JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY

NEW ESTIMATES RELATED WITH THE BEST POLYNOMIAL APPROXIMATION

JORGE BUSTAMANTE*

Abstract

In some old results, we find estimates the best approximation $E_{n, p}(f)$ of a periodic function satisfying $f^{(r)} \in \mathbb{L}_{2 \pi}^{p}$ in terms of the norm of $f^{(r)}$ (Favard inequality). In this work, we look for a similar result under the weaker assumption $f^{(r)} \in \mathbb{L}_{2 \pi}^{q}$, with $1<q<p<\infty$. We will present inequalities of the form $E_{n, p}(f) \leq C(n)\left\|D^{(r)} f\right\|_{q}$, where $D^{(r)}$ is a differential operator. We also study the same problem in spaces of non-periodic functions with a Jacobi weight.

MSC. 42A10, 41A10.
Keywords. Favard inequality, best approximation.

1. INTRODUCTION

Let $C_{2 \pi}$ denote the Banach space of all real 2π-periodic continuous functions f defined on the real line \mathbb{R} with the sup norm

$$
\|f\|_{\infty}=\max _{x \in[-\pi, \pi]}|f(x)|
$$

For $1 \leq p<\infty$, the Banach space $\mathbb{L}_{2 \pi}^{p}$ consists of all 2π-periodic, p-th power Lebesgue integrable (class of) functions f on \mathbb{R} with the norm

$$
\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{p} d x\right)^{1 / p}
$$

In order to simplify we write $X_{2 \pi}^{p}=\mathbb{L}_{2 \pi}^{p}$ for $1 \leq p<\infty$ and $X_{2 \pi}^{\infty}=C_{2 \pi}$.
Let \mathbb{T}_{n} denote the family of all trigonometric polynomials of degree non greater that n. For $n \in \mathbb{N}_{0}$ and $f \in X_{2 \pi}^{p}$, the best approximation is defined by

$$
E_{n, p}(f)=\inf _{T \in \mathbb{T}_{n}}\|f-T\|_{p}
$$

By $W_{p, 2 \pi}^{r}$ we mean the family of all functions $f \in X_{2 \pi}^{p}$ such that $f, \ldots, f^{(r-1)}$ are absolutely continuous and $f^{(r)} \in X_{2 \pi}^{p}$.

The following result is known (for instance, see [4, p. 166] where other notations were used).

[^0]Theorem 1. If $1 \leq p \leq \infty, r, n \in \mathbb{N}$ and $g \in W_{p, 2 \pi}^{r}$, then

$$
\begin{equation*}
E_{n, p}(g) \leq \frac{F_{r}}{(n+1)^{r}} E_{n, p}\left(g^{(r)}\right) \tag{1}
\end{equation*}
$$

where F_{r} is the Favard constant.
Here we want to consider the following problem. Is there an estimate similar to (1), if $1 \leq q<p \leq \infty, r, n \in \mathbb{N}, g \in X_{2 \pi}^{p}$ and $g \in W_{q, 2 \pi}^{r}$ (with the necessary adjustment)?

In [1], Ganzburg considered a similar problem, when the derivative of a continuous functions is not continuous.

Theorem 2 (Ganzburg, [1]). If $f \in C_{2 \pi}$ is absolutely continuous and $f^{\prime} \in$ $\mathbb{L}_{2 \pi}^{1}$, then

$$
E_{n, \infty}(f) \leq \frac{1}{2} E_{n, 1}\left(f^{\prime}\right)
$$

In Section 2 we extend the result of Ganzburh to the case when $1<q<$ $p<\infty, f \in X_{2 \pi}^{p}$ and $f \in W_{q, 2 \pi}^{r}$.

For $1 \leq p<\infty$, we denote by $\mathbb{L}_{\alpha, \beta}^{p}$ the space of all measurable functions f satisfying

$$
\|f\|_{p, \alpha, \beta}=\left\{\int_{-1}^{1}|f(x)|^{p} \varrho_{\alpha, \beta}(x) d x\right\}^{1 / p}<\infty
$$

where $\varrho_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta}$ and $\alpha, \beta>-1$.
For $n \in \mathbb{N}_{0}$ and $f \in L_{(\alpha, \beta)}^{p}$, define the best approximation of f of order n by

$$
E_{n}(f)_{p, \alpha, \beta}=\inf \left\{\left\|f-P_{n}\right\|_{p, \alpha, \beta} ; P_{n} \in \mathbb{P}_{n}\right\}
$$

here \mathbb{P}_{n} is the family of all algebraic polynomials of degree not bigger than n.
In Section 3, for $1<q<p$ and functions $f \in L_{(\alpha, \beta)}^{p}$ such that $\mathcal{D}_{\alpha, \beta}^{r}(f) \in$ $L_{(\alpha, \beta)}^{q}$ (see (9)), we estimate $E_{n}(f)_{p, \alpha, \beta}$ in terms of $E_{n}\left(\mathcal{D}_{\alpha, \beta}^{r}(f)\right)_{q, \alpha, \beta}$. We will assume that $\alpha \geq \beta \geq-1 / 2$.

2. THE PERIODICAL CASE

Let

$$
\begin{equation*}
\mathfrak{B}_{r}(t)=\sum_{k=1}^{\infty} \frac{\cos (k t-r \pi / 2)}{k^{r}} \tag{2}
\end{equation*}
$$

be the Bernoulli kernel.
Theorem 3. Assume $1<q<p<\infty$ and let s satisfy

$$
\begin{equation*}
\frac{1}{q}-\frac{1}{p}=1-\frac{1}{s} \tag{3}
\end{equation*}
$$

If $r \in \mathbb{N}, f \in X_{2 \pi}^{p}$ and $f \in W_{q, 2 \pi}^{r}$, then

$$
E_{n, p}(f) \leq 2 E_{n, s}\left(\mathfrak{B}_{r}\right) E_{n, q}\left(f^{(r)}\right)
$$

for each $n \in \mathbb{N}$.

Proof. Fix polynomials $T_{n}, B_{n} \in \mathbb{T}_{n}$ such that

$$
E_{n, q}\left(f^{(r)}\right)=\left\|f^{(r)}-T_{n}\right\|_{q} \quad \text { and } \quad\left\|\mathfrak{B}_{r}-B_{n}\right\|_{s}=E_{n, s}\left(\mathfrak{B}_{r}\right) .
$$

Define

$$
\begin{aligned}
& M_{n}(f, x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{(r)}(t) B_{n}(x-t) d t \\
& N_{n}(f, x)=\frac{1}{\pi} \int_{-\pi}^{\pi} T_{n}(t)\left(\mathfrak{B}_{r}(x-t)-B_{n}(x-t)\right) d t
\end{aligned}
$$

and

$$
L_{n}(f, x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t+M_{n}(f, x)+N_{n}(f, x)
$$

Since $M_{n}(f, x)$ and $N_{n}(f, x)$ are convolution with trigonometric polynomials of degree not bigger than n, one has $M_{n}(f), N_{n}(f), L_{n}(f) \in \mathbb{T}_{n}$.

Recall that (see [4, p. 30])

$$
f(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t+\frac{1}{\pi} \int_{-\pi}^{\pi} f^{(r)}(t) \mathfrak{B}_{r}(x-t) d t .
$$

Therefore

$$
\begin{aligned}
& L_{n}(f, x)-f(x)= \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f^{(r)}(t) B_{n}(x-t)+T_{n}(t)\left(\mathfrak{B}_{r}(x-t)-B_{n}(x-t)\right)-\left(f^{(r)}(t) \mathfrak{B}_{r}(x-t)\right) d t \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(T_{n}(t)-f^{(r)}(t)\right)\left(\mathfrak{B}_{r}(x-t)-B_{n}(x-t)\right) d t .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\frac{1}{2}\left(L_{n}(f, x)-f(x)\right)=\left(T_{n}-f^{(r)}\right) *\left(\mathfrak{B}_{r}-B_{n}\right)(x) . \tag{4}
\end{equation*}
$$

Now an application of the Young inequality yields

$$
\frac{1}{2}\left\|L_{n}(f)-f\right\|_{p} \leq\left\|T_{n}-f^{(r)}\right\|_{q}\left\|\mathfrak{B}_{r}-B_{n}\right\|_{s}=E_{n, s}\left(\mathfrak{B}_{r}\right) E_{n, q}\left(f^{(r)}\right) .
$$

In Theorem 4 we extend the result of Ganzburg presented in the introduction. We consider $r>1$, because \mathfrak{B}_{1} is not a continuous function. On the other hand the series (2) converges uniformly for $r \geq 2$.

Theorem 4. If $r \in \mathbb{N}, r>1,1<p \leq \infty, f \in X_{2 \pi}^{p}$ and $f \in W_{1}^{r}$, then

$$
E_{n, \infty}(f) \leq 2 E_{n, p}\left(\mathfrak{B}_{r}\right) E_{n, 1}\left(f^{(r)}\right) .
$$

for each $n \in \mathbb{N}$.
Proof. It is known (see [4, p. 36]) that if $f \in X_{2 \pi}^{p}$ and $h \in \mathbb{L}^{1}$, then $f * h \in X_{2 \pi}^{p}$ and

$$
\|f * h\|_{p} \leq\|h\|_{1}\|f\|_{p} .
$$

If $f \in X_{2 \pi}^{p}$ and $f \in W_{1}^{r}$, we fix polynomials $T_{n}, B_{n} \in \mathbb{T}_{n}$ such that

$$
E_{n, 1}\left(f^{(r)}\right)=\left\|f^{(r)}-T_{n}\right\|_{1} \quad \text { and } \quad\left\|\mathfrak{B}_{r}-B_{n}\right\|_{p}=E_{n, p}\left(\mathfrak{B}_{r}\right) .
$$

It follows from (4) that

$$
E_{n, p}(f) \leq 2\left\|T_{n}-f^{(r)}\right\|_{1}\left\|\mathfrak{B}_{r}-B_{n}\right\|_{p}=2 E_{n, p}\left(\mathfrak{B}_{r}\right) E_{n, 1}\left(f^{(r)}\right) .
$$

Remark 5. We have not found a study of the quantities $E_{n, s}\left(\mathfrak{B}_{r}\right)$ for $s>1$. But, if $r, s>1$ and $S_{n}(x)$ is the partial sum of the series (2), then

$$
\begin{aligned}
E_{n, s}\left(\mathfrak{B}_{r}\right) & \leq\left\|\mathfrak{B}_{r}-S_{n}\right\|_{s}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\sum_{k=n+1}^{\infty} \frac{\cos (k x)}{k^{r}}\right|^{s} d x\right)^{1 / s} \\
& \leq\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{k=n+1}^{\infty} \frac{1}{k^{r}}\right)^{s} d x\right)^{1 / s}=\sum_{k=n+1}^{\infty} \frac{1}{k^{r}} \leq \frac{1}{(r-1)(n+1)^{r-1}} .
\end{aligned}
$$

3. THE CASE OF NON-PERIODIC FUNCTIONS

Let $\left\{J_{n}^{(\alpha, \beta)}\right\}$ be the orthogonal system of Jacobi polynomials on $[-1,1]$ with respect to the weight $\varrho_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta}$, normalized by the conditions $J_{n}^{(\alpha, \beta)}(1)=1$.

If $\alpha \geq \beta \geq-1 / 2$ and $1 \leq p \leq \infty$, it is known that the exists a generalized translation $\tau_{t}: \mathbb{L}_{\alpha, \beta}^{p} \rightarrow \mathbb{L}_{\alpha, \beta}^{p}$ with the following properties

$$
\left\|\tau_{t}(f)\right\|_{p, \alpha, \beta} \leq\|f\|_{p, \alpha, \beta}, \quad t \in[-1,1], f \in \mathbb{L}_{\alpha, \beta}^{p},
$$

and

$$
\begin{equation*}
c_{k}\left(\tau_{t}(f)\right)=c_{k}(f) J_{k}^{(\alpha, \beta)}(t), \quad k \in \mathbb{N}_{0}, \tag{5}
\end{equation*}
$$

where

$$
c_{k}(g)=c_{k}^{(\alpha, \beta)}(g)=\int_{-1}^{1} g(x) J_{k}^{(\alpha, \beta)}(x) \varrho_{\alpha, \beta}(x) d x, \quad k \in \mathbb{N}_{0}
$$

for all $g \in \mathbb{L}_{\alpha, \beta}^{1}$.
The generalized translation allows us to define a convolution in $\mathbb{L}_{\alpha, \beta}^{p}$ by setting

$$
(f * g)(x)=\int_{-1}^{1} \tau_{s}(f, x) g(s) \varrho_{\alpha, \beta}(s) d s
$$

If $f \in L_{(\alpha, \beta)}^{p}$ and $g \in L_{(\alpha, \beta)}^{1}$, for almost every $x \in[-1,1]$ the integral

$$
\begin{equation*}
(f * g)(x)=\int_{-1}^{1} \tau_{y}(f, x) g(y) \varrho^{(\alpha, \beta)}(y) d y \tag{6}
\end{equation*}
$$

exists, $f * g \in L_{(\alpha, \beta)}^{1}, f * g=g * f$ and

$$
\begin{equation*}
\|f * g\|_{p} \leq\|g\|_{1}\|f\|_{p} . \tag{7}
\end{equation*}
$$

Moreover

$$
c_{k}(f * g)=c_{k}(f) c_{k}(g), \quad k \in \mathbb{N}_{0} .
$$

For the properties of the translation quoted above see [2] and [3].

We also need the following property (see [5]). Assume $1 \leq r, q<\infty$, $r^{-1}+q^{-1}>1$, and $p^{-1}=r^{-1}+q^{-1}-1$. If $\varphi \in L_{(\alpha, \beta)}^{r}$ and $g \in L_{(\alpha, \beta)}^{q}$, then $\varphi * g \in L_{(\alpha, \beta)}^{p}$ and

$$
\begin{equation*}
\|\varphi * g\|_{p, \alpha, \beta} \leq\|\varphi\|_{r, \alpha, \beta}\|g\|_{q, \alpha, \beta} . \tag{8}
\end{equation*}
$$

As in Rafalson [5], let $\Omega_{\alpha, \beta}^{r}$ be the family of all functions $f \in C^{2 r-1}(-1,1)$ such that, for $0 \leq k \leq r-1$, the function

$$
\psi_{r}^{k}(f, x):=\left((1-x)^{\alpha+r}(1+x)^{\beta+r} f^{(r)}(x)\right)^{(k)}
$$

is absolutely continuous in $(-1,1)$ and $\psi_{r}^{k}(f, \pm 1)=0$.
For $f \in \Omega_{\alpha, \beta}^{r}$, define

$$
\begin{equation*}
\mathcal{D}_{\alpha, \beta}^{r}(f, x)=\frac{1}{(1-x)^{\alpha}} \frac{1}{(1+x)^{\beta}}\left((1-x)^{\alpha+r}(1+x)^{\beta+r} f^{(r)}(x)\right)^{(k)} \tag{9}
\end{equation*}
$$

For $r \in \mathbb{N}$ and $t \in(-1,1)$, consider the function

$$
\Phi_{\alpha, \beta}^{r}(t)=C_{r} \int_{-1}^{t} \frac{(t-z)^{r-1}}{(1-z)^{1+\alpha(\alpha)}(1+z)^{r+\beta}} \int_{-1}^{z}(1-u)^{\alpha}(1+z)^{r+\beta-1} d u d z,
$$

where

$$
C_{r}=C(r, \alpha, \beta):=\frac{(-1)^{r}}{2^{\alpha+\beta+r}} \frac{\Gamma(r+\alpha+\beta+1)}{\Gamma^{2}(r) \Gamma(\alpha+1) \Gamma(r+\beta)} .
$$

It is known [5, Lemma 8] that, if $f \in \Omega_{\alpha, \beta}^{r}$, then

$$
\begin{equation*}
f(x)-S_{r-1}^{(\alpha, \beta)}(f, x)=\mathcal{D}_{\alpha, \beta}^{r}(f) * \Phi_{\alpha, \beta}^{r}(x) \tag{10}
\end{equation*}
$$

almost everywhere with respect to the Lebesgue measure. Here $S_{r}^{(\alpha, \beta)}(f)$ is the partial sum of order r of the Jacobi expansion of f.

Let us recall a known result.
Theorem 6. (Rafalson, [5, Th. 1]) Assume $\alpha \geq \beta \geq-1, r, n \in \mathbb{N}, n \geq r-1$, and one of the following conditions hold:

$$
\begin{equation*}
r>\alpha+1, \quad \text { and } \quad 1 \leq p \leq \infty, \tag{i}
\end{equation*}
$$

(ii) $\quad r=\alpha+1$, and $1 \leq p<\infty$,
or
(iii) $\quad r>\alpha+1$, and $1 \leq r<\frac{1+\alpha}{1+\alpha-r}$.

If $f \in \Omega_{\alpha, \beta}^{r}$, then

$$
E_{n}(f)_{p, \alpha, \beta} \leq E_{n}\left(\Phi_{\alpha, \beta}^{r}\right)_{p, \alpha, \beta} E_{n}\left(\mathcal{D}_{\alpha, \beta}^{r}(f)\right)_{p, \alpha, \beta} .
$$

We present an analogous of Theorem 3 in the frame of Jacobi spaces.
Theorem 7. Assume $\alpha \geq \beta \geq-1 / 2,1<q<p<\infty$ and chose sfrom the condition (3). If $r \in \mathbb{N}, f \in \Omega_{\alpha, \beta}^{r}$ and $\mathcal{D}_{\alpha, \beta}^{r}(f) \in L_{(\alpha, \beta)}^{q}$, then

$$
E_{n}(f)_{p, \alpha, \beta} \leq E_{n}\left(\Phi_{\alpha, \beta}^{r}\right)_{s, \alpha, \beta} E_{n}\left(\mathcal{D}_{\alpha, \beta}^{r}(f)\right)_{q, \alpha, \beta} .
$$

for each $n \in \mathbb{N}, n \geq r-1$.

Proof. Let $P_{n} \in \mathbb{P}_{n}\left(B_{n} \in \mathbb{P}_{n}\right)$ be the polynomial of the best approximation of order n of $\mathcal{D}_{\alpha, \beta}^{r}(f)\left(\Phi_{\alpha, \beta}^{r}\right)$ in the norm of $L_{(\alpha, \beta)}^{q}\left(L_{(\alpha, \beta)}^{s}\right)$. That is,

$$
E_{n}\left(\mathcal{D}_{\alpha, \beta}^{r}(f)\right)_{q, \alpha, \beta}=\left\|\mathcal{D}_{\alpha, \beta}^{r}(f)-P_{n}\right\|_{q, \alpha, \beta}
$$

and

$$
E_{n}\left(\Phi_{\alpha, \beta}^{r}\right)_{s, \alpha, \beta}=\left\|\Phi_{\alpha, \beta}^{r}-B_{n}\right\|_{s, \alpha, \beta}
$$

Define

$$
\begin{aligned}
& M_{n}(g, x)=\int_{-1}^{1}\left(\mathcal{D}_{\alpha, \beta}^{r}(f)(t) \tau_{t}\left(B_{n}, x\right) \varrho^{(\alpha, \beta)}(t) d t\right. \\
& N_{n}(g, x)=\int_{-1}^{1} P_{n}(t) \tau_{t}\left(\Phi_{\alpha, \beta}^{r}-B_{n}\right)(x) \varrho^{(\alpha, \beta)}(t) d t
\end{aligned}
$$

and

$$
L_{n}(g, x)=S_{r-1}^{(\alpha, \beta)}(f, x)+M_{n}(g, x)+N_{n}(g, x)
$$

Since $M_{n}(g)$ and $N_{n}(g)$ are convolutions with algebraic polynomials of degree non greater than n and $n \geq r-1$, it follows from (5) that $M_{n}(g), N_{n}(g)$, $L_{n}(g) \in \mathbb{P}_{n}$.

Taking into account (10), we obtain

$$
\begin{aligned}
& L_{n}(f, x)-f(x)=L_{n}(f, x)-S_{r-1}^{(\alpha, \beta)}(x)-\left(f-S_{r-1}^{(\alpha, \beta)}(f)\right)(x) \\
& =L_{n}(f, x)-S_{r-1}^{(\alpha, \beta)}(x)-\left(\mathcal{D}_{\alpha, \beta}^{r}(f) * \Phi_{\alpha, \beta}^{r}(x)\right) \\
& =\int_{-1}^{1}\left(\mathcal{D}_{\alpha, \beta}^{r}(f, t) \tau_{t}\left(B_{n}\right)+P_{n}(t) \tau_{t}\left(\Phi_{\alpha, \beta}^{r}-B_{n}\right)-\mathcal{D}_{\alpha, \beta}^{r}(f, t) \tau_{t}\left(\Phi_{\alpha, \beta}^{r}\right)\right)(x) \varrho^{(\alpha, \beta)}(t) d t \\
& =\int_{-1}^{1}\left(P_{n}-\mathcal{D}_{\alpha, \beta}^{r}(f)\right)(t) \tau_{t}\left(\Phi_{\alpha, \beta}^{r}-B_{n}\right)(x) d t \\
& =\left(\left(P_{n}-\mathcal{D}_{\alpha, \beta}^{r}(f)\right) * \tau_{t}\left(\Phi_{\alpha, \beta}^{r}-B_{n}\right)\right)(x)
\end{aligned}
$$

Now, it follows from (8) that

$$
\begin{aligned}
\left\|L_{n}(f)-f\right\|_{p, \alpha, \beta} & \left.\leq\left\|\Phi_{\alpha, \beta}^{r}-B_{n}\right\|_{s, \alpha, \beta} \| P_{n}-\mathcal{D}_{\alpha, \beta}^{r}(f)\right) \|_{q, \alpha, \beta} \\
& =E_{n}\left(\Phi_{\alpha, \beta}^{r}\right)_{s, \alpha, \beta} \quad E_{n}\left(\mathcal{D}_{\alpha, \beta}^{r}(f)\right)_{q, \alpha, \beta}
\end{aligned}
$$

REFERENCES

[1] M. I. Ganzburg, On best uniform approximation of periodic functions by trigonometric polynomials, J. Concr. Appl. Math., 8 (2010) no. 4, pp. 631-637.
[2] G. Gasper, Positivity and the convolution structure for Jacobi series, Ann. Math., 93 (1971), pp. 112-118. https://doi.org/10.2307/1970755 [
[3] G. Gasper, Banach algebras for Jacobi series and positivity of a kernel, Ann. Math., 95 (1972) no. 2, pp. 261-280. https://doi.org/10.2307/1970800 \boldsymbol{x}°
[4] N.P. Korneichuk, Exact Constants in Approximation Theory, Cambridge Univ. Press, Cambridge, 1991.
[5] S. Rafalson, An extremal relation of the theory of approximation of functions by algebraic polynomials, J. Approx. Theory, 110 (2001) no. 2, pp. 146-170. https: //doi.org/10.1006/jath.2001.3558 [

Received by the editors: March 21, 2023; accepted: May 2, 2023; published online: July 5, 2023.

[^0]: *Benemerita Universidad Autonoma de Puebla, Faculty of Physics and Mathematics, Puebla, Mexico, e-mail: jbusta@fcfm.buap.mx.

