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NOTES REGARDING CLASSICAL FOURIER SERIES

PAUL BRACKEN∗

Abstract. A survey of some classical results from the theory of trigonometric
series is presented, especially the case of Fourier series. Some new proofs are
presented, and Riemann’s theory of trigonometric series is given special atten-
tion.
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1. INTRODUCTION

The subject of trigonometric series [1, 2, 3, 4, 5] comes up in many areas
of approximation theory, as well as the study of infinite series, the theory of
representation of functions and also in constructing solutions of partial differ-
ential equations and eigenvalue problems [6, 7] function of a real variable into
a trigonometric series we refer to as Fourier’s Theorem. It is possible to state
certain sufficient conditions under which a function admits a trigonometric
series [8, 9, 10, 11].

Let f(t) be defined arbitrarily when −π ≤ t ≤ π and is defined for all other
real values by means of the periodicity condition
(1.1) f(t + 2π) = f(t).
The state f(t) is a periodic function with period 2π. Suppose f(t) has a
Riemann integral over [−π, π] that exists, and if it is improper, suppose it is
absolutely convergent.

Theorem 1.1. Define constants an and bn for n = 0, 1, 2, . . . by

(1.2) π an =
∫ π

−π
f(t) cos(nt) dt, π bn =

∫ π

−π
f(t) sin(nt) dt.

If x is an interior point of any interval (a, b) in which f(t) has limited total
variation, the trigonometric series

(1.3) 1
2 a0 +

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
,
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is convergent and it has a sum

(1.4) 1
2 [f(x + 0) + f(x − 0)].

If f(t) is continuous at t = x, this sum reduces to f(x). It is usual to call the
series (1.3) the Fourier series associated with f(t).

The representation of a function by means of a Fourier series can be ex-
tended to more general intervals other than (−π, π) as well.

2. FEJÉR’S THEOREM

There is a theorem due to Fejér which concerns the summability of the
Fourier series associated with the function f(t) which is introduced here.

Theorem 2.1. Let f(t) be a function of the real variable t defined arbitrar-
ily on −π ≤ t ≤ π and satisfies (1.1) for all other real values of t. Suppose∫ π

−π f(t) dt exists, and if it is an improper integral, let it be absolutely conver-
gent. The Fourier series associated with the function f(t) is C1-summable at
all points x at which the two limits exist and the C1 sum is (1.4)

(2.1) 1
2 [f(x + 0) + f(x − 0)].

Proof. Let an, bn denote the Fourier constants (1.2) of f(t) and define

(2.2) A0 = a0
2 , An(x) = an cos(nx)+bn sin(nx), Sn(x) =

n∑
j=0

Aj(x).

It must be proved that

(2.3) lim
n→∞

1
n [A0 + S1(x) + · · · + Sn−1(x)] = 1

2 [f(x + 0) + f(x − 0)],

provided the limit on the right exists.
Note first that

(2.4)
m−1∑
n=1

Sn(x) =
m−1∑
n=1

(
n∑

j=0
Aj(x)

)
= (m − 1)A0(x) +

m−1∑
j=1

(m − j) · Aj(x)

or

(2.5) A0 +
m−1∑
n=1

Sn(x) = mA0 +(m−1) A1(x)+(m−2)A2(x)+ · · ·+Am−1(x).

From (2.1) and definition (1.2)

An(x) = 1
π

∫ π

−π

(
cos(kt) cos(kx) + sin(kt) sin(kx)

)
f(t) dt

= 1
π

∫ π

−π
cos(k(t − x)) f(t) dt.(2.6)
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Using (2.6) in (2.5), we conclude

A0 +
m−1∑
n=1

Sn(x) = 1
π

∫ π

−π

(
m
2 + (m − 1) cos(x − t)+

(2.7)

+ (m − 2) cos 2(x − t) + · · · + cos((m − 1)(x − t))
)

f(t) dt.

The series in the brackets can be summed in closed form by substituting
µ = ei(x−t),

m + (m − 1)(µ + 1
µ) + (m − 2)(µ2 + 1

µ2 ) + · · · + (µm−1 + 1
µm−1 ) =

= (1 − µ)−2(µ1−m(µ − µm) + 1 − µm+1) = (1 − κ)−2(µ1−m − 2µ + µm+1)

= (µm/2−µ−m/2)2

(µ1/2−µ−1/2)2 = sin2( m
2 (x−t))

sin2( 1
2 (x−t)) .

Using this in (2.5), it is found that

(2.8) A0(x) +
m−1∑
n=1

Sn(x) = 1
2π

∫ π

−π

sin2 m
2 (x−t)

sin2 1
2 (x−t) f(t) dt.

Bisect the path of integration replacing t by x ∓ 2θ in the two pieces that
appear, respectively. Then using the transformation θ −θ along the way, (2.8)
becomes

A0 +
m−1∑
n=1

Sn(x) =(2.9)

= − 1
π

∫ −π/2

0

sin2(mθ)
sin2 θ

f(x − 2θ) dθ+ 1
π

∫ 0

−π/2

sin2(mθ)
sin2 θ

f(x+2θ) dθ

= 1
π

∫ π/2

0

sin2(mθ)
sin2 θ

f(x + 2θ) dθ + 1
π

∫ π/2

0

sin2(mθ)
sin2 θ

f(x − 2θ) dθ.

To finish the proof, it must be shown that as m approaches infinity,

1
m

∫ π/2

0

sin2(mθ)
sin2 θ

f(x + 2θ) dθ → π
2 f(x + 0),(2.10)

1
m

∫ π/2

0

sin2(mθ)
sin2 θ

f(x − 2θ) dθ → π
2 f(x − 0).

To do this, begin with the following expansion
1
2

sin2(mθ)
sin2 θ

= 1
2m + (m − 1) cos(2θ) + · · · + cos(2(m − 1) θ).

and integrate this over (0, π/2) and use the fact that the cosine terms integrate
to zero to get

(2.11)
∫ π/2

0

sin2(mθ)
sin2 θ

= π
2 m.
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It has to be shown that

(2.12) 1
m

∫ π/2

0

sin2(mθ)
sin2 θ

φ±(θ) dθ → 0

as m → ∞ and φ±(θ) = f(x ± 2θ) − f(x ± 0), respectively.
Given an arbitrary positive number ϵ, a positive δ can be chosen such that

|φ±(θ)| < ϵ holds whenever 0 < θ ≤ δ/2. This choice of δ just depends on f
and is independent of m, therefore,

1
m

∣∣∣∣ ∫ π/2

0

sin2(mθ)
sin2 θ

φ±(θ) dθ

∣∣∣∣ ≤(2.13)

≤ 1
m

∫ δ/2

0

sin2(mθ)
sin2 θ

|φ±(θ)| dθ + 1
m

∫ π/2

δ/2

sin2(mθ)
sin2 θ

|φ±(θ)| dθ

< ϵ
m

∫ δ/2

0

sin2(mθ)
sin2 θ

dθ + 1
m sin2(δ/2)

∫ π/2

δ/2
|φ±(θ)| dθ

≤ π
2 ϵ + 1

m sin2(δ/2)

∫ π/2

0
|φ±(θ)| dθ.

The convergence of the integral
∫ π

−π |f(t)| dt implies the convergence of the
integral

∫ π/2
0 |φ±(θ)|dθ. Given ϵ > 0 and thus a δ, the following inequality

can be enforced by taking m sufficiently large,

(2.14)
∫ π/2

0
|φ(θ)| dθ < ϵ π

2 · m sin2( δ
2).

Hence for ϵ an arbitrary positive number, by choosing m sufficiently large,
we can enforce the inequality

(2.15) 1
m

∣∣∣∣ ∫ π/2

0

sin2(mθ)
sin2 θ

φ±(θ) dθ

∣∣∣∣ < π ϵ.

By definition of limit, this leads to (2.10),

lim
m→∞

1
m

∫ π/2

0

sin2(mθ)
sin2 θ

φ±(θ) dθ = 0.

Consequently, using (2) and (2.8) in (2.9), the Theorem follows. □

3. THE HURWITZ-LIAPOUNOFF THEOREM

The following Lemma which involves Fourier constants is very useful in
what follows.
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Lemma 3.1. Let An(x) = an cos(πx) + bn sin(nx), then (a) and (b) hold.

(3.1)

(a)
∫ π

−π
f(x)

m−1∑
n=0

An(x) dx = π
2 a2

0 + π
m−1∑
n=0

(a2
n + b2

n),

(b)
∫ π

−π

m−1∑
n=0

An(x)
m−1∑
l=0

Al(x) dx = π
2 a2

0 + π
m−1∑
n=1

(a2
n + b2

n).

Proof. (a)∫ π

−π
f(x)

m−1∑
n=0

An(x)dx =

= a0
2

∫ π

−π
f(x) dx +

∫ π

−π
f(x)

m−1∑
n=1

An(x) dx

= a0
2 a2

0 +
m−1∑
n=1

(
an

∫ π

−π
f(x) cos(nx) dx + bn

∫ π

−π
f(x) sin(nx) dx

)

= a0
2 a2

0 + π
m−1∑
n=1

(a2
n + b2

n).

(b)∫ π

−π

(
A0 +

m−1∑
n=1

An(x)
)(

A0 +
m−1∑
p=1

Ap(x)
)

dx =

= π
2 a2

0+
m−1∑
n=1

m−1∑
p=1

∫ π

−π
(an cos(nx)+bn sin(nx))(ap cos(px)+bp sin(px)) dx

= π
2 a2

0 +
m−1∑
n=1

m−1∑
p=1

(anapδnp + bnbpδnp)π = π
2 a2

0 + π
m−1∑
n=1

(a2
n + b2

n).

□

Theorem 3.1. One has

(3.2) lim
m→∞

∫ π

−π

{
f(x) − 1

m

m∑
n=1

Sn(x)
}2

dx = 0.

Proof. Partition the interval (−π, π) into 4N subintervals such that each
subinterval has length δ such that 4Nδ = 2π or δ = π/2N . The partition
points are y0 = −π, y1 = −π + δ, . . . , yk = −π + kδ, . . . , y4N = −π + 2π = π.
Consider the set of subintervals defined as I0 = (−π, −π+δ), Ik = ((2k−1)δ−
π, (2k +2)δ −π), k = 1, . . . , 2N −1. Let Uk, Lk be the upper and lower bounds
of f(x) on Ik and |f(t)| bounded above by constant C for all x ∈ (−π, π).
Denote a sample point in interval Ik as x∗

k to be used in the x integration.
Choose ηk arbitrarily but such that Jk = (x − ηk, x + ηk) ⊂ (2kδ, (2k + 2)δ).
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In fact, to carry out the sum, it suffices to fix ηk = δ for each k and so as part
of the integrand in the x integration,

(3.3) f(x) − 1
m

m−1∑
n=0

Sn(x) = 1
2πm

∫ π+x

−π+x

sin2 m
2 (x−t)

sin2 1
2 (x−t) (f(x) − f(t)) dt.

Take the absolute value on both sides of (3.3) and split up the integral over
(−π + x, π + x) so that

∣∣∣∣∣f(x) − 1
m

m−1∑
n=0

Sn(x)
∣∣∣∣∣ ≤

(3.4)

≤ 1
2πm

{∫ x−δ

−π+x

sin2 m
2 (x−t)

sin2 1
2 (x−t) |f(x)−f(t)| dt +

∫ x+δ

x−δ

sin2 m
2 (x−t)

sin2 1
2 (x−t) |f(x)−f(t)| dt

+
∫ x+π

x+δ

sin2 m
2 (x−t)

sin2 1
2 (x−t) |f(x)−f(t)| dt

}
≤ 1

2πm

{
2C π−δ

sin2 δ
2

+ (Uk − Lk)πm
2 + 2C π−δ

sin2 δ
2

}
≤ 2C

(
1 + 1

m sin2 δ
2

)
The square of (3.4) can be given in the following way∣∣∣∣f(x) − 1

m

m−1∑
n=0

Sn(x)
∣∣∣∣2 ≤ 2C

(
1 + 1

m sin2 δ
2

)(
Uk − Lk + 2C

mπ
π−δ

sin2 δ
2

)
.

The right-hand side corresponds to the sample point x∗
k when the Riemann

sum is formed for the integration over x. The right side is an upper bound for
that integral. Consequently,∫ π

−π

∣∣∣∣f(x) − 1
m

m−1∑
n=0

Sn(x)
∣∣∣∣2 dx ≤(3.5)

≤ 2C
(
1 − 1

m sin2(δ/2)

)(2N−2∑
k=0

(Uk − Lk) · δ + 2C
πm · 4N

sin2(δ/2)

)
.

Since f(x) is Riemann integrable, both
∑N−1

p=0 (U2p−L2p)·δ and
∑N−1

p=0 (U2p−1−
L2p−1) · δ can be made arbitrarily small by taking N sufficiently large. Given
that N and δ have been designated, such a value choose m = m∗ so that
4N/m∗π sin2(δ/2) < ϵ/2. The expression on the right side of (3.5) is made
arbitrarily small by letting m have any value greater than m∗. Hence the
expression on the left side of the inequality approaches zero as m → ∞. □

Theorem 3.2. Let f(t) be bounded in the interval (−π, π) and let
∫ π

−π f(t) dt
exist so that the Fourier coefficients an, bn of f(t) exist. Then the series

(3.6) 1
2 a2

0 +
∞∑

n=1
(a2

n + b2
n)

is convergent and its sum is 1
π

∫ π
−π (f(t))2 dt.
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Proof. Lemma 3.1 and Theorem 3.1 prove Theorem 3.2 by means of the
following approach. Begin with the identities

(3.7)
m−1∑
n=0

Sn(x) =
m−1∑
n=0

(m−n)An(x), 1
m

m−1∑
n=0

Sn(x) =
m−1∑
n=0

(1− n
m) An(x).

By means of (3.7), it is deduced that∫ π

−π

(
f(x) − 1

m

m−1∑
n=0

Sn(x)
)2

dx =
∫ π

−π

(
f(x) −

m−1∑
n=0

m−n
m An(x)

)2
dx

=
∫ π

−π

(
f(x) −

n−1∑
n=0

An(x) +
m−1∑
n=0

n
mAn(x)

)2
dx

=
∫ π

−π

(
f(x) −

m−1∑
n=0

An(x)
)2

dx +
∫ π

−π

(m−1∑
n=0

n
m An(x)

)2
dx

+ 2
∫ π

−π

(
f(x) −

m−1∑
n=0

An(x)
)m−1∑

n=0
An(x) dx.(3.8)

The results in Lemma 3.1 can be used now∫ π

−π

(
f(x) − 1

m

m−1∑
n=0

Sn(x)
)2

dx =

=
∫ π

−π

(
f(x) −

m−1∑
n=0

An(x)
)2

dx + π
m2

m−1∑
n=0

n2(a2
n + b2

n)

+ 2π
m−1∑
n=0

(a2
n + b2

n) − 2π
m−1∑
n=0

(a2
n + b2

n)

=
∫ π

−π

(
f(x) −

m−1∑
n=0

An(x)
)2

dx + π
m2

m−1∑
n=0

n2(a2
n + b2

n).(3.9)

Since the integral on the left approaches zero by Theorem 3.1 as m → ∞, and
since (3.9) shows it equals the sum of two positive terms, it follows that each
of these expressions must tend to zero as well. In particular,∫ π

−π

(
f(x) −

m−1∑
n=0

An(x)
)2

dx → 0.

Expanding the bracket, the left side is equal to∫ π

−π
(f(x))2 dx−2

∫ π

−π

(
f(x)−

m−1∑
n=0

An(x)
)

m−1∑
l=0

Al(x)−
∫ π

−π

(
m−1∑
n=0

An(x)
)2

dx

=
∫ π

−π
|f(x)|2 dx−

∫ π

−π

(
m−1∑
n=0

An(x)
)2

dx
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=
∫ π

−π
(f(x))2 dx−π

(
a0
2 +

m−1∑
n=1

(a2
n + b2

n)
)

.

As this expression must go to zero as m → ∞, it follows that as m → ∞,

(3.10)
∫ π

−π
(f(x))2 dx − π

(a0
2 +

m−1∑
n=0

(a2
n + b2

n)
)

→ 0.

□

4. THE DIRICHLET-BONNET PROOF OF FOURIER’S THEOREM

It is very useful to have a proof of Fourier’s theorem that does not make
use of the theory of summability. The proof of the theorem that follows is on
the same general lines as the proof established by Dirichlet and Bonnet.

Theorem 4.1. Let f(t) be a function defined arbitrarily for −π ≤ t ≤ π,
and defined by the condition f(t + 2π) = f(t) for all other real values of t. Let∫ π

−π f(t)dt exist and if it is improper, let it be absolutely convergent For an

and bn defined by (1.2), if x is an interior point of any interval (a, b) within
which f(t) has limited total fluctuation, the series (1.3) is convergent and the
sum is given by (1.4).

Proof. The function Sm(x) can be expressed directly as an integral as

Sm(x) = 1
π

∫ π

−π

(1
2 + cos(x − t) + cos(2(x − t)) + · · · + cos(m(x − t))

)
f(t) dt

= 1
2π

∫ π

−π

sin(m+ 1
2 )(x−t)

sin 1
2 (x−t) f(t) dt

= 1
π

∫ π/2

0

sin(2m+1)θ
sin θ f(x + 2θ) dθ + 1

π

∫ π/2

0

sin(2m+1)θ
sin θ f(x − 2θ) dθ.(4.1)

Integrating the equation
sin(2m+1) θ

sin θ = 1 + 2 cos 2θ + 2 cos 4θ + · · · + 2 cos(2mθ)

with respect to θ ∈ (0, π/2), we arrive at

(4.2)
∫ π/2

0

sin(2m+1)θ
sin θ dθ = π

2 .

Using (4.2), we can form the difference

Sm(x) − 1
2 [f(x + 0) + f(x − 0)] =(4.3)

= 1
π

∫ π/2

0

sin(2m+1)θ
sin θ [f(x + 2θ) − f(x + 0)] dθ

+ 1
π

∫ π/2

0

sin(2m+1)θ
sin θ [f(x − 2θ) − f(x − 0)] dθ.
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In order to prove Sm(x) approaches (1.4) as m → ∞, it is sufficient to prove
that

(4.4) lim
m→∞

∫ π/2

0

sin(2m+1)θ
sin θ φ±(θ) dθ = 0,

where φ±(θ) = f(x±2θ)−f(x±0). The function φ±(θ) ·θ ·csc(θ) is a function
with limited total fluctuation on an interval for which θ = 0 is an end point,
so

(4.5) φ±(θ) · θ · csc θ = χ1(θ) − χ2(θ).

In (4.5) χ1,2(θ) are bounded positive increasing functions of θ such that χ1(+0) =
χ2(+0) = 0. Given an arbitrary positive number ϵ, a positive number δ can
be chosen such that 0 ≤ χ1(θ) < ϵ and 0 ≤ χ2(θ) < ϵ whenever 0 ≤ θ ≤ δ/2.
The integral in (4.4) can be split up

∫ π/2

0

sin(2m+1)θ
sin θ φ±(θ) dθ =

(4.6)

=
∫ π/2

δ/2

sin(2m+1)θ
sin θ φ±(θ) dθ +

∫ π/2

0

sin(2m+1)θ
θ (χ1(θ) − χ2(θ)) dθ

=
∫ π/2

δ/2

sin((2m+1)θ)
sin θ φ±(θ) dθ+

∫ δ/2

0

sin(2m+1)θ
θ χ1(θ) dθ−

∫ δ/2

0

sin((2m+1)θ
θ χ2(θ) dθ.

The modulus of the first integral can be made less than ϵ by taking m suffi-
ciently large. This follows from the Riemann-Lebesgue lemma since σ±(θ) csc(θ)
has an integral which converges absolutely in (δ/2, π/2).

From the second mean value theorem, it follows that there is a number ζ
between 0 and δ such that,∣∣∣∣ ∫ δ/2

0

sin(2m+1)θ
θ χ1(θ) dθ

∣∣∣∣ ≤
∣∣∣∣χ1( δ

2) ·
∫ δ/2

ζ

sin(2m+1) θ
θ dθ

∣∣∣∣
≤ χ1( δ

2) ·
∣∣∣∣ ∫ (m+1/2)δ

(m+1/2)ζ
sin t

t dt

∣∣∣∣.
It is known that

∫∞
0 (sin t/t) dt converges, it follows that |

∫∞
β sin t/t dt| has

an upper bound γ which is independent of β. Hence it is clear that

(4.7)
∣∣∣∣ ∫ δ/2

0

sin(2m+1)θ
θ χ1(θ) dθ

∣∣∣∣ ≤ 2 γ χ1( δ
2) ≤ 2γϵ.

The third integral can be treated in a similar way. By taking m sufficiently
large

(4.8)
∣∣∣∣ ∫ π/2

0

sin(2m+1)θ
sin θ φ±(θ) dθ

∣∣∣∣ ≤ ϵ + 2γϵ + 2γϵ = (4γ + 1) ϵ.
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By definition of limit, this implies that

(4.9) lim
m→∞

∫ π/2

0

sin(2m+1)θ
sin θ φ±(θ) dθ = 0.

However, it has been seen that this is a sufficient condition for the limit of
Sm(x) to equal [f(x + 0) + f(x − 0)]/2 as m approaches infinity. So we have
therefore established the convergence of a Fourier series under the conditions
stated. □

The condition that x should be an interior point of the interval in which
f(t) has total limited variation is merely a sufficient condition for convergence
of the Fourier series. It could be replaced by any condition which satisfies the
condition

(4.10) lim
m→∞

∫ π/2

0

sin(2m+1)θ
sin θ φ±(θ) dθ = 0.

5. THEORIES OF TRIGONOMETRIC SERIES

The theory of Fourier series due to Dirichlet is directed towards series which
represent given functions. Riemann made advances in this regard and consid-
ered properties of functions defined by series of the form (1.3), where it is
assumed that limn→∞ (an cos(nx) + bn sin(nx)) = 0. Some properties which
lead up to Riemann’s theorem are introduced. This states essentially that if
two trigonometric series converge and are equal at all points of the interval
(−π, π) with the possible exception of a finite number of points, corresponding
coefficients of the two series are equal.

Let the sum of (1.3) at any point x where it converges be denoted f(x) and
define a function F (x) to be

(5.1) F (x) = 1
2A0 x2 −

∞∑
n=1

An(x)
n2 .

To prove the theorem here, two significant results are needed. There is a
theorem attributed to Hardy; and the following important Lemma which was
first introduced by Cantor.

Lemma 5.1. If limn→∞ An(x) = 0 for all values of x such that a ≤ x ≤ b,
then an → 0 and bn → 0 as n → ∞.

Theorem 5.1. If the series defining f(x) converges at all points of any
finite interval, the series defining F (x) converges for all real values of x.

Proof. If it is assumed that the series which defines f(x) converges at all
points of a certain interval of the real axis, it is the case by Lemma 5.1 that
an, bn → 0. Then for all real values of x |an cos(nx) + bn sin(nx)| ≤ (a2

n +
b2

n)1/2 → 0 and the right side is O(1/n). By the result of Hardy, the series
(5.1) converges absolutely and uniformly for all real values of x and so F (x)
is continuous for all real x. □
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6. PROPERTIES OF THE FUNCTION F (x)

Lemma 6.1 (Riemann). Define

(6.1) G(x, a) = F (x+2a)+F (x−2a)−2F (x)
4a2 .

Then lima→0 G(x, a) = f(x) provided that
∑∞

n=0 An(x) converges for the value
of x under consideration.

Proof. Since the series which define F (x) and F (x±2a) converge absolutely,
terms may be rearranged by first noticing that

(6.2)
cos n(x + 2a) + cos n(x − 2a) − 2 cos(nx) = −4 sin2(na) · cos(nx),

sin n(x + 2a) + sin(x − 2a) − 2 sin(nx) = −4 sin2(na) · sin(nx).
Substituting into (6.1), the function G(x, a) can be calculated
(x + 2a) + F (x − 2a) − 2F (x) =

= 1
2A0(x + 2a)2−

∞∑
n=1

An(x+2a)
n2 + 1

2A0(x − 2a)2−
∞∑

n=1

An(x−2a)
n2 −A0x2+2

∞∑
n=1

An(x)
n2

= 4a2A0 + 4
∞∑

n=1

1
n2 (an sin2(na) cos(nx) + bn sin2(nx)sin(nx))

= 4a2A0 + 4
∞∑

n=1

1
n2

(
an cos(nx) + bn sin(nx)

)
· sin2(nx).

Therefore, recalling (2.1), we arrive at,

(6.3) G(x, z) = A0 +
∞∑

n=1

(
sin(na)

na

)2
· An(x).

The series converges uniformly with respect to the variable a for all values
of a provided that

∑∞
n=1 An(x) converges. To this end it should be recalled

that if a series of continuous functions of variable x is uniformly convergent
for all values of x in a closed interval, the sum is a continuous function there.
So for a ̸= 0,

(6.4) fn(x) =
( sin (na)

na

)2
,

and f(0) = 1 when a = 0, then fn(x) is a continuous function for all values
of a. Consequently, if G(x, a) is a continuous function of a and then the limit
a → 0 has to exist
(6.5) G(x, 0) = lim

a→0
G(x, a).

To prove that the series which defines G(x, a) converges uniformly, the follow-
ing result due to Hardy is recalled:

Suppose a ≤ x ≤ b, if |ωn(x)| < k and
∑∞

n=1 |ωn+1(x) − ωn(x)| < k′,
where k, k′ are independent of n and x, and if

∑∞
n=1 αn is a convergent series

independent of x, then
∑∞

n=1 anωn(x) converges uniformly when a ≤ x ≤ b.
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In this instance, ωn(x) = fn(x) given in (6.4), clearly |fn(x)| ≤ 1. It remains
to show that

∑∞
n=1 |fn+1(a) − fn(a)| < K and K is independent of a.

Hence if
∑∞

n=0 An(x) converges, the series which defines G(x, a) converges
uniformly with respect to a for all values of a, and so the limit can be computed

(6.6) lim
a→0

G(x, a) = G(x, 0) = A0 +
∞∑

n=1
An(x) = f(x).

For the proof of the following results, the well known sum is needed for a > 0

(6.7)
∞∑

n=1

sin2(n a)
n2 a

= 1
2(x − a).

□

Lemma 6.2. It holds
(6.8)
∞∑

n=1

sin2(na)
n2a

An(x)= 1
2(x−a)A1(x)+

∞∑
n=1

(
1
2(π−a)−

n∑
m=1

sin2(ma)
m2a

)
(An+1(x)−An(x)

)
.

Proof. Since An(x) → 0 as n → ∞, the first series on the right telescopes

(6.9)
∞∑

n=1

1
2(π − a)(An+1(x) − An(x)) = −1

2(π − a) A1(x).

The second series can be written as
∞∑

n=1

n∑
m=1

(
sin2(ma)

m2a

)
(An+1(x) − An(x)) =

= −
∞∑

n=2

n−1∑
m=1

(
sin2(na)

n2a

)
An +

∞∑
n=1

n∑
m=1

(
sin2(ma)

m2a

)
An

=
∞∑

n=2

(
−

n−1∑
m=1

sin2(ma)
m2a

+
n∑

m=1

sin2(ma)
m2a

)
An(x) + sin2 a

a A1(x)

=
∞∑

n=2

sin2(ma)
m2a

An(x) + sin2 a
a A1(x) =

∞∑
n=1

sin2(na)
n2a

An(x).(6.10)

Substitute (6.9) and (6.10) in to (6.8) on the right side, the left side is obtained.
□

Lemma 6.3. If an, bn → 0 in An(x) then

(6.11) lim
a→0

F (x+2a)+F (x−2a)−2F (x)
4a = 0

for all values of x.
Proof. It is the case by (5.1) that

(6.12) F (x+2a)+F (x−2a)−2F (x)
4a = A0 a +

∞∑
n=1

sin2(na)
n2a

An(x).
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By Lemma 6.2 on the right of (6.12), using Hardy’s theorem (H) for uniform
convergence, this series converges uniformly with respect to a for all a greater
than or equal to zero. Moreover,

lim
a→0+

1
4a

(
F (x + 2a) + F (x − 2a) − 2F (x)

)
=(6.13)

= lim
a→0+

[
A0(x) + 1

2(x − a)A1(x) +
∞∑

n=1
gn(a)(An+1(x) − An(x))

]
.

This limit is the value of the function when a = 0, and the value is zero since
limn→∞ An(x) = 0. By symmetry, it can be seen the right and left hand limits
are the same, so the result is zero when a → −∞. □

Suppose there are two trigonometric series satisfying the given conditions,
and let their difference of these trigonometric series be

A0 +
∞∑

n=1
An(x) = f(x).

Then f(x) = 0 at all points of the interval (−π, π) with a finite number of
exceptions. Let ξ1, ξ2 be a consecutive pair of these exceptional points, and
let F (x) be the Riemann’s associated function.

Lemma 6.4. In the interval ξ1 < x < ξ2, function F (x) is a linear function
of x if f(x) = 0 in this interval.

Proof. If θ = 1 or if θ = −1 consider

(6.14) ϕ(x) = θ
[
F (x) − F (ξ1) − x−ξ1

ξ2−ξ1
(F (ξ2) − F (ξ1))

]
− 1

2 h2(x − ξ1)(ξ2 − x).

is a continuous function of x on ξ1 ≤ x ≤ ξ2 and it satisfies ϕξ1) = ϕ(ξ2) = 0.
If the first term of ϕ(x) is not zero on the interval, there will be some point

x = c at which ϕ(x) is not zero. Pick the sign of θ so that the first term is
positive at c, and then take h sufficiently small so that ϕ(x) is still positive.
As ϕ(x) is continuous, it attains its upper bound which must be positive since
ϕ(c) > 0. Let ϕ(x) attain this upper bound at x = β so β ̸= ξ1 and β ̸= ξ2.
By Riemann’s first lemma

lim
a→0

ϕ(β + a) + ϕ(β − a) − 2ϕ(β)
a2 = h2.

However, ϕ(β + a) ≤ ϕ(β), ϕ(β − a) ≤ ϕ(β), so this limit must be negative
or zero. Hence, by assuming the first term of ϕ(x) is not everywhere zero in
(ξ1, ξ2), a contradiction has been reached, so it is zero.. Consequently, F (x) is
a linear function of x over (ξ1, ξ2). □

An immediate consequence of the next theorem is that a function of the
type considered cannot be expressed as any trigonometric series in (−π, π)
other than its Fourier series.
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Lemma 6.5 (Riemann II). Two trigonometric series which converge and are
equal at all points of the interval (−π, π) with the possible exception of a finite
number of points must have corresponding coefficients equal.

Proof. Lemma 6.4 implies that y = F (x) is a series of segments of straight
lines under these circumstances with the beginning and ending of each line
at an exceptional point. As stated, F (x) is uniformly convergent, hence a
continuous function of x, and these lines must be connected. By Riemann’s
lemma 6.4, even if τ is an exceptional point

(6.15) lim
a→0

F (τ+a)+F (τ−a)−2F (a)
a = 0.

This quotient in the limit is the difference of the slopes of the two segments
meeting at a point whose x value is τ . Therefore, the two segments are con-
tinuous in direction, so the equation y = F (x) represents a single line, which
we write as F (x) = mx+b. Then it follows that m and b have the same values
for all values of x. Thus,

(6.16) 1
2A0 x2 − mx − b =

∞∑
n=1

1
n2 An(x).

The right-hand side of (6.16) is periodic with period 2π. This means the left-
hand side of this equation must be periodic with period 2π as well, and this
implies these three results:

(6.17) A0 = 0, m = 0, −b =
∞∑

n=1

An(x)
n2 .

The series (6.17) (iii) is uniformly convergent. Thus we can multiply by
cos(nx) or sin(nx) and integrate on both sides to produce two more results
(6.18)

πn−2 an = −b

∫ π

−π
cos(nx) dx = 0, πn−2 bn = −b

∫ π

−π
sin(nx) dx = 0.

Therefore, all the coefficients vanish, so the two trigonometric series whose
difference is A0 +

∑∞
n=1 An(x) have corresponding coefficients equal as re-

quired. □

7. UNIFORM CONVERGENCE AND SOME EXAMPLES

let f(t) be continuous in the interval a ≤ t ≤ b. Since continuity implies
uniform continuity there, the choice of δ corresponding to any value of x in
(a, b) is independent of x, and the upper bound of |f(x ± 0)|, that is, |f(x)| is
also independent of x so
(7.1)∫ π/2

0
|φ±(θ)| dθ =

∫ π/2

0
|f(x±2θ)−f(x±0)| dθ ≤ 1

2

∫ π

−π
|f(t)| dt+1

2π|f(0±0)|.

and the upper bound of the last expression is independent of x.
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Since the choice of m which makes

(7.2)
∣∣∣∣∣ 1

m

∫ π/2

0

sin2(mθ)
sin2 θ

φ±(θ) dθ

∣∣∣∣∣ < πϵ.

This is independent of x, consequently,

1
m

(
A0 +

m−1∑
n=1

Sn(x)
)

approaches the limit f(x) as m → ∞ uniformly throughout a ≤ x ≤ b.

Lemma 7.1. Let f(t) satisfy the conditions of the Riemann-Lebesgue lemma,
and further let it be continuous as well as having limited total fluctuation over
(a, b). Then the Fourier series associated with f(t) converges uniformly to the
sum f(x) at all points x for which a + δ ≤ x ≤ b − δ with δ > 0.

Proof. Let h(t) be a function defined to be equal to f(t) on a ≤ t ≤ b and
equal to zero for t outside this interval but in (−π, π). Suppose αn, βn are the
Fourier coefficients of h(t) and S

(2)
n (x) the sum of the first m + 1 terms of the

Fourier series associated with h(t). It follows from the results above such as
(7.2) that

(7.3) a0
2 +

∑
(αn cos(nx) + βn sin(nx))

is uniformly summable throughout (a + δ, b − δ). Moreover, there is an x-
independent upper bound

(7.4) |αn cos(nx) + βn sin(nx)| ≤ (α2
n + β2

n)1/2

and by Lemma 5.1 it is O(1/n). It follows from Hardy’s convergence theorem
that (7.3) converges uniformly to the sum h(x) which is equal to f(x). Thus
write

Sm(x) − S(2)
m (x) =

= 1
π

∫ π/2

(b−x)/2

sin(2m+1)θ
sin θ f(x + 2θ) dθ + 1

π

∫ π/2

(x−a)/2

sin(2m+1)θ
sin θ f(x − 2θ) dθ.

Choose ϵ > 0 arbitrarily and then enclose the points at which f(t) is un-
bounded in a set of intervals δ1, . . . , δp such that

∑p
i=1

∫
δi

|f(t)| dt < ϵ. Let C

be the upper bound of |f(t)| outside these intervals so we have

(7.5) |Sm(x) − S(2)
m (x)| <

( 2nC
2m+1 + 2ϵ) csc(δ),

where the selection of n depends only on a, b and the form of f(t). By a choice
of m independent of x, we can assume |Sm(x) − S

(2)
m (x)| is arbitrarily small so

Sm(x) − S
(2)
m (x) tends to zero uniformly.

□
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Let us now finish with a few Examples to illustrate these ideas in a more
applied form.

(1). Consider the following integral over (0, π) which is broken up into a
sum of two integrals where in the second a change of variables θ = π − s is
carried out
(7.6)∫ π

0

sin(2m+1)θ
sin θ ϕ(θ) dθ =

∫ π/2

0

sin(2m+1)θ
sin θ ϕ(θ) dθ +

∫ π/2

0

sin(2m+1)θ
sin θ ϕ(π − θ) dθ

It follows by letting m → ∞ that

lim
m→∞

∫ π

0

sin(2m+1)θ
sin θ ϕ(θ) dθ =(7.7)

= lim
m→∞

∫ π/2

0

sin(2m+1)θ
sin θ ϕ(θ) dθ + lim

m→∞

∫ π/2

0

sin(2m+1)θ
sin θ ϕ(π − θ) dθ

= π
2 [ϕ(+0) + ϕ(π − 0)].

2. Let us use the result in (7.7) to study a particular integral. Let us show
that for a > 0

(7.8) lim
m→∞

∫ ∞

0

sin(2m+1)θ
sin θ e−aθ dθ = π

2 coth(π
2 a).

Write the integral in (7.2) as an infinite sum of integrals over the subintervals
((m − 1)π, mπ),∫ ∞

0

sin(2n+1)θ
sin θ e−aθ dθ =

∞∑
m=1

∫ mπ

(m−1)π

sin(2n+1)θ
sin θ e−nθ dθ

=
∞∑

m=1

∫ π

0

sin(2n+1)(s+(m−1)π)
sin(s+(m−1)π) e−a(s+(m−1)π) ds

=
∞∑

n=1

∫ π

0

sin(2n+1)s cos((2n+1)(m−1)π)
sin(s) cos(m−1)π e−as ds e−a(m−1)π

=
∞∑

m=1
e−a(m−1)

∫ π

0

sin(2n+1)s
sin(s) e−as ds

Let m → ∞ so now the integral is calculated by means of the results of 1:

lim
n→∞

∫ ∞

0

sin(2n+1)θ
sin θ e−nθ dθ =

= π
2

∞∑
m=1

e−a(m−1)π (1 + e−aπ)

= π
2

∞∑
m=1

(e−a(m+1)π + e−amπ) = π
2 (e−aπ + 1) ·

∞∑
m=1

e−amπ

= π
2

eaπ/2+e−aπ/2

eaπ/2−e−aπ/2 = π
2 coth(π

2 a).
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3. Let s2n−1(x) be the partial sum n = 1, 2, 3, . . .

(7.9) s2n−1(x) = 1
2 + 2

π

(
sin(πx

b ) + 1
3 sin(3πx

b ) + · · · + 1
2n−1 sin

(
(2n−1) πx

b

))
of the function f(x) = 0, when 0 ≤ x ≤ b and f(x) = 1 when −b ≤ x < 0.
Differentiate (7.9) with respect to x to get

(7.10) s′
2n−1(x) = 1

b

(
2 cos(πx

b ) + · · · + 2 cos(2πx
b ) + · · · + 2 cos( (2n−1)πx

b )
)
.

Multiply both sides of (7.10) by sin(πx/b) and apply the identity 2 sin(α) cos(β)
= sin(α + β) − sin(β − α). The sum then collapses to the form

sin(πx
b )s′

2n−1(x) = 1
b

(
2 sin(πx

b ) cos(πx
b ) + · · · + 2 sin(πx

b ) cos( (2n−1)πx
b )

)
=

(7.11)
= 1

b

(
sin(2πx

b )+sin(4πx
b )−sin(2πx

b )+sin(6πx
b )−sin(4πx

b )+· · ·+sin(2nπx
b )−sin( (2n−2)πx

b )
)

= 1
b sin(2πnx

b ).
The derivative implies the first positive value of x for which s′

2n−1(x) = 0 is
x0 = b/2n. Hence setting x = x0 in s2n−1(x) yields the following value for
(7.9)

(7.12) s2n−1( b
2n) = 1

2 + 2
π

(
cos( π

2n) + 1
3 sin(3π

2n) + · · · + 1
2n−1 sin( (2n−1)π

2n )
)

This sum has the following interpretation. The sum in brackets is the sum of
the areas of rectangles under the graph of g(x) = sin(x)/x with base length
π/n and heights calculated by evaluating g(x) at odd multiples of π/2n from
1 to 2n − 1. Since this is a Riemann integrable function, the sum approaches
the integral of f(x) from 0 to π. In the limit, n → ∞,

(7.13) lim
n→∞

s2n−1( b
2n) = 1

2 + 1
π

∫ π

0

sin(t)
t dt.

The right-hand side has the numerical value of about 1.0895.
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