29 1 −1
14 ex2

[−10, 10] 1 1 1
15 (x + sin x) e−x2

[−10, 10] 1 1 −0.824239
16 x4 − 12x3 + 47x2 − 60x − 20e−x [−1, 7] 1 1 −32.78126
17 x6 − 15x4 + 27x2 + 250 [−4, 4] 2 2 7
18 x4 − 10x3 + 35x2 − 50x + 24 [−10, 20] 2 2 −1
19 24x4 − 142x3 + 303x2 − 276x + 3 [0, 3] 2 1 −89
20 cos x + 2 cos (2x) e−x [0.2, 7] 2 1 −0.918397

Table 1. Test Functions.

Exp αBB

Tcpu m me LB0 f∗

1 0 47 24 −273.76041 −0.99999
2 0 17 9 −65.9109 −0.95203
3 0 31 16 −118.96147 −0.07759
4 0 15 8 −121.60896 −0.47797
5 0 11 6 −527.67986 −0.14099
6 0 13 7 −2733.29510 0.00199
7 0 13 7 −18.57601 −0.02761
8 0 11 6 −28.84495 3.56245
9 0 13 7 −46.40909 −0.99997
10 0 17 9 −29.62761 −0.45138

Table 2. Computational Results for 10 Functions by αBB Algorithm.

The execution time required to achieve the optimal value is considered as a
reliable criterion to the algorithm performances. According to the numerical
results, we summarize them in Table 3 and Table 4. The performances of the
proposed method is clearly better than the performance of the KBB method.
As the best obtained initial lower bound remains an important criterion for
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Exp KBB

Tcpu m me LB0 f∗

1 2.211 55 28 −564.01754 −1
2 10.645 25 13 −116.08120 −0.95289
3 4.604 25 13 −117.80163 −0.07758
4 3.576 57 29 −121.20354 −0.47834
5 3.312 19 10 −528.13263 −0.14110
6 2.854 29 15 −6664.14641 0
7 3.132 67 34 −5.50269 −0.02786
8 3.012 21 11 −14.03655 3.5
9 2.293 15 8 −45.19193 −1
10 3.460 27 14 −29.66644 −0.45139

Table 3. Computational results for 10 functions by KBB algorithm.

Exp KBBm

Tcpu m me LB0 f∗

1 0 144 136 −2.26691 −1
2 0 32 31 −0.97784 −0.9529
3 0 48 46 −0.09467 −0.07759
4 0 176 166 −0.65053 −0.47820
5 0 48 46 −1.73375 −0.14110
6 0 48 46 −0.23383 0
7 0 112 106 −0.04618 −0.02786
8 0 48 46 3.49276 3.50001
9 0 64 61 −1.00563 −1
10 0 64 61 −0.45957 −0.45139

Table 4. Computational Results for 10 Functions by KBBm Algo-
rithm with n = 16.

measuring the validity of the underestimator. In Table 2, Table 3 and Ta-
ble 4, the comparative study of the quality of the initial lower bound is found
by three algorithms. They show that our method is better than the two meth-
ods. Table 5 just confirmed the competence of our method by doubling the
number of quadratic. We can notice that the values of the lower bound are
improved. Table 6 and Table 7, clearly show that our approach is better than
the method developed in [17] in terms of execution time for multivariate global
optimization. Regarding the results of the two dimensions, results encourage
and promise us in terms of execution time as well.

6. CONCLUSION

We presented a method of underestimation of nonconvex objective based on
piecewise quadratic functions which have explicit minimums. The comparison
of the lower bounds favors such quadratic against others, which guarantees
the underestimation of the objective. This approach is validated by consider-
ing a deterministic Branch and Bound which are fully detailed. They allow
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n 2 4 8 16 32 64 128
1 −152.72 −45.16 −7.15 −2.26 ∗ ∗ ∗
2 −28.43 −7.92 −2.16 −0.97 ∗ ∗ ∗
3 −28.45 −6.17 −1.34 −0.094 ∗ ∗ ∗
4 −30.018 −8.85 −2.207 −0.65 −0.49 ∗ ∗
5 −121.3 −29.66 −7.17 −1.73 −0.40 −0.149 −0.1417
6 −448.19 −41.56 −3.542 −0.23 −0.0019 −0.0002 −0.00003
7 −1.307 −0.340 −0.104 −0.04 −0.03 −0.02 −0.028
8 0.33 2.54 3.394 3.49 ∗ ∗ ∗
9 −11.23 −3.751 −1.141 −1.005 ∗ ∗ ∗
10 −5.85 −1.98 −0.598 −0.459 −0.453 −0.452 −0.4515
11 −16118.1 −1297.05 −107.4 −9.34 −0.67 −0.09 −0.01113
12 1 ∗ ∗ ∗ ∗ ∗ ∗
13 −20.42 −2.2 ∗ ∗ ∗ ∗ ∗
14 ∗ ∗ ∗ ∗ ∗ ∗ ∗
15 −173493.6 −27703.7 −7855.9 −769.2 −575.3 −48.21 −46.4
16 −19351.54 −576.321 −45.152 −33.67 −32.84 −32.80 −32.789
17 −14875.91 −2957.18 −362.63 −21.88 4.71 6.82 6.98
18 −93572.1 −9016.69 −1032.09 −142.7 −27.31 −7.07 −2.4
19 −578.6 −141.98 −95.79 −89.8 −89.1 −89.01 −89.001
20 −6.906 −2.59 ∗ ∗ ∗ ∗ ∗

Table 5. LB0 Results of Values Obtained by KBBm.

Exp Alg1

[ai, bi] f∗ Tcpu

1 [−5.12, 5.12] 0.000000 2.348
2 [−5.12, 6.12] 0.000000 2.749
3 [−3.14, 2] 0.000000 1.521
4 [−3.14, 2.5] 0.000000 1.221
5 [−10, 10] 0.000000 3.049
6 [−20, 20] 0.000000 1.815
7 [−0.5, 1] 0.000000 1.399
8 [−1, 1] 0.000000 1.509
9 [−3, 9] 0.000000 1.493
10 [−0.02, 7] 0.000000 1.191

Table 6. The results given in this table are obtained in [6].

certifying still coaching the value of the global minimum at the end of the per-
formance. However, the extension of this technique to the multidimensional
case still requires the preservation of benefits already required. The coupling
of Alienor method with the Branch and bound reduces the size of the problem
and makes it easier to solve. This coupling has already been proved for two di-
mensional problems proved very effectively.problems and proved very effective.
Many digital experiences are performed and confirmed the effectiveness of this
new acceleration technique. The performance of the proposed procedure de-
pends on the quality of the chosen lower bound of f . Such that, our piecewise
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Exp Alg2

[ai, bi] f∗ Tcpu

1 [−5.12, 5.12] 0.000000 0
2 [−5.12, 6.12] 0.000000 0
3 [−3.14, 2] 0.000000 0
4 [−3.14, 2.5] 0.000000 0
5 [−10, 10] 0.000000 0
6 [−20, 20] 0.000000 0
7 [−0.5, 1] 0.000000 0
8 [−1, 1] 0.000000 0
9 [−3, 9] 0.000000 0
10 [−0.02, 7] 0.000000 0

Table 7. Results obtained by our algorithm.

quadratics lower bounding functions is better than the two underestimators
introduced and presented in [15, 5].
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