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A NOTE ON THE FIXED POINT METHOD
AND THE LINEAR COMPLEMENTARITY PROBLEM∗
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Abstract. In this paper, we propose an extended form of a fixed point method
for processing the large and sparse linear complementarity problem (LCP). We
obtain an equivalent form of LCP by using two positive diagonal matrices and
prove the equivalence. For the proposed method, we provide some convergence
conditions when the system matrix is a P -matrix or an H+-matrix or a symmetric
positive definite matrix.
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1. INTRODUCTION

In the literature on mathematical programming, the linear complementarity
problem has received considerable attention. It also appears in a number of
applications in operations research applications, control theory, mathematical
economics, optimization theory, stochastic optimal control, the American op-
tion pricing problem, economics, elasticity theory, the free boundary problem,
and the Nash equilibrium point of the bimatrix game. For details, see [18],
[19]. For recent works on this problem, see [14], [15] and references therein.

Consider A1 ∈ Rn×n and a vector q ∈ Rn. The linear complementarity
problem denoted as LCP(q, A1) is to find the solution z ∈ Rn to the following
system

z ≥ 0, A1z + q ≥ 0, zT (A1z + q) = 0.(1)
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There are various methods of solving the LCP using an iterative process,
namely the projected methods [4], [9], [12], [16], [20], [21], the modulus al-
gorithm [2], [3], [5], [10] and the modulus based matrix splitting iterative
methods [8], [11], [22].

A general fixed point method (GFP) is proposed by Fang [6] assuming the
case where ϕ = ωA−1

1D with ω > 0 and A1D is a diagonal matrix of A1. The
GFP approach takes less iterations than the modulus-based successive over-
relaxation (MSOR) iteration method [2]. In this paper we present an extended
form of the fixed point method [6] that incorporates projected type iteration
techniques by including two positive diagonal parameter matrices ϕ1 and ϕ2.
We also show that the fixed point equation and the linear complementarity
problem are equivalent and discuss the convergence conditions as well as pro-
vide some convergence domains for the proposed method.

The rest of this paper is organized as follows: In Section 2, we present
some notation, definitions and lemmas in order to establish our key find-
ings. Section 3 discusses an extended form of a fixed point method for solving
LCP(q, A1) with convergence analysis. In the last section, we give the conclu-
sion.

2. PRELIMINARIES

Some notations, introductory definitions and required lemmas are intro-
duced. For details, see [2], [6].

Let A1 = (aij) ∈ Rn×n and B1 = (bij) ∈ Rn×n. We use A1 ≥ (>) B1
to denote aij ≥ (>) bij for all i, j. The comparison matrix ⟨A1⟩ = (⟨aij⟩)
of A1 is defined by ⟨aij⟩ = |aij | with i = j and ⟨aij⟩ = −|aij | with i ̸= j
for i, j = 1, 2, . . . , n. The matrix A1 is called a Z-matrix if all of its non-
diagonal elements are less than or equal to zero; an Z-matrix is called an
M -matrix if A−1

1 ≥ 0; an H-matrix if ⟨A1⟩ is an M -matrix. The splitting
A1 = M1 − N1 is called an M -splitting if det(M1) ̸= 0 and N1 ≥ 0, an
H-splitting if ⟨M1⟩ − |N1| is an M -matrix [7]. An H-matrix is called an H+-
matrix [1] if aii > 0 for i = 1, 2, . . . , n. Let A1 ∈ Rn×n, then A1 is said to
be a P -matrix if all its principle minors are positive that is det(A1αα) > 0 for
all α ⊆ {1, 2, . . . , n}. Suppose A1 = (aij) ∈ Rn×n be a square matrix, then
|A1| = (cij) is defined by cij = |aij | ∀ i, j and AT

1 denotes the transpose of A1.

Lemma 1 ([13]). The LCP(q, A1) has a unique solution for any q ∈ Rn if
A1 ∈ Rn×n is a P -matrix.

Lemma 2 ([6]). Let A1 ∈ Rn×n and A1 = M1 − N1 be an M -splitting with
M1 an M -matrix and N1 ≥ 0. Then ρ(M−1

1 N1) < 1.

3. MAIN RESULTS

For a given vector ξ ∈ Rn, we indicate the vectors ξ+=max{0, ξ}, ξ−=
max{0, −ξ}. Since ξ+ ≥ 0, ξ− ≥ 0, ξ = ξ+ − ξ−, ξT

+ξ− = 0. Let z = ϕ1ξ+ and
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w = ϕ2ξ−, where ϕ1 and ϕ2 are positive diagonal matrices of order n. Now we
convert the LCP into a fixed point formulation that is

ξ = (I1 − ϕ−1
2 A1ϕ1)ξ+ − ϕ−1

2 q,(2)
where I1 is an identity matrix of order n.

In the following result, we provide an equivalent formulation of the LCP(q, A1)
for solving LCP(q, A1).

Theorem 1. Suppose A1 ∈ Rn×n and q ∈ Rn. Then ξ∗ is a solution of (2)
if and only if z∗ = ϕ1ξ∗

+ is a solution of LCP(q, A1).

Proof. Let ξ∗ be a solution of (2). Then
ξ∗ = (I1 − ϕ−1

2 A1ϕ1)ξ∗
+ − ϕ−1

2 q,

ϕ2ξ∗
− = A1ϕ1ξ∗

+ + q.

Since ϕ2ξ∗
− ≥ 0,

A1ϕ1ξ∗
+ + q ≥ 0.

Moreover,
(ϕ1ξ∗

+)T (A1ϕ1ξ∗
+ + q) = (ϕ1ξ∗

+)T (ϕ2ξ∗
−) = 0,

and ϕ1ξ∗
+ ≥ 0. Therefore z∗ = ϕ1ξ∗

+ is a solution of LCP(q, A1).
Let z∗ = ϕ1ξ∗

+ and w∗ = ϕ2ξ∗
−, and ξ∗ = ξ∗

+ − ξ∗
−. Now from LCP(q, A1)

ϕ2ξ∗
− = A1ϕ1ξ∗

+ + q,

ξ∗ = ξ∗
+ − ϕ−1

2 (A1ϕ1ξ∗
+ + q),

ξ∗ = (I1 − ϕ−1
2 A1ϕ1)ξ∗

+ − ϕ−1
2 q.

Thus, ξ∗ is a solution of (2). □

Now we show that the solution of (2) is unique when the matrix A1 is a
P -matrix.

Theorem 2. For any positive diagonal matrices ϕ1 and ϕ2, (2) has a unique
solution if A1 ∈ Rn×n is a P -matrix.

Proof. Since A1 is a P -matrix, for any q ∈ Rn LCP(q, A1) has a unique
solution. Let y∗ and u∗ be the solutions of (2). Then

y∗ = y∗
+ − ϕ−1

2 (A1ϕ1y∗
+ + q).

and
u∗ = u∗

+ − ϕ−1
2 (A1ϕ1u∗

+ + q).
As y∗

+ = u∗
+,

y∗ + ϕ−1
2 (A1ϕ1y∗

+ + q) = u∗ + ϕ−1
2 (A1ϕ1u∗

+ + q).

Hence
y∗ = u∗.

□
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Based on (2), we obtain an extended form of the fixed point method which
is referred to as Method 1.

Method 1. Let A1 ∈ Rn×n and q ∈ Rn. Suppose ξ(0) ∈ Rn an initial vector
and the sequence {z(k)}+∞

k=1 ⊂ Rn. Let Residue be an Euclidean norm of the
error vector and define the Residue as

Res(z(k)) = ∥ min(z(k), A1z(k) + q)∥2,

where z(k) is the kth approximate solution of the LCP(q, A1). The iteration
process stop if (z(k)) < 10−5 or the number of iteration reached 900. For
computing ξ(k+1) ∈ Rn is as follows:

(1) Given an initial vector ξ(0) ∈ Rn, error ϵ > 0 and set k = 0.
(2) Using the following scheme, create the sequence ξ(k):

ξ(k+1) = (I1 − ϕ−1
2 A1ϕ1)ξ(k)

+ − ϕ−1
2 q(3)

and set z(k+1) = ϕ1ξ
(k+1)
+ .

(3) If (z(k)) < ϵ then stop; otherwise, set k = k + 1 and return to step 2.

Remark 3. Fang [6] introduced a fixed point method, which is a special
case of (3) with ϕ2 = ϕ−1 and ϕ1 = I1, where ϕ is a positive diagonal matrix.

□

In the following result, we discuss the convergence condition when the sys-
tem matrix A1 is a P -matrix.

Theorem 4. Let A1 ∈ Rn×n be a P -matrix. Let ρ(|I1 −ϕ−1
2 A1ϕ1|) < 1 and

ξ∗ be the solution of (2). Then the sequence {z(k)}+∞
k=1 generated by Method 1

converges to z∗ for any initial vector ξ(0) ∈ Rn.

Proof. Suppose A1 is a P -matrix. Then ξ∗ is a unique solution of (2). Thus

ξ∗ = (I1 − ϕ−1
2 A1ϕ1)ξ∗

+ − ϕ−1
2 q.

From (3), it results

ξ(k+1) − ξ∗ = (I1 − ϕ−1
2 A1ϕ1)(ξ(k)

+ − ξ∗
+).

It follows that

|ξ(k+1) − ξ∗| = |(I1 − ϕ−1
2 A1ϕ1)| · |ξ(k)

+ − ξ∗
+|

≤ |(I1 − ϕ−1
2 A1ϕ1)| · |ξ(k) − ξ∗|.

Since ρ(|I1 − ϕ−1
2 A1ϕ1|) < 1. Hence, for any initial vector ξ(0) ∈ Rn the

sequence {z(k)}+∞
k=1 converges to the z∗. □

In the following result, we provide the convergence conditions for Method 1
when the system matrix is an H+-matrix.
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Theorem 5. Assume A1 ∈ Rn×n is an H+-matrix, A1D = diag(A1) and
B = A1D − A1 ∈ Rn×n. Let ϕ1 = α1D1, ϕ2 = ω−1A1D and

ρ
(
A−1

1D|B|D1
)

≤ ρ
(
A−1

1D|B|
)
ρ(D1),

where α1, ω are positive constants and D1 is a positive diagonal matrix. Let
ωα1 = β and ξ∗ be the solution of (2). Then the sequence {z(k)}+∞

k=1 generated
by Method 1 converges to z∗ for any initial vector ξ(0) ∈ Rn if

0 < β < 2(
1+ρ(A−1

1D|B|)
)

ρ(D1)
.

Proof. We have A1 is an H+-matrix, A1D = diag(A1), B = A1D − A1 and
ρ(A−1

1D|B|) < 1. For ϕ1 = α1D1 and ϕ2 = ω−1A1D, we obtain
|I1 − ϕ−1

2 A1ϕ1| = |I1 − (ω−1A1D)−1A1α1D1|
= |I1 − (ω−1A1D)−1(A1D − B)α1D1|
= |I1 − ωα1D1 + ωA−1

1DBα1D1|
≤ |I1 − ωα1D1| + |ωA−1

1DBα1D1|
≤ |I1 − βD1| + βA−1

1D|B|D1.

It follows that

|I1 − βD1| + βA−1
1D|B|D1 =

{
(I1 − βD1) + βA−1

1D|B|D1, if 0<βD1 ≤ I1,

(βD1 − I1) + βA−1
1D|B|D1, if βD1>I1.

Now we write

(4) ρ(|I1 − ϕ−1
2 A1ϕ1|) ≤

{
1 − (1 − ρ(A−1

1D|B|))βρ(D1), if 0<βρ(D1) ≤ 1,

(1 + ρ(A−1
1D|B|))βρ(D1) − 1, if βρ(D1)>1.

From (4) we can seen that ρ(|I1 − ϕ−1
2 A1ϕ1|) < 1 for βρ(D1) ∈ (0, 1] and

for βρ(D1) > 1, ρ(|I1 − ϕ−1
2 A1ϕ1|) < 1 if and only if(

1 + ρ(A−1
1D|B|)

)
βρ(D1) − 1 < 1

such that β < 2(
1+ρ(A−1

1D|B|)
)

ρ(D1)
. Therefore, if

0 < β < 2(
1+ρ(A−1

1D|B|)
)

ρ(D1)
,

for any initial vector ξ(0) ∈ Rn, the sequence {z(k)}+∞
k=1 converges to z∗. □

In the following result, we provide the convergence conditions for Method 1
when the system matrix is a symmetric positive definite (SPD) matrix.

Theorem 6. Let A1 ∈ Rn×n be the SPD matrix. Let ϕ2 = ω−1I1 and
ϕ1 = α1D1, where D1 is a scalar matrix and denote the minimum and the
maximum eigenvalues of A1D1 by νmin and νmax respectively. Let ξ∗ be the
solution of (2). Then the sequence {z(k)}+∞

k=1 generated by Method 1 converges
to z∗ for any initial vector ξ(0) ∈ Rn if 0 < β < 2

νmax
.
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Proof. From Theorem 4, we have

ξ(k+1) − ξ∗ = (I1 − ϕ−1
2 A1ϕ1)(ξ(k)

+ − ξ∗
+).

This implies that

∥ξ(k+1) − ξ∗∥2 = ∥(I1 − ϕ−1
2 A1ϕ1)(ξ(k)

+ − ξ∗
+)∥2.

Since ∥(ξ(k)
+ − ξ∗

+)∥2 ≤ ∥(ξ(k) − ξ∗)∥2,

∥ξ(k+1) − ξ∗∥2 ≤ ∥(I1 − ϕ−1
2 A1ϕ1)∥2∥(ξ(k) − ξ∗)∥2

≤ ∥(I1 − ϕ−1
2 A1ϕ1)∥2∥(ξ(k) − ξ∗)∥2.

If ∥I1 − ϕ−1
2 A1ϕ1∥2 < 1, then Method 1 is convergent. Therefore

∥I1 − ϕ−1
2 A1ϕ1∥2 = ∥I1 − ωI1A1α1D1∥2

= ∥I1 − βA1D1∥2.

We have

∥I − βA1D1∥2 = max{|1 − βνmin|, |1 − βνmax|}.

It follows that

∥I1 − βA1D1∥2 =
{

|1 − βνmin|, if |1 − βνmin| ≥ |1 − βνmax|,
|1 − βνmax|, if |1 − βνmax| ≥ |1 − βνmin|.

Thus ∥I1 − βA1D1∥2<1 if and only if

(a)
{

|1 − βνmin|<1,

|1 − βνmin| ≥ |1 − βνmax|,

and

(b)
{

|1 − βνmax|<1,

|1 − βνmax| ≥ |1 − βνmin|.

From (a) and (b) we obtain the convergence condition of Method 1 that is 0
< β ≤ 2

νmin+νmax
and 2

νmin+νmax
≤ β < 2

νmax
, from these two inequalities we

obtain

0 < β < 2
νmax

.

□
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4. CONCLUSION

We introduced an extended form of a fixed point method for solving the
linear complementarity problem LCP(q, A1) with parameter matrices ϕ1 and
ϕ2. Also, we have shown how the iterative form relates to the parameter
matrices ϕ1 and ϕ2. We have presented some convergence conditions and
some sufficient convergence domains for the proposed method.

Acknowledgements. The authors are grateful to the editor and to the
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significant improvement in the paper.
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