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NEW SUFFICIENT CONDITIONS FOR THE SOLVABILITY
OF A NEW CLASS OF SYLVESTER-LIKE
ABSOLUTE VALUE MATRIX EQUATIONS

SHUBHAM KUMAR∗, DEEPMALA† and ROSHAN LAL KESHTWAL‡

Abstract. In this article, some new sufficient conditions for the unique solv-
ability of a new class of Sylvester-like absolute value matrix equations AXB −
|CXD| = F are obtained. This work is distinct from the published work by
Li [Journal of Optimization Theory and Applications, 195(2), 2022]. Some new
conditions were also obtained, which were not covered by Li. We also give an
example in support of our result.
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1. INTRODUCTION

Recently, Li [8] introduced the following new class of Sylvester-like absolute
value matrix equations (AVME)

(1) AXB − |CXD| = F,

where A, B, C, D, F ∈ Rn×n are given and X ∈ Rn×n to be determined. Eq.
(1) is a special case of the following new generalized absolute value equations
(NGAVE)

(2) Ax − |Cx| = f,

with A, C ∈ Rn×n, f ∈ Rn are known and x ∈ Rn is unknown.
The generalized absolute value equations (GAVE) is defined as

(3) Ax − B|x| = f.
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The generalized absolute value matrix equations (GAVME) is a generaliza-
tion version of the GAVE (3) and is defined as

(4) AX + B|X| = F.

The Sylvester-like AVME is defined as

(5) AXB + C|X|D = F.

The new class of Sylvester-like AVME (1) is quite different from the Sylvester-
like AVME (5).

The absolute value equations is powerful tools in the field of optimization,
complementarity problems, convex quadratic programming and linear pro-
gramming. For more about the absolute value equations, one may refer to
([1, 9, 10, 11, 19] and references therein).

In 2021, the NGAVE (2) was first considered by Wu [19] and discussed its
different conditions for a unique solution. In 2020, Dehghan et al. [2] first
considered the generalized absolute value matrix equations (4) and provided
a matrix multi-splitting Picard-iterative method for solving the GAVME. In
2022, Kumar et al. [5, 6] provided two new conditions to ensure the unique
solvability of the GAVME, the condition of Kumar et al. [6] is superior to the
conditions of Xie [20] and Dehghan et al. [2]. In 2022, Tang et al. [17] further
discussed the unique solvability of the GAVME and provided a Picard-type
method for the solution of the GAVME. In 2021, Hashemi [3] first consid-
ered the Sylvester-like absolute value matrix equations (5) and discussed its
unique solvability conditions. Wang et al. [18] provided new unique solvabil-
ity conditions for the Sylvester-like AVME (5), which are different work from
the Hashemi [3]. Inspired by the above works on different types of matrix
equations, Li [8] first considered the new class of Sylvester-like AVME (1) and
provided unique solvability conditions for (1).

In this article, we further discussed the unique solvability of the new class
of Sylvester-like AVME (1). As it has non-differentiable and non-linear terms,
studying the new class of Sylvester-like AVME is exciting and challenging.
The Sylvester-like absolute value matrix equations have many uses in the field
of interval matrix equations [13, 14] and robust control [15] and so on.
Notation. We will denote D̂ = diag(d̂i) with 0 ≤ d̂i ≤ 1 is a diagonal matrix.
σ(.), σmax(.) and σmin(.) denote singular value, maximum singular value and
minimum singular value, respectively. For the determinant of a matrix, we
will use det(.), and ρ(.) is used for the spectral radius of a matrix.

The remainder of this paper is structured in the following manner: Section 2
contains some useful results. In Section 3, we obtain the unique solution
condition for the new class of Sylvester-like AVME (1). A numerical example in
support of our results is provided in Section 4, and we conclude our discussion
in Section 5.
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2. PRELIMINARIES

In this section, we recall some definitions, lemmas and theorems for further
use.

Definition 1 ([16]). Let M = {M1, M2} denote the set of matrices with
M1, M2 ∈ Rn×n. A matrix R ∈ Rn×n is called a row (or column) representative
of M, if Rj. ∈ {(M1)j., (M2)j.} (or R.j ∈ {(M1).j , (M2).j}) j=1,2,. . . ,n, where
Rj., (M1)j., and (M2)j. (or R.j, (M1).j, and (M2).j) denote the jth row (or
column) of R, M1 and M2, respectively.

Definition 2 ([16]). The set M holds the row (or column) W-property
if the determinants of all row (or column) representative matrices of M are
positive.

Definition 3 ([12]). For given matrices AC , V ∈ Rn×n, V ≥ 0, the set of
matrices A = {A : |A − AC | ≤ V }, is known as interval matrix. An interval
matrix A is regular if each A ∈ A is invertible.

Lemma 4 ([4]). The following results are hold for the square matrices A, B, C,
D ∈ Rn×n :

(i) σ(A ⊗ B) = σ(A)σ(B).
(ii) ρ(A ⊗ B) = ρ(A)ρ(B).
(iii) (|A ⊗ B|) = |A| ⊗ |B|.
(iv) (A ⊗ B)(C ⊗ D) = (AC ⊗ BD).
(v) vec(ABC) = (CT ⊗ A)vec(B).
(vi) For non-singular matrices A and B, (A ⊗ B)−1 = A−1 ⊗ B−1, where ⊗

is denote the Kronecker product and vec denote the vec operator.

Theorem 5 ([7]). If matrix C is invertible, then the following assertions
are equivalent:

(i) the NGAVE (2) has exactly one solution for any f;
(ii) {−I + AC−1, I + AC−1} holds the column W-property;
(iii) (−I + AC−1) is invertible and {I, (−I + AC−1)−1(I + AC−1)} holds

the column W-property;
(iv) (−I +AC−1) is invertible and (−I +AC−1)−1(I +AC−1) is a P-matrix;
(v) (AC−1 + (I − 2D̂)) is invertible for any D̂ ;
(vi) {(−I + AC−1)F1 + (I + AC−1)F2} is invertible, where F1, F2 ∈ Rn×n

are two arbitrary non-negative diagonal matrices with diag(F1 + F2) > 0.

Theorem 6 ([7]). If matrix C is invertible, then the following assertions
are equivalent:

(i) the NGAVE (2) has a unique solution;
(ii) {I + AC−1, −I + AC−1} has the row W-property;
(iii) (I + AC−1) is invertible and {I, (−I + AC−1)(I + AC−1)−1} has the

row W-property;
(iv) (I + AC−1) is invertible and (−I + AC−1)(I + AC−1)−1 is a P-matrix;
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(v) {F1(I + AC−1) + F2(−I + AC−1)} is invertible, where F1, F2 ∈ Rn×n

are two arbitrary non-negative diagonal matrices with diag(F1 + F2) > 0.

Theorem 7 ([7]). Let all diagonal entry of AC−1 + I have the same sign
as the corresponding entries of AC−1 − I. Then the NGAVE (2) has exactly
one solution for any f if any one of the following conditions is true:

(i) AC−1 − I and AC−1 + I are strictly diagonally dominant by columns;
(ii) AC−1 − I, AC−1 + I and all their column representative matrices are

irreducibly diagonally dominant by columns.

Theorem 8 ([7]). If matrix C is non-singular, then the NGAVE (2) has
exactly one solution for any f, if the interval matrix [AC−1 − I, AC−1 + I] is
regular.

Theorem 9 ([7]). Let matrix C is non-singular, then the NGAVE (2) has
unique solution for any f if σmin(AC−1) > 1.

Theorem 10 ([7]). The NGAVE (2) has exactly one solution if and only if
det(A + C) ̸= 0 and for any D̂, matrix A − C + 2D̂C is non-singular.

Theorem 11 ([19]). Let matrix A is invertible. The NGAVE (2) has exactly
one solution if ρ((I − 2D̂)CA−1) < 1, for any diagonal matrix D̂.

Theorem 12 ([8]). Let σmax(C)σmax(D) < σmin(A)σmin(B), then the new
Sylvester-like AVME (1) has exactly one solution.

3. MAIN RESULTS

This section provides some unique solvability conditions for the new Sylvester-
like AVME. First, we see the following result for the NGAVE (2).

Theorem 13. Let matrix A is non-singular. The NGAVE (2) has exactly
one solution if ρ(|C| · |A−1|) < 1.

Proof. For any diagonal matrix D̂, we have (I−2D̂)CA−1 ≤ |(I−2D̂)CA−1| ≤
|I − 2D̂| · |CA−1| ≤ |CA−1| ≤ |C| · |A−1|. Since (I − 2D̂)CA−1 ≤ |C| · |A−1|,
this implies that ρ((I − 2D̂)CA−1) ≤ ρ(|C| · |A−1|) < 1.

Hence, based on Theorem 11, ρ(|C|·|A−1|) < 1 implies the unique solvabilty
of the NGAVE (2). □

For presenting some unique solvability conditions for the new Sylvester-like
AVME (1), we first write Eq. (1) into the equivalent NGAVE form (2), and
use the results of the NGAVE.

So by taking S = BT ⊗ A, T = DT ⊗ C, f = vec(F ) and x = vec(X),
where ‘vec’ is vec operator and ‘⊗’ is the Kronecker product. Then, the new
Sylvester-like AVME (1) can be written as the following NGAVE form
(6) Sx − |Tx| = f.

Now see the following results for the new Sylvester-like AVME.
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Theorem 14. Let C, D be non-singular matrices. The new Sylvester-like
AVME (1) has exactly one solution if σmin(D−1B)σmin(AC−1) > 1.

Proof. To prove the above Theorem, we use Eq. (6) and Theorem 9. If
σmin(ST −1) > 1, then the Sylvester-like AVME (1) has unique solution.

Now, σmin(ST −1) = σmin((BT ⊗ A)(DT ⊗ C)−1) = σmin((BT ⊗ A)(D−T ⊗
C−1)) = σmin(BT D−T ⊗ AC−1) = σmin((D−1B)T ⊗ AC−1) = σmin((D−1B) ⊗
AC−1) = σmin(D−1B)σmin(AC−1) > 1.

This completes the proof. □

Remark 15. In some instances, our result performs better compared to the
condition of Theorem 12; see example in Section 4.

Theorem 16. Let S = BT ⊗A, T = DT ⊗C. The new Sylvester-like AVME
(1) has exactly one solution if and only if det(S+T ) ̸= 0 and for any D̂, matrix
S − T + 2D̂T is non-singular.

Proof. The proof of the above Theorem directly holds by Theorem 10 and
Eq. (6). □

Theorem 17. Let 0 is not an eigenvalue of the matrices A and B. The new
Sylvester-like AVME (1) has exactly one solution if ρ(|DT | · |B−T |) · ρ(|C| ·
|A−1|) < 1.

Proof. Since S−1 = B−T ⊗ A−1, then
|T | · |S−1| = |DT ⊗ C| · |B−T ⊗ A−1| = |DT | ⊗ |C| · |B−T | ⊗ |A−1| =

|DT | · |B−T | ⊗ |C| · |A−1|.
Based on spectral radius property of the matrix, we have ρ(|DT | · |B−T | ⊗

|C| · |A−1|) = ρ(|DT | · |B−T |) · ρ(|C| · |A−1|).
Based on Eq. (6) and Theorem 13, if ρ(|DT | · |B−T |) · ρ(|C| · |A−1|) < 1,

then the new Sylvester-like AVME (1) has unique solution for any F. □

The new Sylvester-like AVME (1) is equivalently written as NGAVE form
(6). So now we use the results of the NGAVE for the new Sylvester-like AVME.

Now, ST −1 = (BT ⊗ A)(DT ⊗ C)−1 = (BT ⊗ A)(D−T ⊗ C−1) = (BT D−T ⊗
AC−1) = (D−1B)T ⊗ (AC−1).

So, based on Theorems 5 to 8 we have the following results, see Theorems 18
to 21 respectively.

Theorem 18. Let C, D be non-singular matrices, then the following state-
ments are equivalent:

(i) the new Sylvester-like AVME (1) has exactly one solution;
(ii) {(D−1B)T ⊗ (AC−1) − I, (D−1B)T ⊗ (AC−1) + I} holds the column

W-property;
(iii) ((D−1B)T ⊗ (AC−1) − I) is invertible and {I, ((D−1B)T ⊗ (AC−1) −

I)−1((D−1B)T ⊗ (AC−1) + I)} holds the column W-property;
(iv) ((D−1B)T ⊗ (AC−1) − I) is invertible and ((D−1B)T ⊗ (AC−1) −

I)−1((D−1B)T ⊗ (AC−1) + I) is a P-matrix;
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(v) ((D−1B)T ⊗ (AC−1) + (I − 2D̂)) is invertible for any D̂;
(vi) {((D−1B)T ⊗(AC−1)−I)F1+((D−1B)T ⊗(AC−1)+I)F2} is invertible,

where F1, F2 ∈ Rn×n are two arbitrary non-negative diagonal matrices with
diag(F1 + F2) > 0.

Proof. The proof of the above Theorem is directly held by Theorem 5 and
Eq. (6). □

Theorem 19. Let C, D be non-singular matrices, then the following state-
ments are equivalent:

(i) the new Sylvester-like AVME (1) has exactly one solution;
(ii) {(D−1B)T ⊗(AC−1)+I, (D−1B)T ⊗(AC−1)−I} has the row W-property;
(iii) ((D−1B)T ⊗ (AC−1) + I) is invertible and {I, ((D−1B)T ⊗ (AC−1) −

I)((D−1B)T ⊗ (AC−1) + I)−1} has the row W-property;
(iv) ((D−1B)T ⊗ (AC−1) + I) is invertible and ((D−1B)T ⊗ (AC−1) −

I)((D−1B)T ⊗ (AC−1) + I)−1 is a P-matrix;
(v) {F1((D−1B)T ⊗(AC−1)+I)+F2((D−1B)T ⊗(AC−1)−I)} is invertible,

where F1, F2 ∈ Rn×n are two arbitrary non-negative diagonal matrices with
diag(F1 + F2) > 0.

Proof. With the help of Theorem 6 and Eq. (6), our result will be true. □

Theorem 20. Let all diagonal entries of the matrix (D−1B)T ⊗(AC−1)+I
have the same sign as the corresponding entries of the matrix (D−1B)T ⊗
(AC−1) − I. Then the new Sylvester-like AVME (1) has exactly one solution
for any F if any one of the following conditions is true:

(i) (D−1B)T ⊗(AC−1)−I and (D−1B)T ⊗(AC−1)+I are strictly diagonally
dominant by columns;

(ii) (D−1B)T ⊗ (AC−1) − I, (D−1B)T ⊗ (AC−1) + I and all their column
representative matrices are irreducibly diagonally dominant by columns.

Proof. Applying Eq. (6) directly into Theorem 7, we get our result. □

Theorem 21. If matrices C and D are non-singular, then the new Sylvester-
like AVME (1) has a unique solution for any F, if the interval matrix [(D−1B)T ⊗
(AC−1) − I, (D−1B)T ⊗ (AC−1) + I] is regular.

Proof. We come to our result with the help of Eq. (6) and Theorem 7. □

4. A NUMERICAL EXAMPLE

In support of our result, we are considering a small example here. However,
our result is also applicable to a larger problem. Let’s consider the following
matrices for the new class of Sylvester-like AVME (1)

A =

 3 −4 1
5 4 1

−3 5 1

 , B =

−6 4 2
3 2 4

−2 −5 7

 C =

 5 −4 1
2 2 1

−2 4 1


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D =

 5 −4 0
2 3 2

−1 1 1

 F =

−385 −138 −56
−104 −88 103
114 −274 61


It is clear that the condition of Theorem (14) hold.
σmin(D−1B)σmin(AC−1) = 1.1224 × 0.9154 = 1.027445 > 1.
But condition of the Theorem 12 of [8] is not satisfying here, since σmax(C)·

σmax(D) = 7.6562 × 6.5791 = 50.3709 ≮ σmin(A)σmin(B) = 1.3270 × 5.0844
= 6.74699.

Moreover, the unique solution of (1) is:

X =

 4 −3 1
−4 2 2
3 −1 5

 .

5. CONCLUSIONS

In this article, we considered the new class of Sylvester-like AVME AXB −
|CXD| = F and obtained new sufficient results for ensuring the unique solv-
ability of the new class of Sylvester-like AVME (1). We also provided an
example in support of our result. Further, the numerical methods for solving
the new class of Sylvester-like AVME are also an exciting topic in the future.
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