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NON-HOMOGENEOUS IMPULSIVE TIME FRACTIONAL
HEAT CONDUCTION EQUATION

ARMAN AGHILI∗

Abstract. This article provides a concise exposition of the integral transforms
and its application to fractional partial differential equations. The author imple-
mented an analytical technique, the transform method for solving the boundary
value problems of impulsive time fractional heat conduction equation. Integral
transforms method is a powerful tool for the evaluation of certain integrals in-
volving special functions and solution of partial fractional differential equations.
The proposed method is extremely concise, attractive as a mathematical tool.
The obtained result reveals that the transform method is very convenient and
effective. Certain new integrals involving the Airy functions are given.
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1. INTRODUCTION AND PRELIMINARIES

The time fractional heat equation, which is a mathematical model of a wide
range of important physical phenomena, is a partial differential equation ob-
tained from the classical heat equation by replacing the first time derivative of
a fractional derivative of order 0 < α < 1. The author used the integral trans-
form method for solving partial fractional differential equations which arise
in applications.In the literature, different methods have been introduced to
solve fractional differential equations, the popular Laplace transform method
[1, 2, 6], the Fourier transform method, the iteration method and operational
method. However, most of these methods are suitable for special types of
fractional differential equations, mainly the linear with constant coefficients.

1.1. Definitions and Notations.

Definition 1. The left Caputo fractional derivative of order α (0 < α < 1)
of ϕ(t) is defined as follows [7],

(1) Dc,α
a ϕ(t) = 1

Γ(1−α)

∫ t

a

1
(t−ξ)αϕ

′(ξ)dξ.
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Definition 2. Let f(t) be a continuous and single-valued function of real
variable t defined for all t, 0 < t < +∞, and is of exponential order. Then the
Laplace transform of the function f(t) is defined as a function F (s) denoted
by the integral [3]

L{f(t)} =
∫ ∞

0
e−stf(t)dt := F (s).(2)

If L{f(t)} = F (s), then L−1{F (s)} is as follows

(3) f(t) = 1
2πi

∫ c+i∞

c−i∞
estF (s)ds,

where F (s) is analytic in the region Re(s) > c. The expression in (3) is
the inverse Laplace transform for the function F (s), and is often called the
Bromwich integral.

In many practical situations, determination of the inverse Laplace trans-
form is very complex. Once we know the inverse Laplace transform of some
elementary functions, we can find the inverse transform of many functions
with the help of the properties associated with the inverse Laplace transform.

Lemma 3. Let L{f(t)} = F (s) then, the following identities hold true:

1. L
{
f(1

t )
}

=
∫ ∞

0

√
ξ
sJ1

(
2
√
sξ
)
F (ξ) dξ;

2. L
{
f(t3)

}
=
∫ ∞

0

√
s
ξK 1

3

((
s

3 3
√
ξ

) 2
3
)
F (ξ) dξ;

3. L−1
(
e−ωsβ

)
= 1

π

∫ ∞

0
e−rβ(ω cosβπ) sin(ωrβ sin βπ)

(∫ ∞

0
e−sτ−rτdτ

)
dr;

4. L−1 (F (sα)) = 1
π

∫ ∞

0
f(u)

∫ ∞

0
e−tr−urα cosαπ sin(urα sinαπ)drdu;

5. L−1
(
F
(√

(s+ a)2 − b2
))

= e−atf(t) + be−at
∫ t

0
f
(√

t2 − ξ2
)
I1(bξ)dξ;

6. L−1
(
F (

√
s2−a2)√
s2−a2

)
=
∫ t

0
I0
(
a
√
t2 − ξ2

)
dξ.

Proof. See [3]. □

Corollary 4 (A new class of inverse Laplace transform). In the above
Lemma 3 in part 5 and 6, let us take f(t) = δ(t−k), then we get the following
Laplace transform relations:

1. L−1
(
e−k

√
(s+a)2−b2

)
= e−atδ(t− k) + be−at

∫ t

0
δ(
√
t2 − ξ2 − k2)I1(bξ)dξ;

2. L−1
(
e−k

√
(s+a)2−b2

√
(s+a)2−b2

)
= e−atI0(b

√
t2 − k2).
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Corollary 5. The following integral relation holds true:

L−1
[
e−ksα

sν+λ ; s → t
]

= f(t) =

= 1
π

∫ +∞

0
e−tr−krα cos(πα)

[
rν sin(πν+krα sin(πα))+λ sin(krα sin(πα))

r2ν+2λrν cos(πν)+λ2

]
dr,

Proof. In view of the Gross-Levi theorem [3] we have the following

f(t) = 1
π

∫ +∞

0
e−tr Im

[
e−krαe−iπα

(re−iπ)ν+λ

]
dr,

or

f(t) = 1
π

∫ +∞

0
e−tr−krα cos(πα) Im

[
eikrα sin(πα)

rν(cos(πν)−i sin(πν))+λ

]
dr,

after simplifying we have
f(t) =

= 1
π

∫ +∞

0
e−tr−kr

α cos(πα) Im [cos(krα sin(πα))+i sin(krα sin(πα))][rν cos(πν)+λ+irν sin(πν)]
r2ν+2λrν cos(πν)+λ2 dr,

or

f(t) = 1
π

∫ +∞

0
e−tr−krα cos(πα)

[
rν sin(πν+krα sin(πα))+λ sin(krα sin(πα))

r2ν+2λrν cos(πν)+λ2

]
dr.

Let us consider the following special cases
1. λ = 0 we have

L−1
[
e−ksα

sν ; s → t
]

= f(t) = 1
π

∫ +∞

0
e−tr

[
rν sin(πν+krα sin(πα))

r2ν

]
dr,

2. k = 0, ν = 0.5 we have

L−1
[

1
sν+λ ; s → t

]
= f(t) = 1

π

∫ +∞

0
e−tr

[ √
r

r+λ2

]
dr = 1√

πt
− λeλ

2t Erfc(λ
√
t).

□

Lemma 6. The following integral relation holds true:(
λ
s

) ν
2 Kν(2

√
λs) =

∫ ∞

0

√
ξ
sJ1(2

√
sξ) Γ(ν+2)

(ξ+λ)ν+2dξ.

Proof. Let us take f(t) = 1
2 t
ν+1e−λt , then we get F (s) = Γ(ν+2)

(s+λ)ν+2 , on the
other hand we have f

(
1
t

)
= g(t) = 1

2tν+1 e
− λ

t

L
{
f
(

1
t

)}
= L [g(t)] =

∫ +∞

0
e−st 1

2tν+1 e
− λ

t dt =
∫ +∞

0
e−st− λ

t dt
2tν+1 ,

at this stage using an integral representation for the modified Bessel function
of the second kind of order ν as below

Kν(2
√
pq) = K−ν(2

√
pq) =

(
p
q

) ν
2
∫ +∞

0
e−pt− q

t dt
2tν+1 .
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Let us consider the case p = q = ξ
2 , we get

Kν(ξ) = K−ν(ξ) =
∫ +∞

0
e− ξ

2 (t+ 1
t ) dt

2tν+1

or,

L
{
f
(

1
t

)}
= L [g(t)] =

(
λ
s

) ν
2 Kν(2

√
λs).

By setting all of the information in the first part of the Lemma 3, we get the
following

L
{
f
(

1
t

)}
= L[g(t)] =

(
λ
s

) ν
2 Kν(2

√
λs) =

∫ ∞

0

√
ξ
sJ1(2

√
sξ) Γ(ν+2)

(ξ+λ)ν+2dξ.

In special case ν = 0, we have the following

K0(2
√
λs) =

∫ ∞

0

√
ξ
s

J1(2
√
sξ)

(ξ+λ)2 dξ.

□

Lemma 7. The following double integral relation holds true:

1
12π

∫ ∞

0
ηJ1 (2√

η)
(∫ ∞

0
K 1

3

((
η

3 3
√
ξ

) 2
3

)(
ln ξ
ξ
√
ξ

)
dξ

)
dη = γ.

Proof. Let us take f(t) = γ + ln t, then we get F (s) = − ln s
s , on the other

hand we have
L{f(t3)} = L[g(t)] = L{γ + 3 ln t} = − (2γ+3 ln s)

s .

By setting all of the information in part 2 of Lemma 3, we obtain

L{f(t3)} = L{g(t)} = 1
3π

∫ ∞

0

√
s
ξK1

3

((
s

3 3
√
ξ

) 2
3
)(

ln ξ
ξ

)
dξ = − (2γ+3 ln s)

s .

Let us take g(t) = γ + 3 ln t, then we have

G(s) = −2γ+3 ln s
s = 1

3π

∫ ∞

0

√
s
ξK1

3

((
s

3 3
√
ξ

) 2
3
)(

ln ξ
ξ

)
dξ,

on the other hand
Lg
(

1
t

)
= L(γ − 3 ln t) = 4γ+3 ln s

s ,

using the first part of Lemma 3 we obtain

L{g
(

1
t

)
} =

∫ ∞

0

√
η
sJ1(2√

sη)
(

1
3π

∫ ∞

0

√
η
ξK1

3

((
η

3 3
√
ξ

) 2
3
)(

ln ξ
ξ

)
dξ

)
dη

= 4γ+3 ln s
s .

Now, by choosing s = 1 and after simplifying, we arrive at

1
12π

∫ ∞

0
ηJ1 (2√

η)
(∫ ∞

0
K 1

3

((
η

3 3
√
ξ

) 2
3

)(
ln ξ
ξ
√
ξ

)
dξ

)
dη = γ.
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In the above relation J1(·) stands for the Bessel function of the first kind and
of first order.

□

Definition 8. Let us consider the following homogeneous second order dif-
ferential equation

y′′ − xy = 0,
known as the Airy equation or the Stokes equation with the two linearly inde-
pendent solutions Ai(x) and Bi(x). The Airy function also underlies the form
of the intensity near a directional caustic, such as the rainbow. Historically,
this was the problem that led Airy to develop this function [1, 8].

Lemma 9. We have the following integral representations for Airy function:

1. Ai(x) = 1
π

∫ ∞

0
cos( ξ

3

3 + xξ)dξ;

2. Ai2(x) = 1
π 3√4

∫ ∞

0
Ai( 3√4x+ ξ)dξξ ;

3. Ai(x) Ai(−x) = 1
π 3√2

∫ +∞

−∞
Ai( 3√4ξ2) exp (2ixξ)dξ.

Proof. See [8]. □

Lemma 10. The following integral identity for Airy function holds true:

F
[

1
3√3η Ai

(
x

3√3η

)]
= eiηω

3
.

Proof. See [1, 8]. □

Lemma 11. The following identity for Fourier transform of the product of
Airy functions holds true:

F [Ai(x) Ai(−x)] = 1√
2π 3√2

Ai
(
ω2
3√16

)
.

Proof. By definition of the Fourier transform and in view of part 3 of
Lemma 9, we have the following

F [Ai(x) Ai(−x)] = 1√
2π

∫ +∞

−∞
eiωx

(
1

π 3√2

∫ ∞

−∞
Ai
(

3√4ξ2
)

exp (2ixξ)dξ
)
dx.

At this stage we change the order of integration which is permissible to obtain

F [Ai(x) Ai(−x)] = 1
π 3√2

∫ +∞

−∞
Ai
(

3√4ξ2
)

1√
2π

(∫ +∞

−∞
eiωxe(2ixξ)dx

)
dξ,

or

F [Ai(x) Ai(−x)] = 1
π 3√2

∫ +∞

−∞
Ai
(

3√4ξ2
)

1√
2π

(∫ +∞

−∞
ei(ω+2ξ)xdx

)
dξ,

but the value of the inner integral is
√

2πδ(ω + 2ξ), therefore we get

F [Ai(x) Ai(−x)] = 1
π 3√2

∫ +∞

−∞
Ai
(

3√4ξ2
)√

2πδ (ω + 2ξ) dξ,
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at this point, let us make a change of variable ω + 2ξ = η, we have

F [Ai(x) Ai(−x)] = 1
π 3√2

∫ +∞

−∞
Ai
( 3√4(η−ω)2

4

)√
2πδ (η) dη2 ,

after simplifying, we arrive at

F [Ai(x) Ai(−x)] = 1√
2π 3√2

Ai
(
ω2

2 3√2

)
.

□

Lemma 12. The following integral identity for the product of Airy functions
holds true:

1.
∫ +∞

−∞
Ai(x) Ai(−x)dx = 1

3√18Γ( 2
3 ) ;

2.
∫ +∞

0
Ai(x) Ai(−x) cos (ωx) dx = 1

2 3√2
Ai
(
ω3

2 3√2

)
.

Proof. 1. By definition of the Fourier transform and in view of Lemma 9
we have the following

F [Ai(x) Ai(−x)] = 1√
2π

∫ +∞

−∞
eiωx Ai(x) Ai(−x)dx = 1√

2π 3√2
Ai
(
ω2

2 3√2

)
.(4)

At this point, let us choose ω = 0 in the above relation, after simplifying we
get ∫ +∞

−∞
Ai(x) Ai(−x)dx = 1

3√2
Ai(0) = 1

3√2
1

Γ( 2
3 ) 3√9

= 1
Γ( 2

3 ) 3√18
.

2. By taking the real part of (4) and after simplifying we arrive at,∫ +∞

0
Ai(x) Ai(−x) cos(ωx)dx = 1

2 3√2
Ai
(
ω3

2 3√2

)
.(5)

Finally, by taking the inverse Fourier-cosine transform, we obtain a new
integral representation for the product of Airy functions.

Ai(x) Ai(−x) = 1
π 3√2

∫ +∞

0
cos(xω) Ai

(
ω3

2 3√2

)
dω.(6)

□

Corollary 13. We have the following integral identities:

1. 1
π

∫ +∞

0

√
x
3K 1

3

(
2
3x

√
x
)

Ai(−x) cos(ωx)dx = 1
2 3√2

Ai
(
ω3

2 3√2

)
;

2.
∫ +∞

0
1

2 4√
π2x

W0, 1
3

(
4
3x

√
x
)

Ai(−x) cos(ωx)dx = 1
2 3√2

Ai
(
ω3

2 3√2

)
.

Note. If we substitute Ai(x)=
√

x
3K 1

3

(
2
3x

√
x
)

and Ai(x)= 1
2 4√

π2x
W0, 1

3
(4

3x
√
x)

in (5) respectively, we obtain the above integral identities [3, 8].
In the above integral identity, Wk,µ(·) stands for the Wittaker function [3, 8].
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Proof. If we substitute (6) in (5), we obtain the above integral identities. □

Remark 14. This method of replacing the Airy function can be employed
to obtain a number of interesting integrals, some of which will be considered
in the future publications. The Airy theory are given in the chapter on the
optics of a raindrop in detail by van de Hulst (1957). The function Ai(x) first
appears as an integral in two articles by G. B. Airy. Reference to many of
these applications as well as to the theory of elasticity and to the heat equation
are given in Valle and Soares [8].

Lemma 15. Let us assume that Ai(x) is the Airy function, solution to the
second order differential equation y′′ − xy = 0. Then we have the following
integral relation ∫ +∞

0
Ai(x) Ai′′′(x)dx =

3√3
8π2 Γ2

(
2
3

)
.

Proof. It is well-known that the Airy functions Ai(x) and Bi(x) are two
linearly independent solution of the second order differential equation known as
the Airy differential equation y′′−xy = 0, therefore, we have Ai′′(x)−xAi(x) =
0. By taking derivative of the Airy differential equation, we get y′′′−xy′−y = 0,
or Ai′′′(x) = xAi′(x) + Ai(x). At this stage the left hand side of the above
integral can be written as follows∫ +∞

0
Ai(x) Ai′′′(x)dx =

∫ +∞

0
Ai(x)[xAi′(x) + Ai(x)]dx

=
∫ +∞

0
Ai2(x)dx+

∫ +∞

0
[xAi(x) Ai′(x)]dx

=
∫ +∞

0
Ai2(x)dx+ 1

2

∫ +∞

0
2 Ai′(x) Ai′′(x)dx.

At this point we evaluate the first integral by parts, we have

= [xAi2(x)]+∞
0 −

∫ +∞

0
2[xAi(x)] Ai′(x)dx+ 1

2

∫ +∞

0
d[Ai′2(x)].

Finally, after simplifying we obtain∫ +∞

0
Ai(x) Ai′′′(x)dx = 1

2 Ai′2(0) =
3√3

8π2 Γ2
(

2
3

)
.

□

Note. We used the fact that
1. lim

x→+∞
Ai(x) = lim

x→+∞
Ai′(x) = 0;

2. Ai(0) = 1
3√9Γ( 2

3 )
,Ai′(0) = − 1

3√3Γ( 1
3 )
.

Problem 16. Let us solve the following non-homogeneous impulsive hyper-
bolic time fractional heat conduction equation.
DC,2α

0,t u+ 2λDC,α
0,t u = ∂2u

∂x2 + ηu(x, t) + δ(t), x, t > 0, 0.5 < α < 1;
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1. u(x, 0) = ut(x, 0) = 0;
2. lim

x→+∞
u(x, t) = 0, 0 < x < +∞;

3. u(0, t) = tα−1

Γ(α) .

Solution. Taking the Laplace transform of the partial differential equation
and using boundary condition (1.), we get the following non-homogeneous
second order differential equation

Uxx − (s2α + 2λsα − η)U = 1.

After solving the above equation, we arrive at

U(x, s) = c1e
−x

√
s2α+2λsα−η + c2e

x
√
s2α+2λsα−η − 1

s2α+2λsα−η .

In view of the boundary condition (2.), we have c2 = 0, therefore

U(x, s) = c1e
−x

√
s2α+2λsα−η − 1

s2α+2λsα−η .

At this point, in order to evaluate c1, taking the Laplace transform of the
boundary condition (3.) yields

c1 = 1
sα + 1

s2α+2λsα−η ,

from which we deduce that

U(x, s) = G(sα) =
(

1
sα + 1

s2α+2λsα−η

)
e−x

√
s2α+2λsα−η − 1

s2α+2λsα−η .

From the above relation, we have

G(s) =
(

1
s + 1

s2+2λs−η

)
e−x

√
s2+2λs−η − 1

s2+2λs−η = L[g(t)]

If we find L−1[G(s)] = g(t), then from Lemma 3 and Corollary 4 we obtain
u(x, t) and g(t) as follows

u(x, t) = L−1G(sα) = 1
π

∫ ∞

0
g(u)

∫ ∞

0
e−tr−urα cosαπ sin(urα sinαπ)drdu,

where

g(t) =
∫ t

0

[
e−aτδ(τ − x) + be−aτ

∫ τ

0
δ
(√

τ2 − ξ2 − x2
)
I1(bξ)dξ

]
dτ

+
∫ t

0
e−x(t−τ)I0

(
(t− τ)

√
λ2 + η

)
e−aτI0

(
b
√
τ2 − x2

)
dτ

+ e−λt sinh
(
t
√
λ2 + η

)
.

Note. Analytic solutions are more important than numerical solutions,
because these are valid in the whole domain of definition whereas the numerical
solutions are only valid at chosen points in the domain of definition.
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2. SOLUTION FOR THE NON-HOMOGENEOUS IMPULSIVE TIME FRACTIONAL

HEAT CONDUCTION EQUATION VIA THE LAPLACE TRANSFORM

Fractional calculus deals with the fractional integrals and derivatives of ar-
bitrary order. It provides better models for systems having long range memory
and non-local effects and it has important applications in several fields of en-
gineering and sciences. Fractional differential equations are widely used for
modeling anomalous diffusion phenomena. In this section, the author imple-
mented the Laplace transforms to construct the exact solution for the time
fractional heat conduction equation. The diffusion phenomena such as conduc-
tion of heat in solids and diffusion of vorticity in the case of viscous fluid flow
past a body are governed by parabolic type PDE. In the past three decades,
considerable research work has been invested for the study of the anomalous
diffusion using the time fractional equation.

In the sequel we consider a generalization to problem which is not considered
in the literature.

Problem 17. Let us consider the following non-homogeneous impulsive
time fractional heat conduction equation defined in cylindrical coordinates.

Dc,α
t u− 1

r

[
∂
∂r

(
r ∂u∂r

)]
+ λu = kδ(t− τ), t > 0, 0 < r < 1,

with the boundary conditions as follows

1. u(r, 0) = 1, u(1, t) = ϕ(t);
2. lim

r→0
|u(r, t)| < +∞.

Solution. Let us define the Laplace transform as below

L[u(r, t); t → s] =
∫ +∞

0
e−stu(r, t)dt = U(r, s).

Direct application of the Laplace transforms to partial differential equation
and using boundary conditions leads to the following relation

sαU(r, s) − ∂2U
∂r2 − 1

r
∂U
∂r + λU(r, s) = k exp(−τs) + sα−1,

or
∂2U
∂r2 + 1

r
∂U
∂r − (sα + λ)U = k exp(−τs) + sα−1,

solving the above non-homogeneous modified Bessel differential equation yields

U(r, s) = c1I0(r
√
sα + λ) + c2K0(r

√
sα + λ) − k exp(−τs)+sα−1

(sα+λ) .

In view of the second boundary condition, we should have c2(s) = 0, therefore,
we arrive at

U(r, s) = c1(s)I0(r
√
sα + λ) − k exp(−τs)+sα−1

(sα+λ) .
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At this stage we need to find c1(s), by using the first boundary condition, we
have

U(1, s) = Φ(s) = c1(s)I0(
√
sα + λ) − k exp(−τs)+sα−1

(sα+λ) .

Finally, we get the solution to the transformed equation as follows

U(r, s) = Φ(s)I0(r
√
sα+λ)

I0(
√
sα+λ) + k exp(−τs)+sα−1

(sα+λ)I0(
√
sα+λ)I0(r

√
sα + λ),

and thus by taking the inverse Laplace transform, we obtain

u(r, t) = L−1
[
Φ(s) I0(r

√
sα+λ)

I0(
√
sα+λ)

]
+ L−1

[
k exp(−τs)+sα−1

(sα+λ)I0(
√
sα+λ)I0(r

√
sα + λ)

]
.

1. The first term can be evaluated by convolution, thus we have

L−1
[
Φ(s) I0(r

√
sα+λ)

I0(
√
sα+λ)

]
=
∫ t

0
ϕ(t− ξ)

[
L−1

[
I0(r

√
sα+λ)

I0(
√
sα+λ)

]
; s → ξ

]
dξ,

but

L−1
[
I0(r

√
sα+λ)

I0(
√
sα+λ)

]
=
[

1
2πi

∫ c+i∞

c−i∞

I0(r
√
sα+λ)

I0(
√
sα+λ)

]
eξsds.

In order to evaluate complex integral, let us set
I0(r

√
sα+λ)

I0(
√
sα+λ) = G(sα).

1
2πi

∫ c+i∞

c−i∞

I0(r
√
sα+λ)

I0(
√
sα+λ) e

ξsds = g∗(ξ).

From which we deduce that
I0(r

√
s+λ)

I0(
√
s+λ) = G(s),

and
1

2πi

∫ c+i∞

c−i∞

I0(r
√
s+λ)

I0(
√
s+λ) e

ξsds = g(ξ).

A linear change of variable s+ λ = ψ in the above complex integral leads to

e−λξ

2πi

∫ c′+i∞

c′−i∞

I0(r
√
ψ)

I0(
√
ψ)
eξψdψ = g(ξ).

By method of residues we may evaluate the above complex integral. The
function under integral sign has branch points at ψ = −ϕ2

n, n = 1, 2, 3, . . .,
where I0(iϕn) = J0(ϕn) = 0. Therefore,

g(ξ) =
+∞∑
n=1

lim
ψ→−ϕ2

n

(ψ + ϕ2
n) I0(r

√
ψ)

I0(
√
ψ)
eξψ.

After simplifying we obtain

g(ξ) = −e−λξ
+∞∑
n=1

2J0(rϕn)e−ϕ2
nξ

ϕnJ1(ϕn) .
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In view of part 3 of Lemma 3, we have

L−1(G(sα)) = g∗(t) = 1
π

∫ ∞

0
g(ξ)

[∫ ∞

0
e−tr−ξrα cosαπ sin(ξrα sinαπ)dr

]
dξ.

2. In order to evaluate the second term, we have the following

L−1
[
k exp(−τs)+sα−1

(sα+λ)I0(
√
sα+λ)I0(r

√
sα + λ)

]
= L−1

[
k exp(−τs)+sα−1

(sα+λ)

]
∗ L−1

[
I0(r

√
sα+λ)

I0(
√
sα+λ)

]
.

But we have the following relations

γ(t) = L−1
[
k exp(−τs)+sα−1

(sα+λ)

]
= 1

π

∫ +∞

0
e−tξ Im e−τ(ξe−iπ)+(ξe−iπ)α−1

(ξe−iπ)α+λ dξ,

after simplifying we have

γ(t) = 1
π

∫ +∞

0
e−tξ

[
ξ sinαπeτξ+ξα−1[ξα cosπ(2α−1)−λ sinπ(α−1)]

ξ2α+2λξα cosπα+λ2

]
dξ,

and finally

u(r, t) =
∫ t

0
[γ(t− η) + ϕ(t− η)]g∗(η)dη.

3. CONCLUSION

The paper is devoted to studying and application of the Laplace transform
for solving non-homogeneous impulsive time fractional heat conduction equa-
tion. Methods in which techniques are used in applications are illustrated,
and problems are included. The main purpose of this work is to develop a
method for evaluation of certain integrals and time fractional PDEs. These
results should be applicable to obtaining solutions of a wide class of problems
in applied mathematics and mathematical physics.
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