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CONVERGENCE AND ERROR ESTIMATES FOR
PSEUDO-POLYHARMONIC DIV-CURL AND ELASTIC

INTERPOLATION ON A BOUNDED DOMAIN
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PEDRO GONZALEZ-CASANOVA‡

Abstract. This paper establishes convergence rates and error estimates for the
pseudo-polyharmonic div-curl and elastic interpolation. This type of interpola-
tion is based on a combination of the divergence and the curl of a multivariate
vector field and minimizing an appropriate functional energy related to the di-
vergence and curl. Convergence rates and error estimates are established when
the interpolated vector field is assumed to be in the classical fractional vectorial
Sobolev space on an open bounded set with a Lipschitz-continuous boundary.
The error estimates introduced in this work are sharp and its rate of convergence
depends algebraically on the fill distance of the scattered data nodes. More pre-
cisely, the order of convergence depends, essentially, on the smoothness of the
target vector field, on the dimension of the Euclidean space and on the null space
of corresponding Sobolev semi-norm. A numerical example is given to illustrate
the convergence shape.
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1. INTRODUCTION

This paper deals with convergence and error estimates for approximation
of vector fields by div-curl and elastic pseudo-polyharmonic splines in n-
dimensional vector space n ≥ 2. Approximation of vector fields arises in
many scientific applications such as meteorology, electromagnetic, optic flow
[13, 14, 32, 33, 34]. Up to the work [8] this specific type of approximation has
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only been studied only in 2D or 3D dimensional spaces, both from the theoret-
ical and applied point of view, only for fields in dimension n = 2 and n = 3, see
[3, 7, 16]. Interpolation and approximation theory and computational algo-
rithm for fields in n ≥ 4, is an interesting problem for many applications. We
recall, that there are many scientific fields where multivariate approximation
in n ≥ 4 is important. For instance, a four-dimensional (4D) respiratory corre-
lated computed tomography (RCCT) has been widely used for studying organ
motion [20], a moving computational domain method and its application to
flow around a high-speed car passing through a hairpin curve [37] and robust
4D flow denoising using divergence-free wavelet transform [30]. We also men-
tion many seismic processing techniques where interpolation algorithms that
use multiple spatial dimensions have many advantages over one-dimensional
methods. In particular, simultaneous interpolation in all five seismic data di-
mension (inline, crossline, offset, azimuth, and frequency) has great utility in
predicting missing data with correct amplitude and phase variations [35, 36].

It is important to stress that multivariate interpolation and approximation
for n-dimensional space with n ≥ 2 have been extensively considered in the
literature, for the case of multivariate and one dimensional valued functions.
For instance, we cite [12] and the references therein and the list of papers
studying scalar radial basis functions in the general dimension n is not ex-
haustive. In [7, 9], the div-curl approximation problem was studied by the
authors both for interpolating and smoothing div-curl problem in only 3D
dimensional space and was related to the thin plate splines under tension.
Indeed, to extend the work given in [7, 9] to n-dimensional space with n ≥ 4
still an open problem since the thin plate spline under a tension τ of order
m are related to the differential operator ∆m+1 − τ2∆m for which finding a
fundamental solution in the distributional sense in n-dimensional space is a
difficult task and it is an open problem. Here, ∆m denotes the iterate Laplace
operator of order m. It is important to underline that the present work is
quite different from the one introduced in [7, 9]. In [8], the authors introduced
and studied pseudo-polyharmonic Div-Curl and Elastic vector fields approx-
imation their associated operator is the fractional pseudo-differential iterate
Laplacian operator ∆m+s for which a fundamental solution is known in any
n-dimensional space [29]. It is not easy, to introduce the main problem we
want to study here without introducing all the notations. To facilitate the
readability of our present paper, we will dedicate a specific subsection where
we will recall all the notations and definitions needed. We hope that once
all the notations have been introduced, the paper will be easier to read. For
more details on the pseudo-polyharmonic div-curl and elastic approximation,
we refer to [8]. The smoothing and interpolating problems proposed in [8], are
based on the minimization of a quadratic functional which linearly combines
two energy terms related to the divergence and the curl of the vector field in
n-dimensional space, respectively.
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The aim of this paper is to study and establish some results on the error es-
timates and convergence for the the pseudo-polyharmonic div-curl and elastic
interpolation, when the vector field to be interpolated belongs to the vecto-
rial classical fractional Sobolev space on an open connected and bounded set
in n-dimensional space. This theoretical setting is placed in Hilbert spaces,
sometimes referred as Native spaces, which are contained in the standard vec-
torial Sobolev spaces. The specific mathematical results along with notations,
functional spaces and energy used are stated in Section 2. However, we can
briefly say that the main results of this paper, are the proof of the conver-
gence in the Sobolev space Hm+s(Ω,Rn), see Theorem 3.2 and Theorem 4.2,
for div-curl minimization problem and for elastic minimization problem, re-
spectively, together with the results on error estimates, see Theorem 3.4 and
Theorem 4.3, for div-curl minimization problem and for elastic minimization
problem, respectively.

The paper is organized as follows. In Section 2, we will give the notations
and some preliminary results. Then, the minimal interpolating problem and
the minimal extension problem to the classical Sobolev space Hm+s(Ω;Rn) are
studied. Their basic properties are given. In Section 3, the convergence Theo-
rem 3.2 and error estimates Theorem 3.4 are proved for div-curl minimization
problem. In Section 4, we give the interpolating minimization problem and
results on convergence and error estimates for the elastic minimization prob-
lem. Theorem 4.2 and Theorem 4.3 are proved. In Section 5, some numerical
experiments are given to illustrate some theoretical results. As usual, we finish
our paper by giving a general conclusion.

2. PSEUDO-POLYHARMONIC DIV-CURL INTERPOLATION

In this section we analyzed the minimal interpolating problem and the min-
imal extension problem to the classical Sobolev space Hm+s(Ω;Rn). We first
introduce in a subsection the notations which we will use and some preliminary
results.

2.1. Notations and preliminary results. The notations used in this paper,
are similar to those used in [8]. But, it should be more convenient to state
here the definitions and properties on the classical Sobolev space that we will
use. For more details, we invite the reader to consult, for example, the long-
standing classic references on Sobolev spaces [1, 2, 26].

Let N = {1, 2, 3, . . . } be the set of positive integers and Ω ⊂ Rn be a
nonempty open set in Rn with n ∈ N and n ≥ 2. The standard Euclidean
norm in Rn is denoted by |x| =

√
x2

1 + . . . + x2
n for x = (x1, . . . , xn)T ∈ Rn,

where the notation xT stands for the transpose of x. The notation xT y stands
for the classical scalar product in Rn. We denote by C k(Ω;Rn) the space of
continuous functions with derivatives up to the k-th order are continuous over
the closure of Ω. For p ∈ [1, ∞) and r ∈ [0, ∞), the Sobolev spaces on Ω,
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denoted by W r,p(Ω) are the spaces

W r,p(Ω) :=
{
u ∈ Lp(Ω) : ∀α ∈ Nn, 0 ≤ |α| ≤ r, ∂αu ∈ Lp(Ω)

}
,

where Lp(Ω) is the classical Lebesgue space of order p and ∂αu = ∂|α|u
∂x

α1
1 ...xαn

n

stands for the derivative of u of order α = (α1, . . . , αn) ∈ Nn in the distribu-
tional sense. We recall that |α| = α1 + · · · + αn and α! = α1! × · · · × αn! stand
for the module and the factorial of the multi-index α, respectively.

The Sobolev spaces W r,p(Ω) are equipped with the following semi-norms
and norms (see [1, 2, 26]) given as follows

• For any r ∈ N, the usual semi-norms | . |k,p,Ω with k ∈ {0, . . . , r}, and
the norm ∥ · ∥r,p,Ω are defined by

(2.1)

For 1 ≤ p < ∞ :

|u|k,p,Ω :=
( ∑

|α|=k

∫
Ω

|∂αu(x)|pdx

)1/p

, ∥u∥r,p,Ω :=
( ∑

0≤k≤r

|u|pk,p,Ω

)1/p

.

For p = ∞ :

|u|k,∞,Ω := max
|α|=k

(
ess sup

x∈Ω
|∂αu(x)|

)
, ∥u∥r,∞,Ω := max

0≤k≤r
|u|k,∞,Ω.

• For any r ∈ [0, ∞)\N, the notations ⌊r⌋ and ⌈r⌉ stand for the integers
(floor and ceiling of r) satisfying ⌊r⌋ ≤ r < ⌊r⌋ + 1 and ⌈r⌉ − 1 < r <
⌈r⌉, respectively. The Sobolev space W r,p(Ω) of non-integer order r,
consists of the (equivalence classes of) functions u ∈ W ⌊r⌋,p(Ω) such
that

(2.2)
|u|r,p,Ω :=

( ∑
|α|=⌊r⌋

∫
Ω×Ω

|∂αu(x)−∂αu(y)|p
|x−y|n+p(r−⌊r⌋) dxdy

)1/p

< ∞, if 1 ≤ p < ∞

|u|r,∞,Ω := max
|α|=⌊r⌋

ess sup
x,y∈Ω

x̸=y

|∂αu(x)−∂αu(y)|
|x−y|r−⌊r⌋ < ∞, if p = ∞.

The norm ∥ · ∥r,p,Ω defined in W r,p(Ω) is given by

(2.3) ∥u∥r,p,Ω :=


(
∥u∥p

⌊r⌋,p,Ω + |u|pr,p,Ω

)1/p
, if 1 ≤ p < ∞,

max
(
∥u∥⌊r⌋,∞,Ω, |u|r,∞,Ω

)
, if p = ∞.

The semi-norms and the norms defined on the product space W r,p(Ω;Rn) =
[W r,p(Ω)]n, are denoted by the similar notations as in the scalar case, and are
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given by

(2.4)

• For 1 ≤ p < ∞ :

|u|r,p,Ω :=
(

n∑
i=1

|ui|pr,p,Ω

)1/p

, ∥u∥r,p,Ω :=
(

n∑
i=1

∥ui∥p
r,p,Ω

)1/p

,

• For p = ∞ :
|u|r,∞,Ω := max

1≤i≤n
|ui|r,∞,Ω, ∥u∥r,∞,Ω := max

1≤i≤n
∥ui∥r,∞,Ω,

for all u = (u1, . . . , un)T ∈ W r,p(Ω;Rn). When p = 2 the Sobolev space
W r,2(Ω;Rn) is denoted as usual by Hr(Ω;Rn). When the open set Ω is
bounded and has a Lipschitz-continuous boundary (in the sense of Necǎs [26]),
for any r > 0, the space W r,p(Ω;Rn) satisfies the properties given in the fol-
lowing proposition.

Proposition 2.1. The following properties hold.
i) Sobolev embedding theorem:

(2.5) ∀r > 0, ∀k ∈ Z+, k + n
p < r, W r,p(Ω;Rn) ↪→ C k(Ω;Rn)

ii) Existence theorem of an extension operator:
There exists a linear continuous operator EΩ from W r,p(Ω;Rn) into
W r,p(Rn;Rn) such that, for any v ∈ W r,p(Ω;Rn), EΩv|Ω = v.

iii) Quotient norm:
Let p ∈ [1, ∞), r > 0 and k = ⌈r⌉ − 1. Then, there exists a positive
constant C such that

(2.6) min
q∈Πk(Ω;Rn)

∥v − q∥r,p,Ω ≤ C|v|r,p,Ω,

for all v ∈ W r,p(Ω;Rn), where Πk(Ω;Rn) is the space of vector-valued
polynomials of n-variables with degree ≤ k.

Proof. The result is a vectorial version of the scalar case, namely Items 1.
and 2. are generalizations of the corresponding scalar case results, (see [2, 26]).

Item 3. can be derived from Theorem 3.1.1, see [15], if r ∈ N∗, and Theorem
5.1 [28] otherwise. □

In the following, the notation L1
loc(Rn) stands for the classical Lebesgue

space of locally integrable functions on Rn. Let us also recall the Schwartz
spaces that we will need, for more details see [29]: D ′(Rn;Rn) stands for the
space of the vector-valued distributions on Rn and S (Rn) stands for the space
of rapidly decreasing functions on Rn. Its topological dual is the space S ′(Rn)
is the Schwartz space of tempered distributions on Rn. We also recall, that
for a function φ ∈ S (Rn), its Fourier transform, denoted by φ̂, is defined by
φ̂(ξ) =

∫
Rn

φ(x)e−2iπxT ξdx and for a tempered distribution T ∈ S ′(Rn), its

Fourier transform T̂ is defined by duality ⟨T̂ , φ⟩ = ⟨T, φ̂⟩ for all φ ∈ S (Rn).
If it is necessary, we will also use the standard notation F [T ].
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2.2. Minimal interpolating problem and its extension to the classical
Sobolev space. Let s ∈ R, n, m ∈ N with n ≥ 2, and consider the space

Xm,s(Rn;Rn) =
{

u = (u1, . . . , un)T ∈ D ′(Rn;Rn) : ∀α ∈ Zn
+, |α| = m,

∂αui ∈ H̃s(Rn), i = 1, . . . , n
}

,(2.7)

where the (scalar) space H̃s(Rn) (see [27]) is defined as

H̃s(Rn) =
{

v ∈ S ′(Rn) : v̂ ∈ L1
loc(Rn),

∫
Rn

|ξ|2s|v̂(ξ)|2dξ < +∞
}

.

We assume that the integer m ≥ 1 and s ∈ R are such that
(2.8) −m + n

2 < s < n
2 .

The space Xm,s(Rn;Rn) is equipped with the following semi-scalar product
and its associated semi-norm
(2.9)

(u|v)m,s =
∑

|α|=m

m!
α!

∫
Rn

|ξ|2s(∂̂αu(ξ)
)T (

∂̂αv(ξ)
)
dξ, |u|m,s =

√
(u|u)m,s.

The null space associated to the semi-scalar product is the space, denoted by
Πm−1(Rn;Rn) of vector-valued polynomials of n-variables with degree ≤ m−1.
We have the following result.

Proposition 2.2. i) The space Xm,s(Rn;Rn) endowed with the semi-
scalar product given by (2.9) is a semi-Hilbert space.

ii) For any bounded open subset Ω of Rn, the space Xm,s(Rn;Rn) endowed
with the following scalar product and its associated norm defined by

(2.10) ((u|v))Ω
m,s =

n∑
i=1

∫
Ω

ui(x)vi(x)dx + (u|u)m,s, ∥u∥Ω
m,s =

√
((u|u))Ω

m,s,

for u = (u1, . . . , un)T and v = (v1, . . . , vn)T ∈ Xm,s(Rn;Rn), is a Hilbert
space and its topology is independent of Ω.

iii) The following continuous embedding
Xm,s(Rn;Rn) ↪→ Hm+s

loc (Rn;Rn),
holds, which implies that Xm,s(Rn;Rn) ↪→ C k(Rn;Rn) for all integer k
such that k + n/2 < m + s.

Proof. The proposition is an immediate consequence of a scalar version see
[4, 5, 17, 18]. □

From now on, the scalar product and its associated norm given in (2.10),
will be denoted by (( .|. ))m,s and ∥ · ∥m,s, respectively, without making any
particular reference to any particular open set Ω.

Let Ω be an open bounded connected nonempty subset of Rn having a
Lipschitz-continuous boundary. Let RΩ denote the operator of restriction
from Rn to Ω.
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We note here that as an immediate consequence of a scalar version given
in [4, 5, 17, 18], we have that: The operator RΩ is linear and continuous
from Xm,s(Rn;Rn) onto Hm+s(Ω;Rn). Thus, there exists an extension oper-
ator, denoted by EΩ which is linear and continuous from Hm+s(Ω;Rn) into
Xm,s(Rn;Rn) such that RΩEΩu = u for all u in Hm+s(Ω;Rn).

In the remainder of this paper, an extension EΩu of u will be denoted by
u, namely we use for simplicity EΩu = u. We recall that, the div and curl
operators are defined by

div u = ∇T · u =
n∑

i=1
∂iui, curl u = ∇ · uT − (∇ · uT )T = (∂iuj − ∂jui)1≤i,j≤n,

where ∇ = (∂1, . . . , ∂n)T stands for the gradient operator, u = (u1, . . . , un)T is
a vector-valued distribution and ∂iuj = ∂uj

∂xi
is the i-th partial derivative of uj .

The general definition of the curl is classical in multidimensional harmonic
analysis, see [19, 31]. Let ρ > 0 denote a positive real parameter. We consider
the bilinear forms Dm,s, Rm,s and Mρ

m,s given by

Dm,s(u, v) =
∑

|α|=m−1

(m−1)!
α!

∫
Rn

|ξ|2s ̂∂α(div u)(ξ) ̂∂α(div v)(ξ)dξ,

Rm,s(u, v) = 1
2

∑
|α|=m−1

(m−1)!
α!

∫
Rn

|ξ|2s
〈

̂∂α(curl u)(ξ)
∣∣∣ ̂∂α(curl v)(ξ)

〉
n×n

dξ,

Mρ
m,s(u, v) = ρDm,s(u, v) + Rm,s(u, v).

Here the notation
〈

.|.
〉

n×n
stands for the Frobenius scalar product

〈
z|z′〉

n×n
=

trace
(
zT z′) in the space Rn×n of n×n matrices. Its associated norm is denoted

by ∥ · ∥n×n. The square root of the quadratic forms associated to Dm,s, Rm,s

and Mρ
m,s are called the div-energy, the curl-energy and the div-curl energy,

respectively. For short notation, we will write Dm,s(u), Rm,s(u) and Mρ
m,s(u)

for Dm,s(u, u), Rm,s(u, u) and Mρ
m,s(u, u), respectively.

Note that as a direct consequence of Proposition 7 in [8], we have that, for
all u, v ∈ Xm,s(Rn;Rn), we have
(2.11) M1

m,s(u, v) = (u|v)m,s,

and for all positive real numbers ρ, we have
(2.12) inf (ρ, 1)|u|2m,s ≤ Mρ

m,s(u) ≤ sup (ρ, 1)|u|2m,s.

Let d(n) = dim Πm−1(Rn). We recall that a set B =
{

b1, . . . , bd(n)
}

⊂ Rn

is called a Πm−1-unisolvent (see [15]) if and only if
∀{z1, . . . , zd(n)} ⊂ R, ∃!ϑ ∈ Πm−1(Rn), ∀i = 1, . . . , d(n), ϑ(bi) = zi.

Let A be a finite set of scattered data points in Ω := closure(Ω). We
assume that A contains a Πm−1(Rn)-unisolvent subset, which implies that
any polynomial in Πm−1(Rn) vanishing in A is identically zero.
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For any vector-valued function u : Ω̄ → Rn, we consider The subset of
Xm,s(Rn;Rn) defined as IA (u) = {w ∈ Xm,s(Rn;Rn) | w(a) = u(a), ∀a ∈
A }. The affine space IA (u) is the interpolating set of all the functions w ∈
Xm,s(Rn;Rn) taking the same values on A as u. We also consider the following
minimal interpolating problem:

Problem 1. Find u∗ ∈ IA (u) minimizing the functional energy Mρ
m,s(w),

namely

(2.13) u∗ = arg
[

min
w∈IA (u)

Mρ
m,s(w)

]
.

Remark 2.3. We observe that as for the pointwise values of w ∈ Xm,s(Rn;Rn),
i.e., w(a), must to be well-defined, then w has to be a regular function which
require the regularity condition (2.8). □

We have the following proposition.

Proposition 2.4. For all u: Ω̄ → Rn one has that:
i) The minimal interpolating problem Problem 1, introduced above, has a

unique solution in Xm,s(Rn;Rn). This unique solution will be denoted by
SA

ρ u.
ii) The solution SA

ρ u of Problem 1, is the unique element in IA (u) satisfying
the following characterization

(2.14) Mρ
m,s(SA

ρ u, v) = 0,

for all v ∈ Xm,s(Rn;Rn) such that v(a) = 0 for all a ∈ A .
iii) The solution SA

ρ u belongs to the space C η(Rn;Rn) where η is the integer
given by

(2.15) η =
{

2m + 2s − n − 1, for 2m + 2s − n ∈ N∗,

⌊2m + 2s − n⌋, otherwise.
iv) For all q ∈ Πm−1(Rn;Rn), we have the reproducing property

(2.16) SA
ρ q = q.

Proof. See [8]. □

The unique solution SA
ρ u of Problem 1, may be obtained explicitly and

may be computed numerically from the values {u(a)}a∈A by solving a linear
system, see [8] for more details. However, it is not necessary here to have in
mind all these details.

Now, we give a result on the minimal pseudo-polyharmonic div-curl ex-
tension problem in the classical vectorial Sobolev space Hm+s(Ω;Rn) on the
domain Ω.

We recall that RΩ denotes the operator of restriction from Rn to Ω and we
consider the subset IΩ(f) = {w ∈ Xm,s(Rn;Rn) | RΩw = f} of Xm,s(Rn;Rn).
We define the following minimization div-curl extension problem:
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Problem 2. For any f ∈ Hm+s(Ω;Rn), find v∗ ∈ IΩ(f) minimizing the
functional energy Mρ

m,s(w), namely

(2.17) v∗ = arg
[

min
w∈IΩ(f)

Mρ
m,s(w)

]
.

We have the following results.

Proposition 2.5. For all f ∈ Hm+s(Ω;Rn)
i) The minimal div-curl extension Problem 2 admits a unique solution in

Xm,s(Rn;Rn). This unique solution will be denoted by SΩ
ρ f .

ii) The solution SΩ
ρ f of Problem 2 is the unique element in IΩ(f) satisfying

the following characterization

(2.18) Mρ
m,s(SΩ

ρ f, v) = 0,

for all v ∈ Xm,s(Rn;Rn) such that RΩv = 0.
iii) For all q ∈ Πm−1(Ω;Rn), we have the reproducing property

(2.19) SΩ
ρ q = q, in Ω.

Proof. According to the inequality (2.12), the symmetric positive bilinear
form Mρ

m,s is continuous. Then, there exists a positive and symmetric contin-
uous linear operator

S : Xm,s(Rn;Rn) → Xm,s(Rn;Rn),

such that
Mρ

m,s(u, v) = (Su | v)m,s,

for all u, v ∈ Xm,s(Rn;Rn). The operator S admits a symmetric positive
square-root. Namely, there exists a symmetric and positive continuous linear
operator T : Xm,s(Rn;Rn) → Xm,s(Rn;Rn) such that S = T 2. In conse-
quence, we have

Mρ
m,s(u) = Mρ

m,s(u, u) = (T 2u | u)m,s = (Tu | Tu)m,s = |Tu|2m,s,

for all u ∈ Xm,s(Rn;Rn).
The operators RΩ and T satisfy the following properties:

(i) RΩ is continuous and surjective.
(ii) ker(T ) = Πm−1(Rn;Rn) and T (Xm,s(Rn;Rn)) is closed: This is a con-

sequence of the fact that Πm−1(Rn;Rn) is the null space of the semi-
scalar product given in (2.9) together with the inequality (2.12).

(iii) ker(T )+ker(RΩ) is closed: It is a consequence of the fact that ker(RΩ)
is closed and ker(T ) = Πm−1(Rn;Rn) is a finite dimensional space.

(iv) ker(T ) ∩ ker(RΩ) = {0}.
Thus all the results given in the proposition are a consequence of the general

spline theory (see [6, 11, 21]). □
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Remark 2.6. The items ii) and iii) in the previous proposition are not
surprising as the results are consequences of a general spline theory, where the
results are proved for three abstract Hilbert spaces with general two continuous
operators satisfying items (a)-(b)-(c)-(d) proved in our cases for the operators
RΩ and T , see the abstract frame work given in [6, 11, 21]. □

In the following proposition we prove the continuity of the operator SΩ
ρ .

Proposition 2.7. The linear operator SΩ
ρ : Hm+s(Ω;Rn) −→ Xm,s(Rn;Rn)

is continuous. Thus, there exists a positive constant C (depending on Ω, m
and s) such that the inequality

(2.20) ∥SΩ
ρ f∥m,s ≤ C ∥f∥m+s,2,Ω,

holds for all f ∈ Hm+s(Ω;Rn). Moreover, if s ≤ 0, then there exists a constant
C1 > 0 such that
(2.21) |SΩ

ρ f |m,s ≤ C1 |f |m+s,2,Ω,

holds for all f ∈ Hm+s(Ω;Rn).

Proof. Let (gℓ)ℓ∈N be any sequence in Hm+s(Ω;Rn) such that
∃ g ∈ Hm+s(Ω;Rn), gℓ −→ g in Hm+s(Ω;Rn),(2.22)
∃ u ∈ Xm,s(Rn;Rn), SΩ

ρ gℓ −→ u in Xm,s(Rn;Rn).(2.23)

Using (2.18), we have Mρ
m,s(SΩ

ρ gℓ, v) = 0 for all ℓ ∈ N and all v ∈ IΩ(0).
This implies together with (2.23), that Mρ

m,s(u, v) = 0. From the continuity
of the operator RΩ and the convergence (2.23), we obtain the convergence
gℓ = RΩSΩ

ρ gℓ −→ RΩu in Hm+s(Ω;Rn). Thus, from the convergence (2.22),
we deduce that RΩu = g, which means that u belongs to IΩ(g). Now, by the
characterization (2.18), we conclude that u = SΩ

ρ g. Consequently the graph
of the operator SΩ

ρ is closed in Hm+s(Ω;Rn) × Xm,s(Rn;Rn) and the closed
graph theorem implies that SΩ

ρ is continuous. Then, Property (2.20) holds.
Let us suppose that s ≤ 0. Since SΩ

ρ q = q (see (2.19)) and |q|m,s = 0, for
all q in Πm−1(Rn;Rn), we have

|SΩ
ρ f |m,s = |SΩ

ρ f − q|m,s = |SΩ
ρ (f − q)|m,s ≤ ∥SΩ

ρ (f − q)∥m,s.

Using the continuity of the operator SΩ
ρ , we get

|SΩ
ρ f |m,s ≤ C ∥f − q∥m+s,2,Ω,

for all q in Πm−1(Rn;Rn) and for all f ∈ Hm+s(Ω;Rn), where the constant C
is given in (2.20).

Therefore,
|SΩ

ρ f |m,s ≤ C min
q∈Πk(Ω;Rn)

∥f − q∥m+s,2,Ω,

for all f ∈ Hm+s(Ω;Rn), where k = ⌈m + s⌉ − 1 ≤ m − 1.
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According to item 3 in Proposition 2.1, there exists a positive constant C1
such that

|SΩ
ρ f |m,s ≤ C1 |f |m+s,2,Ω,

for all f ∈ Hm+s(Ω;Rn). □

Proposition 2.8. We have
(2.24) Mρ

m,s(SΩ
ρ f − SA

ρ SΩ
ρ f) = Mρ

m,s(SΩ
ρ f) − Mρ

m,s(SA
ρ SΩ

ρ f) ≤ Mρ
m,s(SΩ

ρ f),

where SA
ρ SΩ

ρ f is the solution of the minimal interpolating problem (2.13) rel-
ative to the element u = SΩ

ρ f .

Proof. The solution SA
ρ SΩ

ρ f of Problem (2.13) satisfies Mρ
m,s(SA

ρ SΩ
ρ f, u) =

0 for all u in Xm,s(Rn;Rn) vanishing in A (see (2.14)). Since the function
u = SΩ

ρ f − SA
ρ [SΩ

ρ f ] vanishes on A , we get

Mρ
m,s(SΩ

ρ f) =Mρ
m,s(SA

ρ SΩ
ρ f + u, SA

ρ SΩ
ρ f + u)

=Mρ
m,s(SA

ρ SΩ
ρ f, SA

ρ SΩ
ρ f) + Mρ

m,s(u, u)
=Mρ

m,s(SA
ρ SΩ

ρ f) + Mρ
m,s(SΩ

ρ f − SA
ρ SΩ

ρ f). □

3. CONVERGENCE AND ERROR ESTIMATES

In this section, we present results about convergence and error estimates in
the Sobolev space W m+s,p(Ω;Rn). Henceforth, we assume that the following
hypothesis

• (H1): Ω is an open bounded connected subset of Rn having a Lipschitz-
continuous boundary.

• (H2): −m + n
2 < s < n

2 .
are satisfied. The fill-distance of a subset A ⊂ Ω is defined by

h := h(A , Ω) = supx∈Ω infa∈A |x − a|.

From (H1), the domain Ω satisfies the cone property.

3.1. Convergence in Hm+s(Ω;Rn). Now we establish a norm equivalence
that will be crucial for the convergence results and error estimates to follow.

Proposition 3.1. Let A be a finite subset of Ω containing a Πm−1-unisolvent
subset. Then, there exists h0 > 0 (independent of A ) such that for any
h := h(A , Ω) < h0, there exists a Πm−1−unisolvent subset A h

0 ⊂ A such
that the following inequality

(3.1) C1∥u∥m,s ≤
( ∑

a∈A h
0

|u(a)|2 + Mρ
m,s(u)

)1/2

≤ C2∥u∥m,s,

holds for all u ∈ Xm,s(Rn;Rn), where C1 and C2 are positive constants inde-
pendent of h, A and u.
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Proof. From [4, Proposition I-2.3 and II-5.1] or [5, Lemma 6.1], we get the
vector version, i.e., there exists h0 > 0 (independent of A ) such that for any
h := h(A , Ω) < h0, there exists a Πm−1-unisolvent subset A h

0 ⊂ A such that
the following inequality

(3.2) D1∥u∥m,s ≤
( ∑

a∈A h
0

|u(a)|2 + |u|2m,s

)1/2

≤ D2∥u∥m,s,

holds for all u ∈ Xm,s(Rn;Rn), where D1 and D2 are positive constants inde-
pendent of h, A and u. Using the inequality (2.12), we get

inf (1, ρ)
( ∑

a∈A h
0

|u(a)|2 + |u|2m,s

)
≤

∑
a∈A h

0

|u(a)|2 + Mρ
m,s(u)

≤ sup (1, ρ)
( ∑

a∈A h
0

|u(a)|2 + |u|2m,s

)
.(3.3)

Then the result (3.1) is a consequence of the inequalities (3.2) and (3.3)
with C1 = D1

√
inf (1, ρ) and C2 = D2

√
sup (1, ρ). □

Now, we state the main results about convergence.

Theorem 3.2. Let A be a finite subset of Ω containing a Πm−1-unisolvent
subset. For all f ∈ Hm+s(Ω;Rn) we have the following strong convergence
results

i) SΩ
ρ f = lim

h→0
SA

ρ SΩ
ρ f in Xm,s(Rn;Rn).

ii) f = lim
h→0

SA
ρ SΩ

ρ f in Hm+s(Ω;Rn) and consequently in Cm(s)−1(Ω;Rn),
where m(s) is the integer given by

(3.4) m(s) =
{

m + s − 1, for (m + s) ∈ N∗,

⌊m + s⌋, otherwise.

Proof. For all f ∈ Hm+s(Ω;Rn), let (fh)h>0 be the sequence given by i) Us-
ing the inequalities (3.1) and the minimal norm property of the spline function
fh successively, we get

(3.5)

∥fh∥m,s ≤ 1
C1

( ∑
a∈A h

0

|fh(a)|2 + Mρ
m,s(fh)

)1/2

≤ 1
C1

( ∑
a∈A h

0

|SΩ
ρ f(a)|2 + Mρ

m,s(SΩ
ρ f)

)1/2

≤ C2
C1

∥SΩ
ρ f∥m,s.
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This implies that the sequence (fh)h>0 is bounded, as h tends to zero, in
the Hilbert space Xm,s(Rn;Rn) equipped with the norm ∥ · ∥m,s defined in
(2.10).

Thus, there exists a subsequence (fh(ℓ))ℓ∈N which weakly converges to an
element f∗ in Xm,s(Rn;Rn).

Let x be any point in Ω. By using item 3 of Proposition 2.2, the mapping δx :
v 7→ v(x) is strongly continuous from Xm,s(Rn;Rn) into C and consequently
it is also weakly continuous. Then

(3.6) lim
ℓ→+∞

fh(ℓ)(x) = f∗(x) = RΩf∗(x).

The hypothesis h = supx∈Ω infa∈A |x − a| → 0, implies that there exists
xh ∈ A such that |x − xh| < h. We have

∀a ∈ A , fh(a) = SΩ
ρ f(a) = f(a),

and by taking into account the fact that RΩSΩ
ρ f = f , we have

f(x) − fh(ℓ)(x) =
(
SΩ

ρ f(x) − SΩ
ρ f(xh(ℓ))

)
+
(
fh(ℓ)(xh(ℓ)) − fh(ℓ)(x)

)
.

The continuity of SΩ
ρ f implies that lim

ℓ→+∞
SΩ

ρ f(xh(ℓ)) = SΩ
ρ f(x). Using

Sobolev embedding theorem for the space Hm+s(Ω;Rn) (item 1 of Proposi-
tion 2.1), we obtain that lim

ℓ→+∞

(
fh(ℓ)(xh(ℓ)) − fh(ℓ)(x)

)
= 0. Thus

(3.7) lim
ℓ→+∞

fh(ℓ)(x) = f(x).

Relations (3.6) and (3.7) provide the relation RΩf∗ = f .
The weak convergence of

(
fh(ℓ)

)
ℓ∈N

to f∗ and the strong continuity of the
quadratic form Mρ

m,s imply that

(3.8) Mρ
m,s(f∗) ≤ lim inf

ℓ→+∞
Mρ

m,s(fh(ℓ)) ≤ Mρ
m,s(SΩ

ρ f).

According to the fact that RΩf∗ = f , Inequality (3.8) and the uniqueness
of the solution SΩ

ρ f of Problem (2.17), imply that f∗ = SΩ
ρ f in Xm,s(Rn;Rn).

Thus, from Inequality (3.8), we obtain the convergence

(3.9) Mρ
m,s(SΩ

ρ f) = lim
ℓ→+∞

Mρ
m,s(fh(ℓ)),

Using inequality (2.24), we obtain that

(3.10) lim
ℓ→+∞

Mρ
m,s

(
SΩ

ρ f − fh(ℓ)
)

= 0.

By using (3.1 ) for u = SΩ
ρ f − fh(ℓ), we get

(3.11) ∥SΩ
ρ f − fh(ℓ)∥m,s ≤ 1

C1

(
Mρ

m,s

(
SΩ

ρ f − fh(ℓ)
))1/2

.
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Relation (3.10), together with (3.11) imply that the subsequence
(
fh(ℓ)

)
ℓ∈N

is strongly convergent to SΩ
ρ f in Xm,s(Rn;Rn). In the same manner, we can

show that every convergent subsequence of the sequence (fh)h>0 is necessarily
convergent to SΩ

ρ f . In consequence, the sequence (fh)h>0 is strongly conver-
gent to SΩ

ρ f in Xm,s(Rn;Rn).
ii) It is a consequence of the fact that the restriction operator RΩ is contin-

uous from Xm,s(Rn;Rn) into Hm+s(Ω;Rn) and RΩSΩf = f . The convergence
in Cm(s)−1(Ω;Rn) is a consequence of item 3 of Proposition 2.2. □

3.2. Error estimates. The following theorem gives a result about the global
error estimates in vector version. It is an immediate consequence of the scalar
version given by Corollary 4.1 or by Theorem 4.1 in [5]. For more details see
Theorem 4.1 in [5], which gives an extension of a bound for functions in general
Sobolev space. This bound has known several precursors in the literature, see
for instance [11, 17, 22, 23, 24, 25].

Theorem 3.3. Let p ∈ [1, ∞), let r0 = m + s − n(1/2 − 1/p)+. Then,
there exist two positive constants h0 (depending on Ω, n, and m + s) and C
(depending on Ω, n, m + s and p) satisfying the following property: for any
finite set A ⊂ Ω such that h = supx∈Ω infa∈A |x − a| < h0, for any integer
k = 0, . . . , ⌈r0⌉ − 1, the following inequality

(3.12) |u|k,p,Ω ≤ Chm+s−k−n(1/2−1/p)+ |u|m+s,2,Ω,

holds for any u ∈ Hm+s(Ω;Rn) vanishing on A . If m + s ∈ N∗, this bound
also holds with k = r0 when either 2 < p < ∞ and r0 ∈ N, or p ≤ 2. Here
(r)+ = max{r, 0}.

Now, let us prove the following main theorem on error estimates.

Theorem 3.4. Let p ∈ [1, ∞), let r0 = m + s − n(1/2 − 1/p)+. Then, there
exist a positive constant h0 (depending on Ω, n, and m + s) and two positive
constants C1 and C2 (depending on Ω, n, m+s and p) satisfying the following
property: for any finite set A ⊂ Ω containing a Πm−1-unisolvent subset, such
that h = supx∈Ω infa∈A |x − a| < h0, for any integer k = 0, . . . , ⌈r0⌉ − 1, the
following inequalities:

|f − SA
ρ SΩ

ρ f |k,p,Ω ≤ C1hm+s−k−n(1/2−1/p)+ |f − SA
ρ SΩ

ρ f |m+s,2,Ω(3.13)

≤ C2

√
sup (1,ρ)
inf (1,ρ) hm+s−k−n(1/2−1/p)+∥f∥m+s,2,Ω

hold for every function f belonging to Hm+s(Ω;Rn). If m+s ∈ N∗, this bound
also holds with k = r0 when either 2 < p < ∞ and r0 ∈ N, or p ≤ 2. Moreover,
if s ≤ 0, ∥f∥m+s,2,Ω in (3.14) may be replaced by |f |m+s,2,Ω.

Proof. To prove the theorem we apply Theorem 3.3. Let A be any Πm−1-
unisolvent subset of Ω such that h = supx∈Ω infa∈A |x − a| < h0. Let f be any
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element belonging to Hm+s(Ω;Rn). The function u = SΩ
ρ f −SA

ρ SΩ
ρ f vanishes

on A , thus according to Inequality (3.12), we get

|SΩ
ρ f − SA

ρ SΩ
ρ f |k,p,Ω ≤ C1hm+s−k−n(1/2−1/p)+ |SΩ

ρ f − SA
ρ SΩ

ρ f |m+s,2,Ω,

where C1 > 0 is a positive constant (depending on Ω, n, m + s and p). Since,
RΩ[SΩ

ρ f ] = f , we have

|SΩ
ρ f − SA

ρ SΩ
ρ f |k,p,Ω = |f − SA

ρ SΩ
ρ f |k,p,Ω,

and
|SΩ

ρ f − SA
ρ SΩ

ρ f |m+s,2,Ω = |f − SA
ρ SΩ

ρ f |m+s,2,Ω,

Thus, we obtain the first inequality
|f − SA

ρ SΩ
ρ f |k,p,Ω ≤ C1hm+s−k−n(1/2−1/p)+ |f − SA

ρ SΩ
ρ f |m+s,2,Ω.

But, we also have
|SΩ

ρ f − SA
ρ SΩ

ρ f |m+s,2,Ω = |RΩ
(
SΩ

ρ f − SA
ρ SΩ

ρ f
)
|m+s,2,Ω.

Then,
|f − SA

ρ SΩ
ρ f |k,p,Ω ≤ C1hm+s−k−n(1/2−1/p)+ |RΩ

(
SΩ

ρ f − SA SΩ
ρ f
)
|m+s,2,Ω.

The continuity of the operator RΩ : Hm+s(Ω;Rn) −→ Xm,s(Rn;Rn) leads
to the existence of a constant C > 0 (depending on Ω, n, m + s and p) such
that

|f − SA
ρ SΩ

ρ f |k,p,Ω ≤ Chm+s−k−n(1/2−1/p)+∥SΩ
ρ f − SA

ρ SΩ
ρ f∥m,s.

According to (3.2), it follows that there exists a constant C ′ (depending on
Ω, n, m + s and p) such that
|f − SA

ρ SΩ
ρ f |k,p,Ω ≤

≤ C ′hm+s−k−n(1/2−1/p)+

( ∑
a∈A h

0

|(SΩ
ρ f − SA

ρ SΩ
ρ f)(a)|2 + |SΩ

ρ f − SA
ρ SΩ

ρ f |2m,s

) 1
2

But (SΩ
ρ f − SA

ρ SΩ
ρ f)(a) = 0, for all a ∈ A . Then

|f − SA
ρ SΩ

ρ f |k,p,Ω ≤ C ′hm+s−k−n(1/2−1/p)+ |SΩ
ρ f − SA

ρ SΩ
ρ f |m,s.

From (2.12), we get

|f −SA
ρ SΩ

ρ f |k,p,Ω ≤ C ′ 1√
inf (1,ρ)

hm+s−k−n(1/2−1/p)+
√

Mρ
m,s(SΩ

ρ f − SA
ρ SΩ

ρ f).

Inequality (2.24) states that Mρ
m,s(SΩ

ρ f − SA
ρ SΩ

ρ f) ≤ Mρ
m,s(SΩ

ρ f), then

|f − SA
ρ SΩ

ρ f |k,p,Ω ≤ C ′ 1√
inf (1,ρ)

hm+s−k−n(1/2−1/p)+
√

Mρ
m,s(SΩ

ρ f) .

By using again (2.12), we obtain

|f − SA
ρ SΩ

ρ f |k,p,Ω ≤ C ′
√

sup (1,ρ)
inf (1,ρ) hm+s−k−n(1/2−1/p)+ |SΩf |m,s(3.14)
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≤ C ′
√

sup (1,ρ)
inf (1,ρ) hm+s−k−n(1/2−1/p)+ ∥SΩ

ρ f∥m,s

The continuity of the operator SΩ
ρ : W m+s,2(Ω;Rn) −→ Xm,s(Rn;Rn) (see

(2.20)), provides the existence of a constant C2 (depending on Ω, n, m+s and
p) such that

|f − SA
ρ SΩ

ρ f |k,p,Ω ≤ C2

√
sup (1,ρ)
inf (1,ρ) hm+s−k−n(1/2−1/p)+ ∥f∥m+s,2,Ω .

Now, let us suppose that s ≤ 0. According to Proposition 2.7 together with
inequality (3.14), there exists a constant C ′

2 > 0 such that

|f − SA
ρ SΩ

ρ f |k,p,Ω ≤ C ′
2

√
sup (1,ρ)
inf (1,ρ) hm+s−k−n(1/2−1/p)+ |f |m+s,2,Ω.

This concludes the proof. □

We have the following corollary.

Corollary 3.5. Let A be a finite subset of Ω containing a Πm−1-unisolvent
subset. Let p ∈ [1, ∞), let r0 = m + s − n(1/2 − 1/p)+. Let f ∈ Hm+s(Ω;Rn).
For any integer k = 0, . . . , ⌈r0⌉ − 1, we have
(3.15) |f − SA

ρ SΩ
ρ f |m+s,2,Ω = o(1) as h → 0,

and consequently
(3.16) |f − SA

ρ SΩ
ρ f |k,q,Ω = o(hm+s−k−n(1/2−1/p)+) as h → 0.

If m + s ∈ N∗, this bound also holds with k = r0 when either 2 < p < ∞
and r0 ∈ N, or p ≤ 2.

Proof. The results are obtained immediately from Theorem 3.2 together
with Theorem 3.4. □

4. CONVERGENCE AND ERROR ESTIMATES FOR ELASTIC SPLINES

In this section, we study the convergence and the error estimates for the
interpolating elastic splines (see [8]). In elasticity theory the strain tensor is
given by

Eu = 1
2
(
∇ · uT + (∇ · uT )T ) = 1

2(∂iuj + ∂jui)1≤i,j≤n.

We consider the bilinear forms Sm,s and Eµ,λ
m,s defined on Xm,s(Rn;Rn) as

follows

(4.1)
Sm,s(u, v) =

∑
|α|=m−1

(m−1)!
α!

∫
Rn

|ξ|2s〈∂̂α(Eu)(ξ)|∂̂α(Ev)(ξ)
〉

n×n
dξ,

Eµ,λ
m,s(u, v) = 2µSm,s(u, v) + λDm,s(u, v),

for all u = (u1, . . . , un)T and v = (v1, . . . , vn)T in Xm,s(Rn;Rn). For short no-
tation, the associated quadratic forms will be denoted by Sm,s(u) = Sm,s(u, u)
and Eµ,λ

m,s(u) = Eµ,λ
m,s(u, u). The form Eµ,λ

m,s is the energy stored in the body
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and the real numbers µ and λ are called the Lamé constants of the isotropic
body (see [10, 15]). We assume µ > 0 and λ + 2µ > 0.

As in the previous section, let A be a finite subset of Ω, we assume that A
contains a Πm−1-unisolvent subset.

For any vector-valued function u : Ω̄ → Rn, we consider the following
minimal elastic interpolating problem:

Problem 3. Find u∗ ∈ IA (u) minimizing the functional energy Eλ,µ
m,s(w),

namely

(4.2) u∗ = arg
[

min
w∈IA (u)

Eλ,µ
m,s(w)

]
.

For any f ∈ Hm+s(Ω;R) we also consider the minimal elastic extension
problem:

Problem 4. Find v∗ ∈ IΩ(f) minimizing the functional energy Eλ,µ
m,s(w),

namely

(4.3) v∗ = arg
[

min
w∈IΩ(u)

Eλ,µ
m,s(w)

]
.

We have the following proposition.

Proposition 4.1. i) The minimal interpolating problem (4.2) introduced
above, has a unique solution in Xm,s(Rn;Rn). This unique solution will
be denoted by E A

λ,µu it satisfies

(4.4) E A
λ,µu = SA

2+λ/µu

where SA
2+λ/µu is the solution of the minimal div-curl interpolating prob-

lem (2.13) corresponding to ρ = 2 + λ/µ.
ii) The minimal elastic extension problem (4.3) introduced above, has a

unique unique solution in Xm,s(Rn;Rn). This unique solution will be
denoted by E Ω

λ,µf it satisfies

(4.5) E Ω
λ,µf = SΩ

2+λ/µf

where SΩ
2+λ/µu is the solution of the minimal div-curl extension problem

(2.17) corresponding to ρ = 2 + λ/µ.

Proof. See [8, Theorem 5], for item i). For Item ii), it is a direct consequence
of Relation (45) in [8] and Proposition 2.5 in this paper. □

We have the following convergence result

Theorem 4.2. Let A be a finite subset of Ω containing a Πm−1-unisolvent
subset. For all f ∈ Hm+s(Ω;Rn) we have

i) E Ω
λ,µf = lim

h→0
E A

λ,µE Ω
λ,µf in Xm,s(Rn;Rn).
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ii) f = lim
h→0

E A
λ,µE Ω

λ,µf in Hm+s(Ω;Rn) and consequently this strong conver-

gence holds also in Cm(s)−1(Ω;Rn), where m(s) is given by (3.4).

Proof. The result is immediately obtained from Theorem 3.2 and Proposi-
tion 4.1. □

Theorem 4.3. Let p ∈ [1, ∞), let r0 = m + s − n(1/2 − 1/p)+. Then, there
exist a positive constant h0 (depending on Ω, n, and m + s) and two positive
constants C1 and C2 (depending on Ω, n, m+s and p) satisfying the following
property: for any finite set A ⊂ Ω containing a Πm−1-unisolvent subset, such
that h = supx∈Ω infa∈A |x − a| < h0, for any integer k = 0, . . . , ⌈r0⌉ − 1, the
following inequalities:

|f − E A
λ,µE Ω

λ,µf |k,p,Ω ≤ C1hm+s−k−n(1/2−1/p)+ |f − E A
λ,µE Ω

λ,µf |m+s,2,Ω

≤ C2
√

2 + λ
µhm+s−k−n(1/2−1/p)+ ∥f∥m+s,2,Ω(4.6)

hold for every function f belonging to Hm+s,2(Ω;Rn). If m + s ∈ N∗, this
bound also holds with k = r0 when either 2 < p < ∞ and r0 ∈ N, or p ≤ 2.
Moreover, if s ≤ 0, ∥f∥m+s,2,Ω in (4.6) may be replaced by |f |m+s,2,Ω.

Proof. The results are obtained immediately from Theorem 3.4 together
with Proposition 4.1, and the fact that

sup(1, 2 + λ
µ) = 2 + λ

µ and inf(1, 2 + λ
µ) = 1. □

Thanks to Theorem 4.2 and Theorem 4.3, we get the following corollary.

Corollary 4.4. Let A be a finite subset of Ω containing a Πm−1-unisolvent
subset. Let p ∈ [1, ∞) and let r0 = m + s − n(1/2 − 1/p)+. For any f ∈
Hm+s(Ω;Rn) and for any integer k = 0, . . . , ⌈r0⌉ − 1, we have
(4.7) |f − E A

λ,µE Ω
λ,µf |m+s,2,Ω = o(1) as h → 0,

and consequently
(4.8) |f − E A

λ,µE Ω
λ,µf |k,q,Ω = o(hm+s−k−n(1/2−1/p)+) as h → 0.

If m + s ∈ N∗, this bound also holds with k = r0 when either 2 < p < ∞
and r0 ∈ N, or p ≤ 2.

5. NUMERICAL EXAMPLE

In this breve section, we will give a numerical example that illustrate the
convergence results. More numerical tests may be found in [8]. We consider

for instance the scalar function given by f(x) =
5∑

i=1
e−(x1−ai)2−(x1−bi)2 , for

all two-variate x = (x1, x2) ∈ R2, where (a1, b1) = (3, 3), (a2, b2) = (3, −3),
(a3, b3) = (−3, −3), (a4, b4) = (−3, 3) and (a5, b5) = (0, 0). Then, we consider
the original vector field function constructed as

u(x) = 50
51(∂2f(x), −∂1f(x)) + 1

50(∂1f(x), ∂2f(x)),
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and restricted to the open square Ω =]−2, 2[×]−2, 2[. The vector field function
u is in fact a convex combination between two fields one is div-free and the
other one is curl-free. The original vector field function u is represented in
Fig. 5.1.

Original  vector field

Fig. 5.1. The original vector field function

Now we interpolate the original field on a finite set A of N scattered data
points on Ω by using the elastic pseudo-polyharmonic spline with m = 2 and
s = 0, denoted here, for simplicity, by σh, we recall that h is the fill distance.
The choose of optimal parameters µ and λ is another problem which deserves
more investigations. For our example, we fix for instance the parameters to
the values µ = 25 and λ = 10. We will increase the number N and observe
how the elastic pseudo-polyharmonic splines approximate the original vector
field. To compare the convergence, we will compute the discrete relative error
on a meshgrid points G on the domain Ω:

RE(u, σh) :=

√∑
x∈G |u(x) − σh(x)|2√∑

x∈G |u(x)|2
.

N h RE(u, σh) cputime N h RE(u, σh) cputime
25 2.61e-02 8.69e-01 0.15 s 800 3.64e-03 5.68e-03 3.36 s
50 1.59e-02 5.73e-01 0.28 s 1600 3.64e-03 2.01e-03 7.71 s
100 1.59e-02 1.71e-01 0.40 s 3200 2.10e-03 1.16e-03 27.00 s
200 1.13e-02 7.12e-02 0.70 s 6400 2.10e-03 6.18e-04 163.57 s
400 3.64e-03 1.87e-02 1.71 s 12800 2.10e-03 3.93e-04 1076.75 s

Table 5.1. The summarized results corresponding to the pseudo-
polyharmonic elastic spline with µ = 25 and λ = 10.
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Elastic polyharmonic spline : N=25, =25, =10, h=0.026074 Elastic polyharmonic spline : N=50, =25, =10, h=0.015931 Elastic polyharmonic spline : N=100, =25, =10, h=0.015931

Elastic polyharmonic spline : N=200, =25, =10, h=0.011348 Elastic polyharmonic spline : N=400, =25, =10, h=0.0036442 Elastic polyharmonic spline : N=800, =25, =10, h=0.0036442

Elastic polyharmonic spline : N=1600, =25, =10, h=0.0036442 Elastic polyharmonic spline : N=3200, =25, =10, h=0.0020963 Elastic polyharmonic spline : N=12800, =25, =10, h=0.0020963

Fig. 5.2. The elastic pseudo-polyharmonic spline interpolating the
original vector field u with µ = 25 and λ = 10 for N = 25 (left-top),
N = 50 (center-top) and N = 100 (right-top),
N = 200 (left-middle), N = 400 (center-middle) and N = 800 (right-
middle)
N = 1600 (left-bottom), N = 3200 (center-bottom) and N = 12800
(right-bottom).

We observe in Fig. 5.2 that the elastic pseudo-polyharmonic is close to the
original vector fields as the number of interpolating points becomes more and
more large. The results are summarized in Table 5.1, where we observe that
the relative error R(u, σh) becomes more and more small as the fill distance
h → 0. We also give the cputime in seconds for computing the pseudo-
polyharmonic spline. This results are in concordance with the theoretical
convergence results.
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6. CONCLUSION

In this paper, we have proved some results on convergence and error esti-
mates for both minimization problems of div-curl and elastic field approxima-
tion. First, we have recalled the problem of div-curl and elastic approximation
previously introduced by the authors and then all the results on convergence
and error estimates are proved. A numerical experiment is given to illustrate
briefly the theoretical results.

Acknowledgements. The authors are thankful to the anonymous referees
for careful reading and interesting comments, which significantly improved the
manuscript.
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