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APPROXIMATION OF THE HILBERT TRANSFORM
IN THE LEBESGUE SPACES

RASHID A. ALIEV∗ and LALE SH. ALIZADE‡

Abstract. The Hilbert transform plays an important role in the theory and
practice of signal processing operations in continuous system theory because of
its relevance to such problems as envelope detection and demodulation, as well
as its use in relating the real and imaginary components, and the magnitude and
phase components of spectra. The Hilbert transform is a multiplier operator
and is widely used in the theory of Fourier transforms. The Hilbert transform
is the main part of the singular integral equations on the real line. Therefore,
approximations of the Hilbert transform are of great interest. Many papers
have dealt with the numerical approximation of the singular integrals in the
case of bounded intervals. On the other hand, the literature concerning the
numerical integration on unbounded intervals is by far poorer than the one on
bounded intervals. The case of the Hilbert Transform has been considered very
little. This article is devoted to the approximation of the Hilbert transform in
Lebesgue spaces by operators which introduced by V.R. Kress and E. Mortensen
to approximate the Hilbert transform of analytic functions in a strip. In this
paper, we prove that the approximating operators are bounded maps in Lebesgue
spaces and strongly converges to the Hilbert transform in these spaces.
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1. INTRODUCTION

The Hilbert transform of a function u ∈ Lp(R), 1 ≤ p < ∞ is defined as the
Cauchy principle value integral [18]

(Hu)(t) = 1
π

∫
R

u(τ)
t−τ dτ, t ∈ R,

where the integral is understood in the Cauchy principal value sense. It is well
known (see [14, 18, 32]) that the Hilbert transform of the function u ∈ Lp(R),
1 ≤ p < ∞, exists for almost all values of t ∈ R . In case 1 < p < ∞,
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the Hilbert transform is a bounded map in the space Lp(R) and satisfies the
equation:

H2 = −I.
The Hilbert transform plays an important role in the theory and practice

of signal processing operations in continuous system theory because of its
relevance to such problems as envelope detection and demodulation, as well as
its use in relating the real and imaginary components, and the magnitude and
phase components of spectra. The Hilbert transform is a multiplier operator
and is widely used in the theory of Fourier transforms. The Hilbert transform
is the main part of the singular integral equations on the real line (see [24]).
Therefore, approximations of the Hilbert transform are of great interest.

Many papers have dealt with the numerical approximation of the Hilbert
Transform in the case of bounded intervals and the reader can refer to [1,
3, 6, 7, 9, 10, 12, 13, 15, 16, 17, 20, 21, 22, 25, 28, 30, 31, 32, 37, 38] and
the references given there. On the other hand, the literature concerning the
numerical integration on unbounded intervals is by far poorer than the one
on bounded intervals. The case of the Hilbert Transform has been considered
very little and the reader can consult [2, 8, 11, 12, 19, 20, 23, 26, 27, 34, 35, 36,
39]. In particular, in [19] the authors assume that the function u is analytic
in the strip {z ∈ C : |ℑz| < d}, in which case they show that the series
2
π

∑
k∈Z,k ̸=even

u(t+kδ)
−k uniformly converges to (Hu)(t) as δ → 0. In [5] the

author replaces the above series with the following one 1
π

∑
k∈Z

u(t+(k+1/2)δ)
−k−1/2

for a suitable choice of the step δ → 0.
This article is devoted to the approximation of the Hilbert transform of

functions from Lp(R) by operators of the form

(Hδu)(t) = 1
π

∑
k∈Z

u(t+(k+1/2)δ)
−k−1/2 , δ > 0

which were introduced in [19].
In Section 2 we present the properties of the approximating operators Hδ.

We show that the operators Hδ are bounded maps in the space Lp(R), 1 <
p < ∞ and

H2
δ = −I

in Lp(R) (Theorem 2).
In Section 3 we give an approximation of the singular integral with Hilbert

kernel
(Sφ)(t) = 1

2π

∫ π

−π
cot t−τ2 φ(τ)dτ, t ∈ T = [−π, π)

by a sequence of operators

(Snφ)(t) = 1
n

n−1∑
k=0

cot
(
−π(2k+1)

2n

)
φ
(
t+ π(2k+1)

n

)
, n ∈ N.
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in Lp(T ). We show that the operators Sn are uniformly bounded in Lp(T )
and strongly converges to the operator S in Lp(T ), 1 < p < ∞ (Theorems 3
and 4).

In Section 4 we give an approximation of the Hilbert transform H by the
operatorsHδ. We show that for any δ > 0 the sequence of operators {Hδ/n}n∈N
strongly converges to the operator H in Lp(R), 1 < p < ∞ (Theorem 9).

Note that in this paper the singular integral with Hilbert kernel and the
Hilbert transform is approximated by operators preserving the main proper-
ties of these operators (see: Theorem 2 and (6), (7)). This leads to give an
approximation of the singular integral and the Hilbert transform of the func-
tions from Lp, 1 < p < ∞, but other approximate methods can only be applied
to continuous or piecewise continuous functions.

2. PROPERTIES OF THE APPROXIMATING OPERATORS Hδ

Let lp, 1 ≤ p < ∞, the space of all sequences b = {bn}n∈Z with finite
norm ∥b∥lp = (

∑
n∈Z |bn|p)1/p. The sequence h(b) = {(h(b))n}n∈Z is called

the discrete Hilbert transform of the sequence b = {bn}n∈Z, where (h(b))n =∑
m ̸=n

bm
n−m , n ∈ Z.

M. Riesz (see [29]) proved that if b ∈ lp, 1 < p < ∞, then h(b) ∈ lp and the
inequality
(1) ∥h(b)∥lp ≤ Cp∥b∥lp
holds, where Cp is constant depending only on p.

We will use a modified version of the discrete Hilbert transform: (h̃(b))n =∑
m∈Z

bm
n−m−1/2 , n ∈ Z. K. Andersen [4] proved that the inequality (1) is also

valid for the transform h̃, that is, there exist C̃p > 0 such that the inequality

(2) ∥h̃(b)∥lp ≤ C̃p∥b∥lp
holds for any b ∈ lp, 1 < p < ∞.

In the following theorems we prove that the operators Hδ are bounded maps
in the space Lp(R) and H2

δ = −I in Lp(R), 1 < p < ∞.

Theorem 1. For any δ > 0 the operator Hδ is bounded in the space Lp(R),
1 < p < ∞, and the inequality
(3) ∥Hδ∥Lp(R)→Lp(R) ≤ ∥h̃∥lp→lp

holds.

Proof. Let u ∈ Lp(R), 1 < p < ∞. For any t ∈ R

h̃
(
{u(t+ δ/2 + nδ)}n∈Z

)
=
{

1
π

∑
m∈Z

u(t+δ/2+mδ)
n−m−1/2

}
n∈Z

=
{

1
π

∑
k∈Z

u(t+δ/2+kδ+nδ)
−k−1/2

}
n∈Z

= {(Hδu)(t+ nδ)}n∈Z.
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Then, by inequality (2), for almost all t ∈ R

∥{(Hδu)(t+ nδ)}n∈Z∥lp = ∥h̃({u(t+ δ/2 + nδ)}n∈Z)∥lp
≤ ∥h̃∥lp→lp ·

∥∥∥{u(t+ δ/2 + nδ)}n∈Z

∥∥∥
lp
.

It follows that

∥Hδu∥pLp(R) =
∫
R

|(Hδu)(t)|pdt =
∑
n∈Z

∫ (n+1/2)δ

(n−1/2)δ
|(Hδu)(t)|pdt

=
∑
n∈Z

∫ δ/2

−δ/2
|(Hδu)(t+ nδ)|pdt =

∫ δ/2

−δ/2

∑
n∈Z

|(Hδu)(t+ nδ)|pdt

=
∫ δ/2

−δ/2
∥{(Hδu)(t+ nδ)}n∈Z∥plpdt

≤ ∥h̃∥plp→lp
·
∫ δ/2

−δ/2
∥{u(t+ δ/2 + nδ)}n∈Z∥plpdt

= ∥h̃∥plp→lp
·
∫ δ/2

−δ/2

∑
n∈Z

|u(t+ δ/2 + nδ)|pdt

= ∥h̃∥plp→lp
·
∑
n∈Z

∫ δ/2

−δ/2
|u(t+ δ/2 + nδ)|pdt

= ∥h̃∥plp→lp
·
∑
n∈Z

∫ (n+1)δ

nδ
|u(t)|pdt = ∥h̃∥plp→lp

· ∥u∥pLp(R).

□

Theorem 2. For any δ > 0 and u ∈ Lp(R), 1 < p < ∞ the following
inequality holds:

(4) Hδ(Hδu)(t) = −u(t).

Proof. For any u ∈ Lp(R) we have

Hδ(Hδu)(t) = − 1
π

∑
k∈Z

(Hδu)(t+(k+1/2)δ)
k+1/2 = 1

π

∑
k∈Z

1
k+1/2 · 1

π

∑
m∈Z

u(t+(k+m+1)δ)
m+1/2

= 1
π2

∑
k∈Z

∑
m∈Z

u(t+(k+m+1)δ)
(k+1/2)(m+1/2) = 1

π2

∑
k∈Z

∑
n∈Z

u(t+nδ)
(k+1/2)(n−k−1/2)

= 1
π2

∑
n∈Z

∑
k∈Z

1
(k+1/2)(n−k−1/2)

u(t+ nδ).(5)

Since for n = 0 ∑
k∈Z

1
(k+1/2)(n−k−1/2) = −4

∑
k∈Z

1
(2k+1)2 = −π2,
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and for n ̸= 0∑
k∈Z

1
(k+1/2)(n−k−1/2) =

∑
k∈Z

1
n

[
1

k+1/2 + 1
n−k−1/2

]
= 1

n lim
N→∞

∑
|k|≤N

[
1

k+1/2 + 1
n−k−1/2

]
= 0,

then equality (4) follows from (5). □

3. APPROXIMATION OF THE SINGULAR INTEGRAL WITH HILBERT KERNEL

Denote by Lp(T ), 1 ≤ p < ∞, the space of all measurable, 2π-periodic
functions with finite norm ∥φ∥Lp(T ) = (

∫
T |φ(t)|pdt)1/p, where T = [−π, π),

and by Lp([a, b]) the space of all measurable functions on the interval [a, b] ⊂ R

with finite norm ∥φ∥Lp([a,b]) =
(∫ b
a |φ(t)|pdt

)1/p
.

It is well known that (see [40]) the singular integral with Hilbert kernel

(Sφ)(t) = 1
2π

∫ π

−π
cot t−τ2 φ(τ)dτ, t ∈ T,

is a bounded map in the space Lp(T ), 1 < p < ∞ and for any φ ∈ Lp(T )

(S2φ)(t) = −φ(t) + 1
2π

∫ π

−π
φ(τ)dτ, t ∈ T.

Consider in Lp(T ), 1 < p < ∞ the sequence of operators

(Snφ)(t) = 1
n

n−1∑
k=0

cot
(
−π(2k+1)

2n

)
φ
(
t+ π(2k+1)

n

)
, n ∈ N.

It is easy to verify that if

φ(t) = a0
2 +

∞∑
m=1

(am cosmt+ bm sinmt),

then

(Snφ)(t) =
∞∑
m=1

λ(n)
m (am cosmt+ bm sinmt),

where λ
(n)
m = 1 for m = 1, n− 1, λ(n)

n = λ
(n)
2n = 0, λ(n)

m = −1 for m =
n+ 1, 2n− 1 and λ

(n)
m+2n = λ

(n)
m for m ∈ Z. It follows from here that for any

trigonometric polynomial P (t) of order at most n− 1

(6) (SnP )(t) = (SP )(t),

and for any φ ∈ Lp(T )

(7) (S2
nφ)(t) = −φ(t) + 1

n

n−1∑
k=0

φ(t+ 2πk
n ), n ∈ N.



144 Rashid A. Aliev and Lale Sh. Alizade 6

In the following theorems we prove that the sequence of operators Sn are
uniformly bounded in Lp(T ) and strongly converges to the operator S in Lp(T ),
1 < p < ∞.

Theorem 3. Operators Sn are uniformly bounded in Lp(T ), 1 < p < ∞,
and for any n ∈ N the inequality

∥Sn∥Lp(T )→Lp(T ) ≤ 4 + 2∥h̃∥lp→lp

holds.

Proof. Let φ ∈ Lp(T ). Define the function u(t) = φ(t) for t ∈ [−2π, 2π] and
u(t) = 0 for t ∈ R \ [−2π, 2π]. Then u ∈ Lp(R), and therefore, it follows from
Theorem 1 that for any δ > 0
(8) ∥Hδu∥Lp(R) ≤ ∥h̃∥lp→lp · ∥u∥Lp(R) = 2∥h̃∥lp→lp · ∥φ∥Lp(T ).

Since for any t ∈ [−π, π]

(Snφ)(t) = 1
n

n−1∑
k=0

cot
(
−π(2k+1)

2n

)
φ
(
t+ π(2k+1)

n

)
= 1

n

∑
k∈∆n

cot
(
−π(2k+1)

2n

)
φ
(
t+ π(2k+1)

n

)
,

(H2π/nu)(t) = 1
π

∑
k∈Z

u(t+ π(2k+1)
n

)
−k−1/2 = 1

π

∑
k∈∆n

u(t+ π(2k+1)
n

)
−k−1/2 + 1

π

∑
k∈∆̃n

u(t+ π(2k+1)
n

)
−k−1/2 ,

where
∆n =

{
k ∈ Z :

[
−n+1

2

]
≤ k ≤

[
n−1

2

]}
,

∆̃n =
{
k ∈ Z : |k| ≤ 2n, k >

[
n−1

2

]
or k <

[
−n+1

2

]}
,

then for any t ∈ [−π, π] we have
(H2π/nu)(t) − (Snφ)(t) =

= 1
n

∑
k∈∆n

[
cot π(2k+1)

2n − 2n
π(2k+1)

]
φ
(
t+ π(2k+1)

n

)
+ 1

π

∑
k∈∆̃n

u
(
t+ π(2k+1)

n

)
−k−1/2 .(9)

It follows from (9) and from inequality | cotx− 1/x| ≤ 2/π for 0 < |x| ≤ π/2
that

∥H2π/nu− Snφ∥Lp([−π,π]) ≤

≤ 1
n

∑
k∈∆n

2
π∥φ∥Lp(T ) + 1

π

∑
k∈∆̃n

2
n∥φ∥Lp(T ) ≤ 4∥φ∥Lp(T ).(10)

From (8) and (10) we have
∥Snφ∥Lp(T ) ≤ ∥H2π/nu− Snφ∥Lp([−π,π]) + ∥H2π/nu∥Lp(R)

≤
(
4 + 2∥h̃∥lp→lp

)
· ∥φ∥Lp(T ). □
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Theorem 4. The sequence of operators Sn strongly converges to the oper-
ator S in Lp(T ), 1 < p < ∞, and for any φ ∈ Lp(T ) the following estimate
holds:

(11) ∥Sφ−Snφ∥Lp(T ) ≤
(
4 + ∥S∥Lp(T )→Lp(T ) + 2∥h̃∥lp→lp

)
·Epn−1(φ), n ∈ N,

where Epn−1(φ) – is the best approximation of the function φ in the metric
Lp(T ) by trigonometric polynomials of order at most n− 1, n ∈ N.

Proof. Suppose that

qn−1(t) = a0
2 +

n−1∑
m=1

(am cosmt+ bm sinmt)

is the best approximation of the function φ in the metric Lp(T ) by trigono-
metric polynomials of order at most n − 1, n ∈ N. Then it follows from the
equality

(Snqn−1)(t) = (Sqn−1)(t)
that

(Sφ− Snφ)(t) = S(φ− qn−1)(t) − Sn(φ− qn−1)(t).
Then

∥Sφ− Snφ∥Lp(T ) ≤
(
∥S∥Lp(T )→Lp(T ) + ∥Sn∥Lp(T )→Lp(T )

)
· ∥φ− qn−1∥Lp(T )

≤
(
4 + ∥S∥Lp(T )→Lp(T ) + 2∥h̃∥lp→lp

)
· Epn−1(φ).

□

4. APPROXIMATION OF THE HILBERT TRANSFORM

Consider the regular integral operator

(Kφ)(t) = 1
2π

∫ π

−π
K(t, τ)φ(τ)dτ, t ∈ T,

where K(t, τ) is a continuous function on [−π, π]2 , and the sequence of oper-
ators

(Knφ)(t) = 1
n

n−1∑
k=0

K
(
t, t+ π(2k+1)

n

)
φ
(
t+ π(2k+1)

n

)
, t ∈ T, n ∈ N,

where K(t, τ) = K(t, τ − 2π) for (t, τ) ∈ [−π, π] × (π, 3π).

Lemma 5. The sequence of operators {Kn} strongly converges to the oper-
ator K in Lp(T ).

Proof. First assume that K(t, τ) is a 2π-periodic function by τ . Denote

∥K∥∞ = max
t,τ∈[−π,π]

|K(t, τ)|, En(K) = inf ∥K − Φn∥∞,
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where Φn(t, τ) = α0(t)
2 +

∑n
m=1(αm(t) cosmτ + βm(t) sinmτ), and infimum is

taken over all trigonometric polynomials αm(t), m = 0, n, βm(t), m = 1, n of
order at most n.

Denote n0 =
[
n−1

2

]
. Suppose that

qn0(t) = a0
2 +

n0∑
m=1

(am cosmt+ bm sinmt)

and

Φ(0)
n0 (t, τ) = α

(0)
0 (t)

2 +
n0∑
m=1

(α(0)
m (t) cosmτ + β(0)

m (t) sinmτ)

are the best approximations of the functions φ and K by trigonometric poly-
nomials of order at most n0.

For any trigonometric polynomial rn−1(t) of order at most n−1, the equality

1
2π

∫ π

−π
rn−1(τ)dτ = 1

n

n−1∑
k=0

rn−1
(
t+ π(2k+1)

n

)
holds. Therefore

(Kφ)(t) − (Knφ)(t) =

= (K − Kn)(φ− qn0)(t) + 1
2π

∫ π

−π

[
K(t, τ) − Φ(0)

n0 (t, τ)
]
qn0(τ)dτ

+ 1
n

n−1∑
k=0

[
K(t, t+ τ

(n)
k ) − Φ(0)

n0 (t, t+ τ
(n)
k )

]
qno(t+ τ

(n)
k ),

where τ (n)
k = π(2k+1)

n , k ∈ Z. It follows from here and from inequalities

∥K∥Lp(T )→Lp(T ) ≤ ∥K∥∞, ∥Kn∥Lp(T )→Lp(T ) ≤ ∥K∥∞

that

∥Kφ− Knφ∥Lp(T ) ≤ 2∥K∥∞E
p
n0(φ) + 2En0(K)

[
∥φ∥Lp(T ) + Epn0(φ)

]
.

This completes the proof of the lemma in this case. Now consider the general
case.

Let φ ∈ Lp(T ) and ε > 0. Denote

K∗(t, τ) = K(t, τ) for (t, τ) ∈ [−π, π] × [−π, π − δε],
K∗(t, τ) = K(t, π − δε) + τ−π+δε

δε
[K(t,−π) −K(t, π − δε)]

for (t, τ) ∈ [−π, π] × [π − δε, π],
K∗(t, τ + 2π) = K∗(t, τ) for any (t, τ) ∈ [−π, π] × R,

where δε = min
{

2π ·
(

ε
8∥K∥∞∥φ∥Lp(T )

) p
p−1

, πε
8∥K∥∞∥φ∥Lp(T )

, 1
}

.
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Since the function K∗(t, τ) is continuous and 2π-periodic by τ , the sequence
of operators

(K∗
nφ)(t) = 1

n

n−1∑
k=0

K∗(t, t+ τ
(n)
k )φ(t+ τ

(n)
k ), t ∈ T, n ∈ N

strongly converges to the operator

(K∗φ)(t) = 1
2π

∫ π

−π
K∗(t, τ)φ(τ)dτ

in Lp(T ). Therefore, the inequality
∥K∗

nφ− K∗φ∥Lp(T ) < ε/2
is satisfied for large values of n. Moreover, since

∥Kφ− K∗φ∥Lp(T ) ≤ 1
2π

[∫ π

−π

(∫ π

π−δε

|K(t, τ) −K∗(t, τ)||φ(τ)|dτ
)p
dt

]1/p

≤ ∥K∥∞
π

[∫ π

−π

(∫ π

π−δε

|φ(τ)|dτ
)p
dt

]1/p

≤ 2∥K∥∞
(2π)1−1/p (δε)1−1/p∥φ∥Lp([π−δε,π]) ≤ ε

4 ,

and for n ≥ 16∥K∥∞∥φ∥Lp(T )
ε

∥Knφ− K∗
nφ∥Lp(T ) ≤ 1

n ·
(
n
2π · δε + 1

)
· 2∥K∥∞∥φ∥Lp(T ) ≤ ε

4 ,

then for sufficiently large values n we have
∥Knφ− Kφ∥Lp(T ) ≤
≤ ∥Knφ− K∗

nφ∥Lp(T ) + ∥K∗
nφ− K∗φ∥Lp(T ) + ∥K∗φ− Kφ∥Lp(T ) < ε.

□

Corollary 6. The sequence of operators

(K̃nφ)(t) = 1
n

∑
{k∈Z:t+τ (n)

k
∈[−π,π]}

K(t, t+ τ
(n)
k )φ(t+ τ

(n)
k ), t ∈ [−π, π], n ∈ N

strongly converges to the operator K in Lp([−π, π]).

Corollary 7. If the function K(t, τ) is continuous on [πm, πm + 2πq] ×
[−π, π], then for any φ ∈ Lp(T ) the sequence of functions

(K̃nφ)(t) = 1
n

∑{
k∈Z:t+τ (n)

k
∈[−π,π]

}K(t, t+ τ
(n)
k )φ(t+ τ

(n)
k ), t ∈ [πm, πm+ 2πq],

converges to the function

(Kφ)(t) = 1
2π

∫ π

−π
K(t, τ)φ(τ)dτ, t ∈ [πm, πm+ 2πq]

in Lp([πm, πm+ 2πq]), where m ∈ Z, q ∈ N.
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Corollary 8. If the function K0(t) is continuous on [−π, π], then the
sequence of operators

(K0
nφ)(t) = 1

2n

n−1∑
k=−n

K0
(
π(2k+1)

2n

)
φ
(
t+ π(2k+1)

2n

)
, t ∈ T, n ∈ N

strongly converges to the operator

(K0φ)(t) = 1
2π

∫ π

−π
K0(τ)φ(t+ τ)dτ, t ∈ T

in Lp(T ).

In the following theorem we prove that for any δ > 0 the sequence of
operators {Hδ/n}n∈N strongly converges to the operator H in Lp(R), 1 < p <
∞.

Theorem 9. For any δ > 0 the sequence of the operators {Hδ/n}n∈N
strongly converges to the operator H in Lp(R), that is for any u ∈ Lp(R)
the following inequality holds:

lim
n→∞

∥Hδ/nu−Hu∥Lp(R) = 0.

Proof. For simplicity of presentation we have divided the proof into three
steps.

Step 1. Let us first prove that the operator

(H∗φ)(t) = 1
π

∫ t+π

t−π

φ(τ)
t−τ dτ

is a bounded operator in Lp(T ). Indeed, for any φ ∈ Lp(T ) we have

(H∗φ)(t) = 1
π

∫ t+π

t−π

φ(τ)
t−τ dτ = 1

π

∫ t+π

t−π

[
1
t−τ − 1

2 cot t−τ2

]
φ(τ)dτ + (Sφ)(t)

= 1
2π

∫ π

−π

[
cot τ2 − 2

τ

]
φ(t+ τ)dτ + (Sφ)(t).(12)

Since the function
K0(τ) = cot τ2 − 2

τ for τ ̸= 0, K0 = 0
is continuous on [−π, π], then it follows from (12) and from Corollary 8 that
the operator H∗ is bounded in Lp(T ).

Consider the sequence of operators

(H∗
nφ)(t) = 1

π

n−1∑
k=−n

1
−k−1/2φ

(
t+ π(2k+1)

2n

)
, t ∈ T, n ∈ N.

Since for any φ ∈ Lp(T )

(H∗
nφ)(t) = 1

2n

n−1∑
k=−n

[
cot

(
π(2k+1)

4n

)
− 4n

π(2k+1)

]
φ
(
t+ π(2k+1)

2n

)
+ (S2nφ)(t) =
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= 1
2n

n−1∑
k=−n

K0
(
π(2k+1)

2n

)
φ
(
t+ π(2k+1)

2n

)
+ (S2nφ)(t),

then it follows from Theorem 4 and from Corollary 8 that the sequence of
operators H∗

n strongly converges to the operator H∗ in Lp(T ).
Step 2. Let us first prove that the sequence of operators

(Hπ/(4n)u)(t) = 1
π

∑
k∈Z

1
−k−1/2u

(
t+ π(k+1/2)

4n

)
, t ∈ R, n ∈ N

strongly converges to the operator H in Lp(R). At first assume that supp u ⊂
[−π/4, π/4]. Denote by φ 2π-periodic function, coinciding with the function
u on [−π/4, π/4] and equal to zero in T \ [−π/4, π/4]. Since for any t ∈
[−π/2, π/2]

(13) (Hu)(t) = 1
π

∫ π/4

−π/4

u(τ)
t−τ dτ = (H∗φ)(t),

(Hπ/nu)(t) = 1
π

n−1∑
k=−n

1
−k−1/2u

(
t+ π(k+1/2)

n

)

= 1
π

n−1∑
k=−n

1
−k−1/2φ

(
t+ π(k+1/2)

n

)
= (H∗

nφ)(t),(14)

and the sequence of operators H∗
n strongly converges to the operator H∗ in

Lp(T ), then it follows from (13) and (14) that for any ε > 0 for large values
of n

∥Hπ/nu−Hu∥Lp([−π/2,π/2]) = ∥H∗
nφ−H∗φ∥Lp([−π/2,π/2])

≤ ∥H∗
nφ−H∗φ∥Lp(T ) < ε.(15)

Due to the inequalities

|(Hu)(t)| ≤ 1
π

∫ π/4

−π/4

∣∣∣u(τ)
t−τ

∣∣∣ dτ ≤ ∥u∥L1([−π/4,π/4])
π(|t|−π/4) , |t| > π/4,

|(Hπ/nu)(t)| ≤ 1
π

∑
k∈Z(t)

(n)

1
|k+1/2|

∣∣∣u (t+ π(k+1/2)
n

)∣∣∣
≤ 1

n(|t|−π/4)
∑

k∈Z(t)
(n)

∣∣∣u (t+ π(k+1/2)
n

)∣∣∣ , |t| > π/4,

where Z(t)
(n) = {k ∈ Z : t+ π(k+1/2)

n ∈ [−π/4, π/4]}, we get that for any M > 2π

∥Hu∥Lp([M,∞]) ≤ ∥u∥L1([−π/4,π/4])
π ·

(∫ ∞

M

dt
(|t|−π/4)p

)1/p
= ∥u∥L1([−π/4,π/4])

π(p−1)1/p(M−π/4)1−1/p ,
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∥Hπ/nu∥Lp([M,∞]) ≤ 1
n

[ ∫ ∞

M

1
(|t|− π

4 )p

( ∑
k∈Z(t)

(n)

∣∣∣u(t+ π(k+1/2)
n )

∣∣∣ )pdt]1/p

≤ 1
n1/p

[ ∫ ∞

M

1
(|t|− π

4 )p

∑
k∈Z(t)

(n)

∣∣∣u (t+ π(k+1/2)
n

)∣∣∣p dt]1/p

= 1
n1/p

[ ∞∑
m=0

∫ M+ π(m+1)
n

M+ πm
n

1
(|t|− π

4 )p

∑
k∈Z(t)

(n)

∣∣∣u (t+ π(k+1/2)
n

)∣∣∣p dt]1/p

≤ 1
n1/p

[ ∞∑
m=0

1
(M+ πm

n
− π

4 )p

∫ M+ π(m+1)
n

M+ πm
n

∑
k∈Z(t)

(n)

∣∣∣u (t+ π(k+1/2)
n

)∣∣∣p dt]1/p

= 1
n1/p

[ ∞∑
m=0

1
(M+ πm

n
− π

4 )p ∥u∥Lp([−π/4,π/4])

]1/p

≤ ∥u∥Lp([−π/4,π/4])
n1/p

[
n/π

(p−1)(M− π
4 − π

n
)p−1

]1/p
= ∥u∥Lp([−π/4,π/4])

π1/p(p−1)1/p(M− π
4 − π

n
)1−1/p .

Similar inequalities holds for ∥Hu∥Lp([−∞,−M ]) and for ∥Hπ/nu∥Lp([−∞,−M ]).
Therefore, for any ε > 0 there exist m0 ≥ 4 such that

(16) ∥Hu∥Lp(R\[− πm0
2 ,

πm0
2 ]) < ε, ∥Hπ/nu∥Lp(R\[− πm0

2 ,
πm0

2 ]) < ε.

Since the function 1
t−τ is continuous on a rectangle [2π, 2πm0] × [−π, π],

then it follows from Corollary 7 that the sequence of functions

(Wnφ)(t) = 2
n

∑
{k∈Z:t+ π(2k+1)

n
∈[−π,π]}

φ(t+π(2k+1)/n)
−π(2k+1)/n =

= 1
π

∑
{k∈Z:t+ π(2k+1)

n
∈[−π,π]}

φ(t+π(2k+1)/n)
−k−1/2 , n ∈ N

converges to the function

(Wφ)(t) =
∫ π

−π

φ(τ)
t−τ dτ

in Lp([2π, 2πm0]). Denote by ψ the function, defined on [−π, π] by the equality
ψ(τ) = u(τ/4). Then it follows from the equations

(Hu)(t) = 1
π

∫ π/4

−π/4

u(τ)
t−τ dτ = 1

π

∫ π

−π

u(τ/4)
4t−τ dτ = (Wψ)(4t), t ∈ [π/2, πm0/2],
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(Hπ/(4n)u)(t) = 1
π

∑
k∈Z(t)

(4n)

u(t+π(k+1/2)/4n)
−k−1/2 = 1

π

∑
k∈Z(t)

(4n)

ψ(4t+π(k+1/2)/n)
−k−1/2

= (Wnψ)(4t), t ∈ [π/2, πm0/2],

that the sequence of functions Hπ/(4n)u converges to the function Hu in
Lp([π/2, πm0/2]). Therefore, for large values of n

(17) ∥Hπ/(4n)u−Hu∥Lp([π/2,πm0/2]) < ε.

Similarly, for large values on n

(18) ∥Hπ/(4n)u−Hu∥Lp([−πm0/2,−π/2]) < ε.

It follows from (15)–(18) that in the case suppu ⊂ [−π/4, π/4]

(19) lim
n→∞

∥Hπ/(4n)u−Hu∥Lp(R) = 0.

Now suppose that suppu ⊂ [−πm/4, πm/4] for some m ∈ N. Denote by u0
the function, defined on [−π/4, π/4] by the equation u0(t) = u(mt). Then for
any t ∈ R

(Hu)(t) = 1
π

∫ πm/4

−πm/4

u(τ)
t−τ dτ = 1

π

∫ π/4

−π/4

u(mτ)
t−τ mdτ = (Hu0)(t/m),

(Hπ/(4n)u)(t) = 1
π

∑
{k∈Z:t+ π(k+1/2)

4n
∈[− πm

4 ,
πm
4 ]}

u(t+π(k+1/2)/4n)
−k−1/2

= 1
π

∑
k∈Z(t/m)

(4mn)

u0(t/m+π(k+1/2)/(4mn))
−k−1/2 = (Hπ/(4mn)u0)(t/m).

Since equation (19) holds for u0, we obtain that

lim
n→∞

∥Hπ/(4n)u−Hu∥Lp(R) = m1/p lim
n→∞

∥Hπ/(4mn)u0 −Hu0∥Lp(R) = 0.

Now consider the general case. Let us prove that equation (19) holds for
any u ∈ Lp(R). For any u ∈ Lp(R) and ε > 0 there exist m ∈ N such that

(20) ∥u− um∥Lp(R) < ε,

where um(t) = u(t) ·χ[−πm/4,πm/4](t). Since equation (19) holds for um, and it
follows from (3), (20) that

∥Hπ/(4n)(u− um) −H(u− um)∥Lp(R) ≤

≤
[
∥Hπ/(4n)∥Lp(R)→Lp(R) + ∥H∥Lp(R)→Lp(R)

]
· ∥u− um∥Lp(R)

≤ ε ·
[
∥h̃∥lp→lp + ∥H∥Lp(R)→Lp(R)

]
,

then we get that the equation (19) also holds for the function u.
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Step 3. Let us prove that for any δ > 0 the secuence of the operators
{Hδ/n}n∈N strongly converges to the operator H in Lp(R). Let u ∈ Lp(R).
Denote w(t) = u(4δt/π), t ∈ R. Then for any t ∈ R

(Hu)(t) = 1
π

∫
R

u(τ)
t−τ dτ = 1

π

∫
R

w(πτ/(4δ))
t−τ dτ =

= 1
π

∫
R

w(τ)
πt/(4δ)−τ dτ = (Hw)(πt/(4δ)),(21)

(Hδ/nu)(t) = 1
π

∑
k∈Z

u(t+(k+1/2)δ/n)
−k−1/2 =

= 1
π

∑
k∈Z

w(πt/(4δ)+π(k+1/2)/(4n))
−k−1/2 = (Hπ/(4n)w)(πt/(4δ)).(22)

Since limn→∞ ∥Hπ/(4n)w−Hw∥Lp(R) = 0, then it follows from (21), (22) that

lim
n→∞

∥Hδ/nu−Hu∥Lp(R) = 0.

□
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