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SOLVING ILL-POSED HELMHOLTZ PROBLEMS
WITH PHYSICS-INFORMED NEURAL NETWORKS∗

MIHAI NECHITA†‡

Abstract. We consider the unique continuation (data assimilation) problem for
the Helmholtz equation and study its numerical approximation based on physics-
informed neural networks (PINNs). Exploiting the conditional stability of the
problem, we first give a bound on the generalization error of PINNs. We then
present numerical experiments in 2d for different frequencies and for geometric
configurations with different stability bounds for the continuation problem. The
results show that vanilla PINNs provide good approximations even for noisy data
in configurations with robust stability (both low and moderate frequencies), but
may struggle otherwise. This indicates that more sophisticated techniques are
needed to obtain PINNs that are frequency-robust for inverse problems subject
to the Helmholtz equation.
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1. INTRODUCTION

Physics-informed neural networks [16] have recently emerged as an effective
way of approximating ill-posed/inverse problems for partial differential equa-
tions (PDEs), which are challenging to solve numerically due their inherent
instability [11]. One of their main advantages is the versatility with which they
can solve both forward and inverse problems. As reported in [9] for well-posed
boundary value problems, PINNs are not able, however, to outperform finite
elements methods for low dimensional forward problems (2d and 3d).

In this paper we explore PINNs for an important class of inverse problems,
namely the unique continuation (data assimilation) problem in which measure-
ments are available in a subset of the domain and no boundary conditions are
given. The goal is to find a solution that extends the data subject to the PDE
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considered. Numerical methods for such problems typically consider regular-
ization at the continuous level (Tikhonov or quasi-reversibility). More recently,
other kinds of methods have been proposed that make use of regularization
at the discrete level in the framework of stabilized finite element methods
(FEM). In this latter approach, conditional stability estimates can be used to
prove error bounds and convergence in terms of the degree of ill-posedness and
the approximation order, see e.g. [3, 5, 15]. Conditional stability estimates
have also been employed in [14] to obtain bounds for the generalization error
of PINNs solving unique continuation problems for Poisson, Stokes, heat and
wave equations.

We are interested in the ill-posed unique continuation problem for the
Helmholtz equation, whose stability properties (in terms of the frequency)
depend on the geometry of the data set relative to the geometry of the target
set where the solution is reconstructed [6]. We consider PINNs for approximat-
ing this problem and we first give a bound in Section 3 on the generalization
error that takes into account the frequency dependence. We then explore nu-
merically in Section 4 how different frequencies and geometric configuration
impact the effectiveness of PINNs. We see that PINNs give good approxima-
tions when the frequency is low and the target set is inside the convex hull of
the data set (robust stability in terms of frequency as discussed in Section 2.1).
This includes results where data perturbations are present. When the target
set is outside of the convex hull of the data set (stability highly sensitive to
frequency) or when the frequency is large we observe poor results with vanilla
PINNs. This indicates that more sophisticated techniques are needed to ob-
tain PINNs that are robust in frequency for inverse problems subject to the
Helmholtz equation.

2. UNIQUE CONTINUATION FOR THE HELMHOLTZ EQUATION

Let Ω ⊂ R2 be a bounded domain (open and connected), and let ω ⊂ Ω be
an open and connected subset. We consider the ill-posed unique continuation
problem for the Helmholtz equation: find u ∈ H1(Ω) such that

(1)
{

−∆u − k2u = f in Ω,

u = g in ω,

with wave number k > 0, source term f ∈ L2(Ω) and datum g ∈ H1(ω). In
other words, partial measurements are given in a subset ω ⊂ Ω of the domain
for the solution of the Helmholtz equation, while no boundary conditions are
prescribed. If problem (1) has a solution, then its uniqueness is guaranteed by
the unique continuation principle for elliptic operators. We will assume that
the function g is the restriction on ω of a solution to the Helmholtz equation
with source term f .

Problem (1) is ill-posed in the sense of Hadamard: there is no uniform
stability with respect to the data f and g, see e.g. [1] or [11]. A small
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perturbation in data can lead to a large change in the solution. Nonetheless,
assuming an additional a priori bound, the solution can be bounded by the
data in the following way.

2.1. Conditional stability. We denote by B ⊂ Ω a target set containing
ω such that B \ ω̄ ⊂ Ω, i.e. B \ ω does not touch the boundary of Ω. A
standard result for quantitative unique continuation of elliptic operators, see
e.g. [1], states that there exist constants Cst(k) > 0 and α ∈ (0, 1) such that
the following Hölder stability estimate holds

(2) ∥u∥H1(B) ≤ Cst(k)
(

∥f∥L2(Ω) + ∥g∥H1(ω)

)α
∥u∥1−α

H1(Ω) ,

for any u ∈ H1(Ω) satisfying (1), where the stability constant Cst(k) depends
on the frequency k. The exponent α ∈ (0, 1) encodes the degree of ill-posedness
for the continuation problem: as α < 1 decreases the Hölder stability deteri-
orates, while α = 1 would give a well-posed problem with Lipschitz stability.
Both Cst and α depend on the geometric configuration in a nontrivial way,
and we give details below regarding Cst.

ω

B

(a) Cst sensitive to k.

ω

B

(b) Cst robust in k.

Fig. 1. Frequency dependence for the stability constant. Data set ω
(dark grey) and target set B (light grey). Ω is the whole square.

An important aspect for the stability of this ill-posed Helmholtz problem
is the dependence of the stability constant Cst(k) on the frequency k. For
example, when there is a straight line that intersects B but not ω̄, as in
Fig. 1a, it was proven in [6, Example 4] that for any N ∈ N, Cst(k) ≤ kN

cannot hold uniformly in k; this means that the stability constant in (2) grows
superpolynomially in the frequency. Also, for three-ball inequalities (where
ω, B, Ω are concentric balls) it was recently shown in [2] that in the maximum
norm Cst(k) grows exponentially in k and this dependence is optimal.

Bounds that have a different behavior with respect to the frequency can
be obtained under a convexity condition of the target domain B relative to
the data set ω, essentially that B is included in the convex hull of ω, as for
example in Fig. 1b. Such a condition was first considered in [10], where it was
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shown that the stability of the solution in the L2-norm can actually improve
in a certain sense as the frequency increases. In this vein, similar results that
make use of a convexity condition were proven in [6] for a particular geometric
setting prototypical for continuation inside the convex hull of ω. It was shown
in [6, Corollary 2] that there exist constants C > 0 and α ∈ (0, 1) such that

(3) ∥u∥H1(B) ≤ C
( ∥f∥L2(Ω) + ∥g∥H1(ω)

)α ∥u∥1−α
H1(Ω) ,

for any u ∈ H1(Ω) satisfying (1). Moreover, the norms in which data is
measured can be weaken [6, Corollary 3 and Lemma 2]: there exist constants
C > 0 and α ∈ (0, 1] such that

∥∇u∥L2(B)+k ∥u∥L2(B) ≤Ck
(
∥f∥H−1(Ω)+∥g∥L2(ω)

)α(
∥f∥H−1(Ω)+∥u∥L2(Ω)

)1−α

(4)

≤Ck
(
∥f∥L2(Ω)+∥g∥L2(ω)

)α(
∥f∥L2(Ω)+∥u∥L2(Ω)

)1−α
,

for any u ∈ H1(Ω) satisfying (1). Note that the bound is robust in the L2-
norm, while the frequency dependence is linear for the H1-seminorm. Apart
from the good dependence on the frequency, this kind of estimate is partic-
ularly suitable for numerical analysis since it can be directly applied to the
error equation.

Remark 1. If the target set is the whole domain Ω, then a global stability
estimate holds with the modulus of continuity being logarithmic | log(·)|−α

instead of Hölder-type | · |α. □

3. PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

Let us first recall the setup of a feed-forward neural network, which is based
on successively applying linear and nonlinear transformations to the inputs.
Let NL(x) : Rdin → Rdout be an L-layer neural network with (L − 1) hidden
layers and Nℓ neurons in the ℓ-th layer (N0 = din, NL = dout). Let us denote
the weight matrix and bias vector in the ℓ-th layer by W ℓ ∈ RNℓ×Nℓ−1 and
bℓ ∈ RNℓ , respectively. For a nonlinear activation function σ applied element
wise, the feed-forward neural network is given by:

input layer: N0(x) := x ∈ Rdin ,

hidden layers: Nℓ(x) := σ(W ℓNℓ−1(x) + bℓ) ∈ RNℓ , for 1 ≤ ℓ ≤ L − 1,

output layer: NL(x) := W LNL−1(x) + bL ∈ Rdout .

We denote the parameters of the network (weights and biases) by

θ :=
{
(W 1, b1), · · · , (W L, bL)

}
,
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and the parameter set by Θ, hence

θ ∈ Θ ⊂ RM , M =
L∑

l=1
Nl(Nl−1 + 1).

The output of a feed-forward neural network,
uθ(x) := NL(x),

depends on the tuning parameter θ. Training the network means using an
optimization algorithm to find the parameters θ ∈ Θ that minimize a certain
loss function Lθ.

Let us now briefly describe physics-informed neural networks (PINNs) as
introduced in [16], based on feed-forward neural networks. The idea is to
consider a loss function with two components: the residual of the differential
equation and the data residual. For typical boundary value problems, the data
residual contains boundary conditions, initial conditions, and any other avail-
able measurements of the solution. In our case, since no boundary conditions
are given, the data residual will only involve the interior partial measurements.

To solve the ill-posed unique continuation problem (1) with PINNs we con-
sider the residual of the Helmholtz equation

R̊θ := −∆uθ − k2uθ − f in Ω
and the data residual

R̊θ,d := uθ − g in ω,

and aim to minimize the two residuals over the admissible set of tuning pa-
rameters Θ by considering the loss function

L̊θ := ∥R̊θ∥L2(Ω) + ∥R̊θ,d∥L2(ω).

To approximate the integrals in the setting of a neural network, we introduce
the following collocation points: TΩ := {xΩ

i }|TΩ|
i=1 for the whole domain Ω and

Tω := {xω
i }|Tω |

i=1 for the data region ω ⊂ Ω in which observations of the solution
are given as {gi(xω)}|Tω |

i=1 . The loss function for the PINN is hence defined as
(5) Lθ := Rθ + Rθ,d,

with the PDE residual

(6) Rθ := 1
NΩ

∑
x∈TΩ

∣∣∣(∆uθ + k2uθ + f)(x)
∣∣∣2,

and the data residual
(7) Rθ,d := 1

Nω

∑
x∈Tω

∣∣(uθ − g)(x)
∣∣2.

By training the neural network we aim to
(8) find θ∗ ∈ Θ such that θ∗ = arg min

θ∈Θ
Lθ.
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We will denote by
u∗ = uθ∗

the PINN solution obtained by this algorithm, see Fig. 2 for a sketch.
As the loss function is highly non-linear and non-convex, we will use the

standard approach of minimizing by gradient-based methods such as ADAM
[12] or L-BFGS [7], more details are given in Section 4.
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uθ

NN: uθ(x)

Rθ

Rθ,d

∆uθ + k2uθ + f

uθ − g

Residuals:

Lθ

Optimize θ∗

Fig. 2. Representation of a PINN for solving (1), adapted from [8].

3.1. Estimating the generalization error. Such PINNs for unique contin-
uation problems have been considered in [14] where the authors prove for the
first time estimates for the generalization error by employing conditional sta-
bility estimates; details of the analysis and numerical examples were given for
the Poisson, Stokes, heat and wave equations. In brief, one uses conditional
stability estimates to bound the error in a target domain (generalization error)
by the residuals, which are then bounded in terms of the training error and the
number of training samples. We now adapt the analysis in [14, Theorem 2.4]
to the case of the Helmholtz equation by using the stability results discussed
in Section 2.1.

Theorem 2. Let f ∈ Cn−2(Ω) and g ∈ Cn(ω), with continuous extensions
of the functions and derivatives up to the boundaries, with n ≥ 2. Let u ∈
H1(Ω) be the solution of the unique continuation problem (1). Let u∗ = uθ∗ ∈
Cn(Ω) be a PINN solution generated by training (8). Consider a target set
B ⊂ Ω containing ω satisfying the convexity condition in [6, Corollary 2]. Then
there exist constants Cst(k) > 0 and α ∈ (0, 1) such that the generalization
error
(9) EG(B) := ∥∇(u − u∗)∥H1(B) + k∥u − u∗∥L2(B)

is bounded by

(10)
EG(B) ≤ Cst(k)

(
∥u∥1−α

L2(Ω) + ∥u∗∥1−α
L2(Ω) + E1−α

Ω,T + C
1−α

2
q N

− τ(1−α)
2

Ω

)
×
(
Eα

Ω,T + Eα
ω,T + C

α
2

q N
− τα

2
Ω + C

α
2

qdN
− τdα

2
ω

)
,
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where Cst(k) grows polynomially in k, the training errors are

(11) EΩ,T =

NΩ∑
j=1

wj |R̊θ∗(xΩ
j )|2

 1
2

, Eω,T =
(

Nω∑
i=1

wi|R̊θ∗,d(xω
i )|2

) 1
2

,

with constants Cq and Cqd given by the quadrature bounds, and some τ, τd > 0.

Proof. Consider the error û = u∗ − u ∈ H1(Ω) which satisfies
−∆û − k2û = R̊θ∗ , in Ω,

û = R̊θ∗,d, in ω,

in a weak sense. Applying the conditional stability estimate (4) we obtain
EG(B) ≤

≤ Cst(k)
(
∥R̊θ∗∥L2(Ω) + ∥R̊θ∗,d∥L2(ω)

)α (
∥R̊θ∗∥L2(Ω) + ∥û∥L2(Ω)

)1−α

≤ Cst(k)
(
∥R̊θ∗∥L2(Ω)+∥R̊θ∗,d∥L2(ω)

)α (
∥R̊θ∗∥L2(Ω)+∥u∥L2(Ω)+∥u∗∥L2(Ω)

)1−α
.

The conclusion follows by assuming quadrature rules with approximation bounds
as in [14, Eqs (2.9) and (2.11)], where for some τ, τd > 0 one has that

(12)
∥R̊θ∗∥L2(Ω) ≤ EΩ,T + C

1
2
q N

− τ
2

Ω ,

∥R̊θ∗,d∥L2(ω) ≤ Eω,T + C
1
2
qdN

− τd
2

ω ,

with constants Cq = Cq

(
∥R̊θ∗∥Cn−2(Ω)

)
and Cqd = Cqd

(
∥R̊θ∗,d∥Cn(ω)

)
. □

Remark 3. As discussed in Section 2.1, if the target domain B is outside
the convex hull of the measurement domain ω, the constant Cst(k) in the con-
ditional stability estimate might depend exponentially on the wave number k.
In that case, the same behaviour will appear in the bound of the generalization
error in Theorem 2, which indicates that obtaining good approximations for
this ill-posed problem with PINNs can be very challenging for high frequencies.

□

Remark 4. If the target set is the whole domain Ω, then one can obtain a
global bound on the generalization error by using a global logarithmic stability
estimate with an implicit dependence on the wave number. □

4. NUMERICAL EXPERIMENTS

We present numerical experiments for the Helmholtz unique continuation
problem (1) solved with physics-informed neural networks (PINNs) described
in Section 3 and implemented using the open-source library DeepXDE [13].
The test case we will focus on has been considered as a benchmark test for
this problem solved with primal-dual stabilized finite element methods: with a
conforming discretization in [6] and with a high-order hybridized discontinuous
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Galerkin method in [4]. It represents the Helmholtz version of the classical
Hadamard example for ill-posed elliptic equations.

Let n ∈ N and consider the Cauchy problem

(13)


∆u + k2u = 0 in Ω := (0, 1) × (0, 1),

u(x, 0) = 0 for x ∈ [0, 1],
uy(x, 0) = sin(nx) for x ∈ [0, 1],

whose solution for n > k is given by

(14) u(x, y) = 1√
n2 − k2 sin(nx) sinh(

√
n2 − k2y),

for n = k by u(x, y) = sin(kx)y, and for n < k by

u(x, y) = 1√
k2 − n2 sin(nx) sin(

√
k2 − n2y).

For such Hadamard-type solutions, we consider the interior datum g = u|ω
and study two geometric configurations of ω and B: one with frequency-robust
stability bounds and one exponentially sensitive to the frequency, as discussed
in Section 2.1, namely
(15) ω = Ω \ [0, 0.865] × [0.125, 0.875], B = Ω \ [0, 0.125] × [0.125, 0.875],
similar to Fig. 1b, and
(16) ω = (0.25, 0.75) × (0, 0.5), B = (0.125, 0.875) × (0, 0.875),
sketched in Fig. 1a.

To assess the effect of increasing the frequency, we will take exact solutions
(14) with n = 5, k = 1 and n = 7, k = 5, both having

√
n2 − k2 =

√
24 .

Hyper-parameters. The PINNs described in Section 3 need to be con-
figured with the following hyper-parameters: number of hidden layers L − 1
(depth), number of neurons in each hidden layer ℓ (width), learning rate λ, ac-
tivation function σ. In order to find good configurations for these, we draw on
previous numerical experiments for forward and inverse problems presented in
the DeepXDE tutorials [13] and the numerical experiments for unique contin-
uation subject to the Poisson equation in [14]. We also validate the choices by
comparing them with the results given by the hyper-parameter optimization
in [8], which uses Gaussian processes-based Bayesian optimization. For this we
consider the search space L − 1 ∈ [4, 50], Nℓ ∈ [20, 150], λ ∈ [10−4, 10−2], σ ∈
{sin, tanh}. In these ways we obtain some optimal or near-optimal configura-
tions to which the results presented below correspond. From different numer-
ical experiments, it turns out that a good choice for the activation function is
σ = sin and for the learning rate λ = 10−3, which will be fixed from this point
onwards.

Training. We sample N = NΩ = Nω points on Cartesian grids from the
PDE domain Ω and the measurement domain ω. We train the model for 50000
iterations with the ADAM optimizer [12] and then we train again with L-BFGS
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[7], following [13]. Since PINNs approximations are obtained by non-convex
minimization which in general does not have a unique solution, the method
might converge to different solutions depending on the network’s initial values.
We use the standard strategy of training the PINNs with different random
starting values for the optimizer and average the errors over 30 retrainings.
We note that the smallest training error is considerably better.
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Fig. 3. PINN solution and exact solution (14) with n = 7, k = 5.

Results. We first show in Fig. 3 the exact solution u for the Hadamard-type
function (14) with n = 7, k = 5, and the PINN solution u∗ when considering a
network generated with N = 400 training points, L − 1 = 4 hidden layers and
Nℓ = 24 neurons in each layer. As discussed above, the activation function is
σ = sin and the learning rate λ = 10−3.

N L − 1 Nℓ ∥u − u∗∥L2(B) ∥u − u∗∥H1(B)
400 4 24 3.35% 3.77%
1600 4 24 1.87% 2.70
6400 4 24 1.45% 2.31%

Table 1. Geometry with good stability (15). Relative percentage
generalization errors in B, n = 5 and k = 1.

We study the efficienty of PINNs by considering the L2 and H1 relative
percentage errors for the number of training points N = 202, 402, 802 in the
geometric configuration (15) with robust bounds in Theorem 2. Table 1 shows
the errors in the target domain B, while Table 2 shows the global errors.
In both tables we observe similar behaviours for the error. Moreover, we
notice that even for very few training points the generalization errors are small
(around 3%). Note that the reported errors correspond to averages over 30
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retrainings. The generalization errors corresponding to the network with the
smallest training error are typically smaller by a factor of 3 to 5. The training
error in these examples is in between 10−3 and 10−2. The training of such a
network is very fast, on a single Quadro GPU it takes about 1-2 minutes.

N L − 1 Nℓ ∥u − u∗∥L2(Ω) ∥u − u∗∥H1(Ω)
400 4 24 4.58% 5.15%
1600 4 24 2.89% 3.61%
6400 4 24 2.22% 3.01%

Table 2. Geometry with good stability (15). Relative percentage
generalization errors in Ω, n = 5 and k = 1.

N L − 1 Nℓ ∥u − u∗∥L2(Ω) ∥u − u∗∥H1(Ω)
400 4 24 4.73% 5.17%
1600 4 24 3.34% 4.06%
6400 4 24 2.38% 3.19%

Table 3. Geometry with good stability (15). Relative percentage
generalization errors in Ω, n = 5 and k = 1. Perturbed data.

We also test the performance of the method when the measurements are
perturbed with random values sampled from the normal distribution with
zero mean and standard deviation 0.01 (representing approximately 2.5% of
the average of the exact solution (14) with n = 5, k = 1 considered in that
example). The results given in Table 3 show that the numerical approximation
is robust to such perturbations in data.

In Table 4 we keep the same (convex) geometric configuration but increase
the frequency to k = 5, with n = 7 such that

√
n2 − k2 =

√
24 as before. We

observe that the approximation improves as the frequency increases: the errors
decrease compared to Table 2. This is probably an artefact of the particular
conditions of the experiment, but we note that such a surprising phenomenon
for inverse Helmholtz problems has been previously noticed and theoretically
discussed in [10]. However, when increasing the wave number k > 10 we report
that the PINNs no longer provide a good approximation to the solution.

N L − 1 Nℓ ∥u − u∗∥L2(Ω) ∥u − u∗∥H1(Ω)
400 4 24 2.03% 3.31%
1600 4 24 1.48% 2.04%
6400 4 24 1.27% 1.77%

Table 4. Geometry with good stability (15). Relative percentage
generalization errors in Ω, n = 7 and k = 5.
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We now consider continuation outside the convex hull of the data set in
(16). We observe in Table 5 that even though the wave number is small k = 1,
the PINNs fail to find a good approximation of the solution. This could be
caused by a bad search space for hyper-parameter optimization or it could be
an inherent limitation of vanilla PINNs.

N L − 1 Nℓ ∥u − u∗∥L2(Ω) ∥u − u∗∥H1(Ω)
400 4 24 46.1% 71.4%
1600 4 24 41.8% 66.6%
25600 4 24 39.4% 62.5%

Table 5. Geometry with bad stability (16). Relative percentage gen-
eralization errors in Ω, n = 5 and k = 1.
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