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THE RATE OF CONVERGENCE OF BOUNDED LINEAR
PROCESSES ON SPACES OF CONTINUOUS FUNCTIONS1

HEINZ H. GONSKA2

Abstract. Quantitative Korovkin-type theorems for approximation by bounded
linear operators defined on C(X, d) are given, where (X, d) is a compact metric
space. Special emphasis is on positive linear operators.

As is known from previous work of Newman and Shapiro, Jimenez Pozo,
Nishishiraho and the author, among others, there are two possible ways to obtain
error estimates for bounded linear operator approximation: the so-called direct
approach, and the smoothing technique.

We give various generalizations and refinements of earlier results which were
obtained by using both techniques. Furthermore, it will be shown that, in a
certain sense, none of the two methods is superior to the other one.
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INTRODUCTION

The present paper discusses error estimates for the approximation of con-
tinuous functions defined on compact metric spaces. It is a contribution to
quantitative approximation theory, and deals with pointwise error estimates
for the approximation by bounded linear operators of continuous functions de-
fined on compact metric spaces (X, d). Most estimates will be given in terms
of moduli of continuity or their least concave majorants.

While we conducted our preliminary research on this topic, it turned out
that, although such problems are now considered as being classical, and in
spite of the research of T. Nishishiraho and M.A. Jiménez Pozo, there was still
a large discrepancy between the general theory and estimates for continuous
functions defined on, say, a compact interval [a, b]. This observation was one
of the main motivations for writing the author’s “Habilitationsschrift” from
which the material presented here is taken. However, the thesis mentioned

1Republished from Automat. Comput. Appl. Math., 7 (1998) no. 1, pp. 38–97.
2Current address: Faculty of Mathematics, University of Duisburg-Essen, D-47048 Duis-

burg, Germany, email: heiner.gonska@uni-due.de and gonska.sibiu@gmail.com.

https://doi.org/10.33993/jnaat522-1326
https://ictp.acad.ro/jnaat


2 The rate of convergence of bounded linear processes 183

was never made available in the regular literature for no good reason, a fact
which we would like to make up for (at least in part) by writing this note.

The main goals of this article are twofold. We present a new technique for
deriving error estimates on approximation of functions defined on an arbitrary
compact metric space (Section 3) and we give a more careful analysis of the
so-called direct technique for special metric spaces (Section 4). According to
the goals stated above, the paper is divided into the following parts.

Chapter 1 is of an auxiliary nature. In it we shall discuss several properties
of (least concave majorants of) moduli of continuity and K-functionals which
will be used throughout the remainder of this work. Among others, this part
contains the refinement of a lemma due to M.A. Jiménez Pozo and the gen-
eralization of a lemma of N.P. Korneichuk to the case of continuous functions
defined on a space with a finite coefficient of convex deformation.

Chapter 2 has its historical roots in a paper by G. Freud [13] and was mostly
motivated by the work of M.A. Jiménez Pozo and T. Nishishiraho. In their
work they gave error estimates for functions defined on compact metric spaces
satisfying certain additional conditions. The aim of Section 3 is to show that
these constraints can be completely removed, if least concave majorants of
moduli of continuity are used rather than the corresponding moduli them-
selves. It is also shown that our approach may be even better than theirs,
provided (X, d) satisfies the additional assumptions they imposed. Our new
approach to give error estimates for the case of continuous functions defined on
(X, d) has some unexpected consequences even in the case where X = [a, b] is
a compact interval of the real axis. Various further aspects are also discussed,
such as a change of the test functions and the fact that the estimates of the
main results of Section 3 are best possible in a certain sense.

Since the results of Section 3 are achieved via the intermediate use of a
certain K-functional, we chose to call this the indirect approach. In Section 4
we discuss several consequences of the results of Section 3, and also present
a careful analysis and a refinement of the direct technique. As is the case in
Section 3, a general result for approximation by bounded linear operators is
given. Subsequently the instance where L is also positive is discussed in depth.
It will be shown in particular that the refined estimates of Section 4 are now
best possible in a certain sense. As a consequence, we achieve a significant im-
provement over Nishishiraho’s technique inasmuch as best possible constants
can now be obtained by evaluating the upper bounds of our inequalities.

The critical function L(d(·, x);x) and several upper bounds of it are dis-
cussed in detail. However, more explicit upper bounds for L(d(·, x);x) and
similar expressions occurring in particular in Sections 3 and 4 were discussed in
some detail by Nishishiraho. Since the use of neither of these bounds improves
an order of an estimate or a constant, the reader is referred to Nishishiraho’s
work for further information. It can be said in general that the construction
of these upper bounds very closely follows the pattern suggested by classical
Korovkin theory in order to introduce a finite number of test functions.
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At certain central points of Sections 3 and 4 we also give a partial survey of
related results which had been obtained earlier. Many of the examples discuss
a univariate setting. This is the most convenient way to check the quality of
both the order of approximation and of the constants.

The present article solely covers the general theory. For many applications
the reader is referred to the author’s “Habilitationsschrift”. Among them are
applications of the general results to certain operators of Vaida, Badea, and
to the well-known Shepard operators. Part of the material given here was
presented at the Third International Conference on Functional Analysis and
Approximation Theory (Acquafredda di Maratea/Italy, September 1996).

CHAPTER I: SOME PROPERTIES OF MODULI OF SMOOTHNESS AND

K-FUNCTIONALS

Most of the error estimates in this paper will be given in terms of moduli
of smoothness (continuity) of various kinds and orders. Frequently so-called
K-functionals will be used as intermediate tools for deriving these estimates.
The aim of this section is to compile some information on both measures of
smoothness, and to establish some new relationships between them and related
quantities which will be useful in the sequel.

Section 1 lists several properties of moduli of continuity (smoothness) for
real-valued and continuous functions of a single variable defined on a com-
pact metric space (X, d). Section 2 contains a brief discussion of certain K-
functionals in C(X), where X is again a compact metric space.

As is clear from this summary, we do not attempt to present a comprehensive
survey on moduli of smoothness and K-functionals in this chapter. It is solely
intended to list those properties which will be needed in Chapter 2.

1. MODULI OF CONTINUITY OF FUNCTIONS DEFINED

ON COMPACT METRIC SPACES

In this section we shall collect some information on the metric modulus of
continuity of a function f ∈ C(X) = CR((X, d)). Here CR((X, d)) denotes
the space of all real-valued and continuous functions defined on the compact
metric space (X, d) having a diameter d(X) > 0.

Throughout this paper we shall need the following

Definition 1.1. Let (X, d) be a compact metric space. The mapping
ωd(f, ·) : R+ ∋ δ 7→ ωd(f, δ) := sup{|f(x) − f(y)| : x, y ∈ X, d(x, y) ≤ δ} ∈ R

is called the (metric) modulus of continuity of f . Note that for δ ≥ d(X) one
has ωd(f, δ) = ωd(f, d(X)).

If the metric space has the property that for x, y ∈ X and d(x, y) = a + b
with a, b > 0, there exists always an element z ∈ X such that d(x, z) = a and
d(z, y) = b, then the space is called metrically convex. This is a notion which
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was introduced by K. Menger [37]. For such spaces the modulus of continuity
satisfies the properties given in the following

Lemma 1.2. Let (X, d) be metrically convex. Then for any f ∈ C(X) its
modulus of continuity ωd(f, ·) has the following properties:

(1) ωd(f, 0) = 0.
(2) ωd(f, ·) is positive and non-decreasing on R+.
(3) ωd(f, r · δ) ≤

(
1+]r[

)
· ωd(f, δ), r, δ ∈ R+;

here ]r[ denotes the largest integer less than r.
(4) ωd(f, ·) is a subadditive function, i.e.,

ωd(f, δ1 + δ2) ≤ ωd(f, δ1) + ωd(f, δ2) for all δ1, δ2 ≥ 0.
In particular, ωd(f, ·) is continuous on R+.

(5) If δ ≥ 0 is fixed, then ωd(·, δ) is a seminorm on C(X).

There is no need to give a proof of Lemma 1.2 at this point because
Lemma 1.6 covers a more general situation.

Examples of compact metric spaces being metrically convex are for in-
stance given by compact and convex subsets of Rm, m ≥ 1, equipped with
the Euclidean distance function, or the unit circle S1 with metric d given by
d(eit, eix) = min{2π − |t− x|, |t− x|}, 0 ≤ t, x < 2π.

There is a generalization of the notion of a metrically convex space. To our
knowledge, it was introduced by M.A. Jiménez Pozo [23] and uses the concept
of the so-called coefficient of convex deformation. A brief description follows.

Definition 1.3. Let (X, d) be a metric space, and let [a, b] be a compact
interval of the real axis. If φ : [a, b] → X is a parametrization of the simple
Jordan arc Γ[φ(a), φ(b)] = Γ, and if P = {a = t0 < t1 < . . . < tn = b} is a
subdivision of [a, b], then we define

ℓ(φ, P ) :=
n∑

i=1
d (φ(ti−1), φ(ti)) .

Γ is said to be rectifiable with length ℓ(Γ), if
ℓ(Γ) := sup{ℓ(φ, P ) : P a subdivision of [a, b]} < ∞.

Definition 1.4. The metric space (X, d) is said to have a coefficient of
convex deformation ϱ = ϱ(X), if the following hold.

(1) For all x, y ∈ X the set R(x, y) of rectifiable arcs Γ[x, y] connecting x
and y is non-empty.

(2) ϱ := sup
{

inf
{
ℓ(Γ[x, y])/d(x, y) : Γ[x, y] ∈R(x, y)

}
: x, y ∈ X,x ̸= y

}
<

∞.

The following remarks are due to M.A. Jiménez Pozo.

Remark 1.5 (M.A. Jiménez Pozo [23]). (1) ϱ = ϱ(X) ≥ 1 for every
metric space (X, d).
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(2) A compact metric space is metrically convex if and only if ϱ(X) = 1.
(3) Any semi-circle of R2 (equipped with the Euclidean distance) has a

coefficient of convex deformation ϱ = π/2.

Jiménez Pozo’s motivation for introducing the coefficient of convex defor-
mation ϱ was to make sure that an inequality of type

ωd(f, λα) ≤ [1 + ϱλ] · ωd(f, α), λ, α ∈ R+,

holds for the modulus of continuity as defined above. Here for a ∈ R, [a]
denotes the largest integer ≤ a. One of the observations of the following lemma
is that a somewhat stronger inequality holds. It constitutes a generalization
of Lemma 1.2.

Lemma 1.6. Let (X, d) be a compact metric space with coefficient of convex
deformation ϱ = ϱ(X) ≥ 1. Then for any f ∈ C(X) the following are true:

(1) ωd(f, 0) = 0.
(2) ωd(f, ·) is a positive and non-decreasing function on R+.
(3) ωd(f, r · δ) ≤ (1+]ϱ · r[) · ωd(f, δ), r, δ ∈ R+.
(4) ωd(f, δ1+δ2) ≤ ωd(f, ϱδ1)+ωd(f, ϱδ2) ≤ (1+]ϱ2[)·(ωd(f, δ1) + ωd(f, δ2)) .
(5) If δ ≥ 0 is fixed, then ωd(·, δ) is a seminorm on C(X).

Proof. (1) and (2) are immediate consequences of the definition of ωd.
(3) is obtained as follows. For r = 0 the inequality obviously holds. So let
r > 0; because ϱ ≥ 1 this implies ϱ · r > 0.

If ϱ · r /∈ N, then 1+]ϱ · r[= [1 + ϱ · r], where [a] := max{z ∈ Z : z ≤ a}.
For this case it was shown by M.A. Jiménez Pozo [23, Theorème 2] that the
above inequality holds.

Now let ϱ · r ∈ N. Since (X, d) is compact, it is also finitely compact,
and thus, by a theorem of Hilbert (see W. Rinow [51, Statement 7, p. 141]),
assumption (1) of Definition 1.4 implies that for each two points x, y ∈ X,
x ̸= y, there is a shortest rectifiable arc Γ0 (in German: “Kürzeste”) connecting
x and y such that

inf
{
ℓ(Γ[x, y])/d(x, y) : Γ[x, y] ∈ R(x, y)

}
= ℓ(Γ0[x, y])/d(x, y).

Because of (2) of Definition 1.4, we have in particular that

ℓ(Γ0[x, y])/d(x, y) ≤ ϱ.

Using a slight modification of Jiménez Pozo’s approach for the case of ϱ·r /∈ N,
we proceed further as follows.

Let x and y be such that 0 < d(x, y) ≤ rδ. Choosing ϱ · r + 1 points
ti = i/(ϱ · r), 0 ≤ i ≤ ϱ · r, and the parametrization ψ such that (see M.A.
Jiménez Pozo [23, Lemme 1])

(ψ(ti−1, ψ(ti)) ≤ ℓ
(
Γ0[ψ(ti−1), ψ(ti)]

)
= (ti − ti−1) · ℓ(Γ0[x, y]),



6 The rate of convergence of bounded linear processes 187

where Γ0[x, y] is chosen as above and in particular such that

ℓ(Γ0[x, y]) ≤ ϱ · d(x, y) ≤ ϱ · rδ,

one obtains (with zi := ψ(ti) and n := ϱr) the inequalities

|f(x) − f(y)| ≤
n∑

i=1
|f(zi) − f(zi−1)| ≤

n∑
i=1

ωd

(
f, d(zi, zi−1)

)
≤

n∑
i=1

ωd

(
f, (ϱr)−1 · ϱ · rδ

)
= ϱr · ωd(f, δ).

This implies

ωd(f, rδ) ≤ ϱ · r · ωd(f, δ) = (1+]ϱr[) · ωd(f, δ),

the latter equality being true by our assumption ϱr ∈ N.

(4) If δ1 = 0 or δ2 = 0, because ϱ ≥ 1 the statement is trivial.
Let δ1, δ2 > 0 be given and fixed, and let x, y ∈ X be such that d(x, y) ≤ δ1+δ2.
Choosing t0 = 0, t1 = δ1/(δ1 + δ2), and t2 = 1, the parametrization ψ and the
arc Γ0 from (3) satisfy for i = 1, 2

d
(
ψ(ti−1), ψ(ti)

)
≤ ℓ

(
Γ0[ψ(ti−1), ψ(ti)]

)
= (ti − ti−1) · ℓ(Γ0[x, y]).

Hence

|f(x) − f(y)| = |f(ψ(t0)) − f(ψ(t2))|
≤ |f(ψ(t0)) − f(ψ(t1))| + |f(ψ(t1)) − f(ψ(t2))|

≤ ωd

(
f, d(ψ(t0), ψ(t1))

)
+ ωd

(
f, d(ψ(t1), ψ(t2))

)
≤ ωd

(
f, (t1 − t0) · ℓ(Γ0[x, y])

)
+ ωd

(
f, (t2 − t1) · ℓ(Γ0[x, y])

)
≤ ωd

(
f, δ1 · (δ1 + δ2)−1 · ϱ · (δ1 + δ2)

)
+ ωd

(
f, δ2 · (δ1 + δ2)−1 · ϱ · (δ1 + δ2)

)
= ωd(f, ϱ · δ1) + ωd(f, ϱ · δ2),

showing that
|f(x) − f(y)| ≤ ωd(f, ϱ · δ1) + ωd(f, ϱ · δ2).

This immediately implies

ωd(f, δ1 + δ2) ≤ ωd(f, ϱ · δ1) + ωd(f, ϱ · δ2),

and the second inequality is a consequence of (3).

(5) is an immediate corollary of the definition. □
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Corollary 1.7. Under the assumptions of Lemma 1.6 we also have for
r, δ ∈ R+:
(1) ωd(f, r · δ) ≤ [1 + ϱ · r] · ωd(f, δ) ≤ (1 + ϱ · r) · ωd(f, δ).
Here [1 + ϱ · r] is the largest integer ≤ 1 + ϱ · r.

Hence metric spaces X having a coefficient of convex deformation ϱ consti-
tute an example of metric spaces such that for any f ∈ C(X) one has

ωd(f, r · δ) ≤ (1 + ηr) · ωd(f, δ), r, δ ∈ R+,

where η > 0 is a fixed constant. For further properties of moduli of continuity
given for f ∈ C(X) and satisfying an inequality of this type see Section 2.

2. K-FUNCTIONALS

In this section we shall compile several properties of certain classical and
modified K-functionals, including their relationship to certain moduli of con-
tinuity and their least concave upper bounds.

2.1. Definition and elementary properties. A further means for measur-
ing the smoothness of functions is Peetre’s K-functional. This measures the
distance of an element f of a vector space E from a subspace U , at the same
time reflecting certain properties of the approximating elements g ∈ U . The
definition is as follows.

Definition 2.1. Let E be a vector space and U a subspace of E. If p and
p∗ are seminorms on E and U , respectively, then the mapping

(·, ∗;E,U)p,p∗ : R+ × E ∋ (t, f) 7→ K(t, f ;E,U)p,p∗ :=
:= inf

{
p(f − g) + tp∗(g) : g ∈ u

}
∈ R

is the K-functional with respect to (E, p) and (U, p∗). Sometimes K(t, f ;E,U)p,p∗

will be abbreviated by K(t, f).

The following lemma collects some of the properties of K.

Lemma 2.2. (cf. P.L. Butzer and H. Berens [6, Proposition 3.2.3])
If E is a vector space, U a subspace of E, and if p and p∗ are seminorms

on E and U , respectively, then K has the following properties.
(1) U is dense in E with respect to the topology generated by p if and only

if for each f ∈ E one has
lim

t→0+
K(t, f) = 0,

i.e., K(·, f) is continuous at t = 0, and such that K(0, f) = 0.
(2) For each fixed f ∈ E, K(·, f) : R+ → R+ is a continuous, mono-

tonically increasing, and concave function, i.e., for t1, t2 ∈ R+ and
0 ≤ λ ≤ 1 one has

K
(
(1 − λ)t1 + λt2, f

)
≥ (1 − λ)K(t1, f) + λK(t2, f).
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(3) For arbitrary λ, t ∈ R+, and fixed f ∈ E, the inequality
K(λt, f) ≤ max{1, λ} ·K(t, f)

holds.
(4) For each t ∈ R+ fixed, K(t, ·) is a seminorm on E, and such that

K(t, f) ≤ p(f) for all f ∈ E.

2.2. K-functionals and least concave majorants of moduli of continu-
ity. In the following we shall treat the approximation of continuous functions,
and thus shall use only special cases of the K-functionals introduced in Sec-
tion 2.1. In this section we consider again a compact metric space (X, d) with
diameter d(X) > 0. If further properties of X are needed, these will be stated
explicitly.

For 0 < r ≤ 1 let Lip r denote the set of all functions g in C(X) such that
|g|Lip r := sup{|g(x) − g(y)|/dr(x, y) : d(x, y) > 0} < ∞.

Then Lip r is a dense subspace of C(X), and | · |Lip r is a seminorm on Lip r.
Thus it makes sense to use the K-functional with respect to (Lip r, | · |Lip r)
in order to prove quantitative assertions. As indicated above, this functional
is given by

K(t, f ;C(X),Lip r) := inf
{

∥f − g∥X + t · |g|Lip r : g ∈ Lip r
}
,

where f ∈ C(X) and t ≥ 0.
Another tool for our proofs will be the following lemma of Yu.A. Brudny̌ı

relating the above K-functional for r = 1 to the least concave majorant of the
metric modulus of continuity as introduced in Section 1. For a sketch of proof
see B.S. Mitjagin and E.M. Semenov [38].

Lemma 2.3. Let (X, d) be a compact metric space with d(X) > 0. Every
continuous function f on X satisfies the equality

K
(
ε/2, f ;C(X),Lip 1

)
= 1

2 · ω̃d(f, ε), 0 ≤ ε.

Here ω̃d(f, ·) denotes the least concave majorant of ωd(f, ·) given by

ω̃d(f, ε) =


sup

0≤x≤ε≤y≤d(X)
x̸=y

(ε−x)ωd(f,y)+(y−ε)ωd(f,x)
y−x , for 0 ≤ ε ≤ d(X),

ω̃d(f, d(X)) = ωd(f, d(X)), if ε > d(X).

The definition of ω̃d(f, ·) shows that ωd(f, ·) ≤ ω̃d(f, ·). However, an es-
timate from above by some multiple of ωd(f, ·) is not possible for all metric
spaces (X, d), as will be seen below. For some further properties of ω̃d(f, ·)
see e.g., V.K. Dzjadyk [12, p. 153ff].

If (X, d) is such that the modulus of continuity ωd(f, ·) of some function
f ∈ C(X) is continuous, nondecreasing and subadditive on [0,∞), then it
was shown by N.P. Korneičuk [30, p. 670] that for any ε ≥ 0 and ξ > 0 the



190 Heinz H. Gonska 9

functions ωd(f, ·) and its least concave majorant ω̃d(f, ·) are related by the
inequality

ω̃d(f, ξ · ε) ≤ (1 + ξ) · ωd(f, ε),
and that this inequality cannot be improved for each ε > 0 and ξ = 1, 2, . . .
In Lemma 2.4 a generalization of this lemma to the setting of certain metric
spaces including those with a finite coefficient of convex deformation will be
accomplished.

The generalization just mentioned will be for metric spaces (X, d) of the
following type.

There exists a fixed constant η > 0 such that for all ξ, ε > 0 and all f ∈
C(X), the inequality

ωd(f, ξ · ε) ≤ (1 + η · ξ) · ωd(f, ε)
holds.

Examples of such spaces are e.g., compact metric spaces being convex in the
sense of K. Menger [37], or compact convex subsets (X, d) of a metric linear
space (Y, d) with translation invariant metric and starshaped d(·, 0) (see T.
Nishishiraho [43]). In both cases the above inequality holds for η = 1. Other
examples are given by spaces (X, d) having a coefficient of convex deformation
ϱ = ϱ(X). In this case the above inequality holds for η = ϱ (see Corollary 1.7).
Provided an inequality of the above type holds, ω̃d(f, ·) and ωd(f, ·) are related
as described in the following lemma; for the case η = 1 it was obtained by
N.P. Korneičuk [30, p. 670].

Lemma 2.4. If (X, d) is a compact metric space such that for all ξ, ε > 0, all
f ∈ C(X), and some fixed η > 0 the inequality ωd(f, ξ ·ε) ≤ (1+η · ξ) ·ωd(f, ε)
holds, then for f ∈ C(X), and any real number ξ, ε ≥ 0 we have
(1) ωd(f, ξ · ε) ≤ ω̃d(f, ξ · ε) ≤ (1 + η · ξ) · ωd(f, ε).
In particular, for ξ = 1 this reduces to the inequalities
(2) ωd(f, ε) ≤ ω̃d(f, ε) ≤ (1 + η) · ωd(f, ε),
and for η = 1 to
(3) ωd(f, ξ · ε) ≤ ω̃d(f, ξ · ε) ≤ (1 + ξ) · ωd(f, ε).

Proof. Obviously (1) is true if at least one of the numbers ξ and ε is equal
to zero. So let ξ, ε > 0 and such that ξ · ε ≤ d(X). As mentioned earlier, for
0 ≤ ξ · ε ≤ d(X) one has

ω̃d(f, ξ · ε) = sup
0≤x≤ξ·ε≤y≤d(X)

x ̸=y

(ξ·ε−x)ωd(f,y)+(y−ξ·ε)ωd(f,x)
y−x .

Putting for instance x = ξ · ε shows that ωd(f, ξ · ε) ≤ ω̃d(f, ξ · ε).
For the proof of the second inequality in (1) let 0 ≤ x ≤ ξ·ε ≤ y ≤ d(X), x ̸= y,
be arbitrarily given, and write ω(·) = ωd(f, ·) for the sake of brevity. Then

ξε−x
y−x · ω(y) + y−ξε

y−x · ω(x) = ξε−x
y−x · ω(y

εε) + y−ξε
y−x · ω(x

ε ε)
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≤ ξε−x
y−x · (1 + η y

ε ) · ω(ε) + y−ξε
y−x · (1 + η x

ε ) · ω(ε)

=
(

ξε−x
y−x · (1 + η y

ε ) + y−ξε
y−x · (1 + η x

ε )
)

· ω(ε)
= (1 + ηξ) · ω(ε).

This shows that inequality (1) holds for ξε ≤ d(X). For ξε > d(X) we have
ω̃d(f, ξε) = ω̃d(f, d(X)) = ωd(f, d(X) · ε−1 · ε)

≤
(
1 + ηd(X)/ε

)
· ωd(f, ε)

≤
(
1 + ηξ

)
· ωd(f, ε).

Thus the lemma is proved for all possible choices of ξε. □

However, it is not always possible to estimate ω̃d(f, ·) from above by some
multiple of ωd(f, ·). This can be seen from

Remark 2.5. The second inequality in Lemma 2.4 (2) does not hold for an
arbitrary compact metric space. This can be seen from the following example.
Let X = [0; 0.25] ∪ [0.75; 1] and d(x, y) = |x− y| for x, y ∈ X. The function f
given by

f(x) =
{

1 for 0 ≤ x ≤ 0.25
2 for 0.75 ≤ x ≤ 1

is continuous on X. Its (metric) modulus of continuity is

ωd(f, ε) =
{

0 for 0 ≤ ε < 0.5
1 for 0.5 ≤ ε ≤ 1 .

Thus the least concave majorant ω̃d(f, ·) is the function ω̃d(f, ε) = min{2ε, 1}.
Hence ω̃d(f, ε) ≤ c · ωd(f, ε) cannot hold for any c > 0 and all ε ≥ 0. In fact,
it is easily verified that there is no η > 0 such that for all ξ, ε > 0 one has
ωd(f, ξε) ≤ (1 + ηξ) · ωd(f, ε).

Remark 2.6. As is well-known, there are intimate relationships between
certain K-functionals and moduli of smoothness of various orders in both the
univariate and the multivariate setting. These relationships will not be needed
below. The interested reader is referred to L.L. Schumaker’s book [52], and to
the references cited there for both cases mentioned.

CHAPTER II: APPROXIMATION IN C(X)

This chapter deals with quantitative Korovkin-type theorems for approxi-
mation by bounded linear operators defined on C(X), and in particular by pos-
itive ones. Here C(X) = CR((X, d)) denotes the Banach lattice of real-valued
continuous functions defined on the compact metric space (X, d) equipped with
the canonical ordering, and with norm given by ∥f∥ = ∥f∥X = max{|f(x)| :
x ∈ X}. We also assume that X has diameter d(X) > 0.
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The first such theorem for general positive linear operators and X = [a, b]
equipped with the euclidian distance is apparently due to R.G. Mamedov [34].
For spaces (X, d) being metrically convex in the sense of K. Menger [37],
D.J. Newman and H.S. Shapiro [41] proved the following theorem similar to
that of Mamedov (see also H.S. Shapiro [55, Chapter 8.8.2], and papers by
M.W. Müller and H. Walk [40, p. 225] and G. Mastroianni [36]).

Theorem A (D.J. Newman–H.S. Shapiro [41, Lemma 4]). Suppose the
compact metric space (X, d) has the property that, whenever d(x, y) = a + b,
where a > 0, b > 0, there exists a point z ∈ X such that d(x, z) = a and
d(z, y) = b. Let L denote a positive linear operator from C(X) → C(X), such
that L(1X) = 1X . Then for any f ∈ C(X), any x ∈ X and any ε > 0 we have

|L(f, x) − f(x)| ≤
(
1 + ε−1L(d2(·, x);x)1/2

)
· ω(f, ε).

Here 1X : X ∋ x 7→ 1 ∈ R, and the modulus of continuity ω(f, ·) is given as
in Definition 1.1, i.e., ω(f, ε) = sup{|f(x) − f(y)| : x, y ∈ X, d(x, y) ≤ ε}.

This direct approach (i.e., one which avoids the intermediate use of K-
functionals) was further developed in papers of T. Nishishiraho [42, 43, 44],
where additional references can be found. For compact spaces (X, d) having
a coefficient of convex deformation ϱ < ∞ (see Definition 1.4), M.A. Jiménez
Pozo [23] published a generalization of the result of Newman and Shapiro
involving mainly the modulus of continuity of f . See Jiménez Pozo [26] and
Jiménez Pozo–Baile Baldet [27] for a discussion of several earlier results.

Furthermore, for arbitrary compact (X, d), M.A. Jiménez Pozo [21, 26]
proved a certain generalization of the following

Theorem B (cf. M.A. Jiménez Pozo [26, Th. 1]). Let L : C(X) → C(X)
be a positive linear operator. Then for all f ∈ C(X), all x ∈ X and all ε > 0,
the following inequality holds:

|L(f, x) − f(x)| ≤
≤ ω(f, ε) · L(1X , x) + |f(x)| · |L(1X , x) − 1| + ε−1 · 2∥f∥X · L(d(·, x);x).

A disadvantage of this latter type of estimate is the fact that, for oper-
ators satisfying L(1X) = 1X , the upper bound is not given solely in terms
of a modulus of continuity. This observation is the main motivation for our
investigations in Section 3, where we shall prove several inequalites in terms
of the least concave majorant of the modulus of continuity (see Section 2.2),
thus avoiding the problems mentioned.

As will be discussed in detail in Section 4, there are basically two ways to
obtain estimates in terms of the metric modulus of continuity from Defini-
tion 1.1. One way is to use the results from Section 3 and the relationship
between ω̃ and ω as given in Lemma 2.4. The other method is the direct ap-
proach mentioned above. Section 4 contains a refined version of this approach
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which is more sensitive than the technique employed by T. Nishishiraho. See
the introductory remarks to Section 4 for further details.

3. ESTIMATES ON APPROXIMATION BY BOUNDED LINEAR OPERATORS IN

TERMS OF LEAST CONCAVE MAJORANTS OF MODULI OF CONTINUITY

This section contains several results most of which were presented in the
author’s papers [16] and [17]. The main point is to show that the assumption of
metric convexity or of existence of a finite coefficient of convex deformation can
be completely dropped when using the least concave majorant of ω(f, ·) instead
of ω(f, ·) itself. As will be seen below, our general results imply estimates
similar to (and sometimes even better than) those of T. Nishishiraho and
M.A. Jiménez Pozo provided (X, d) satisfies the additional assumptions they
imposed.

It was observed by H. Berens and G.G. Lorentz [5] among others that the re-
sults on approximation of lattice homomorphisms A : C(X) → E, E a Banach
lattice, by positive linear operators are similar to those for approximation of
the injection i : C(X) → B(X). HereB(X) is the space of bounded real-valued
functions on X. This is our motivation for proving estimates on approximation
of mappings A : C(X) → B(Y ), Y ̸= ∅, given by A(f, y) = ψA(y) · f(gA(y));
here ψA is a bounded real-valued function on Y and gA maps Y into X. For
the relationship between such mappings and lattice homomorphisms see e.g.,
M. Wolf [62].

It is possible to generalize the operators to be approximated. Some results
in this direction are due to M.A. Jiménez Pozo [22, 25] and to the author [15].
However, this problem will not be discussed here.

One of the key results of this section is the following Theorem 3.1. Its sim-
ple proof reveals the smoothing technique in spaces of real-valued continuous
functions defined on compact metric spaces mentioned above, and uses some
of the results of Section 2.

Theorem 3.1 (H. Gonska, [17, Theorem 2.1]). Let Y ̸= ∅ be some set, and
let B(Y ) denote the space of real-valued and bounded functions on Y equipped
with the norm ∥f∥Y = sup{|f(y)| : y ∈ Y }. If C(X) is given as above, and if
∆ is a bounded linear operator mapping C(X) into B(Y ) such that for some
y ∈ Y one has

|∆(g, y)| ≤ φ(y) · |g|Lip 1 for φ(y) ≥ 0 and all g ∈ Lip 1,

then for all f ∈ C(X) and ε > 0 the inequality

|∆(f, y)| ≤ max
{

1
2∥∆∥, φ(y) · ε−1

}
· ω̃(f, ε)

holds.
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Proof. The inequality is obviously correct for ∆ = 0; so let ∆ ̸= 0. Let g
be arbitrarily given in Lip 1. For any f ∈ C(X) we have

|∆(f, y)| ≤ |∆(f − g, y)| + |∆(g, y)| ≤ ∥∆∥ · ∥f − g∥ + φ(y) · |g|Lip 1

= ∥∆∥ ·
(
∥f − g∥ + ∥∆∥−1 · φ(y) · |g|Lip 1

)
.

Passing to the inf in Lip 1 implies for each ε > 0 (see Lemma 2.2 (3)):

|∆(f, y)| ≤ ∥∆∥ ·K
(
∥∆∥−1 · φ(y) · 1

2ε · (1
2ε)

−1, f ;C(X),Lip 1
)

≤ ∥∆∥ max
{

1, ∥∆∥−1 · φ(y) · (1
2ε)

−1
}

·K
(

1
2ε, f ;C(X),Lip 1

)
= max

{
∥∆∥, φ(y) · (1

2ε)
−1

}
·K

(
1
2ε, f ;C(X),Lip 1

)
.

Brudny̌ı’s Lemma 2.3 implies

|∆(f, y)| ≤ max
{

1
2∥∆∥, φ(y) · ε−1

}
· ω̃(f, ε).

□

The next theorem deals with approximation of operators A given for f ∈
C(X) and y ∈ Y by A(f, y) = ψA(y) ·f(gA(y)) where ψA ∈ B(Y ) and gA maps
Y into X. It contains a general inequality for the approximation of operators
A by bounded linear operators, and was announced in the author’s paper [17,
Theorem 2.2].

Theorem 3.2. Let A be of the form A(f, y) = ψA(y) · f(gA(y)), and let
L be a bounded linear operator, both mapping C(X) into B(Y ). Then for
f ∈ C(X), y ∈ Y and 0 < ε we have
|(L−A)(f, y)| ≤

≤ max
{

1
2
(
∥L∥+∥L(1X)∥Y

)
, ε−1[

d(x)
(
∥εy ◦ L∥−L(1X , y)

)
+|L(d(·, gA(y)); y)

]}
× ω̃(f, ε) + |(L−A)(1X , y)| · |f(gA(y))|.

Here 1X denotes the function X ∋ x 7→ 1 ∈ R.

Proof. If A is given as above, then
A(f, y) = ψA(y) · f(gA(y)) = A(1X , y) · f(gA(y)).

Thus for all f ∈ C(X) and all y ∈ Y

|(L−A)(f, y)| ≤ |L(f, y) −L(1X , y) · f(gA(y))| + |(L−A)(1X , y)| · |f(gA(y))|.
Defining Ã(f, y) := L(1X , y) · f(gA(y)) we have to consider |(L − Ã)(f, y)|.
First observe that L − Ã is a bounded operator. Moreover, if g ∈ Lip 1 is
arbitrarily given, then

|(L− Ã)(g, y)| = |L(g − g(gA(y)) · 1X ; y)|.
In order to estimate this quantity we introduce the functions

h1 := g(gA(y)) − |g|Lip 1 · d(·, gA(y)), and
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h2 := g(gA(y)) + |g|Lip 1 · d(·, gA(y)).
Note that h1 ≤ g ≤ h2. Now

L
(
g − g(gA(y)) · 1X ; y

)
= L(g − h1; y) − |g|Lip 1 · L

(
d(·, gA(y)); y

)
≥ L(g − h1; y) − |g|Lip 1 ·

∣∣L(
d(·, gA(y)); y

)∣∣,
and

−L
(
g − g(gA(y)) · 1X ; y

)
= L(h2 − g; y) − |g|Lip 1 · L

(
d(·, gA(y)); y

)
≥ L(h2 − g; y) − |g|Lip 1 ·

∣∣L(
d(·, gA(y)); y

)∣∣.
As mentioned above, both g − h1 and h2 − g are nonnegative functions. We
prove lower estimates for the quantities L(g − h1; y) and L(h2 − g; y).

For y fixed, the continuous linear functional
εy ◦ L : C(X) ∋ f 7→ L(f, y) ∈ R

can be identified with some real measure µ on the compact space X. Hence
L(f, y) =

∫
X fdµ for f ∈ CR(X) (see, e.g., J. Dieudonné [11, Ch. 13]). It is

also known that µ can be represented as µ = µ+ − µ− with both µ+ and µ−

being positive measures. Because of

L(h, y) =
∫

X
h dµ+ −

∫
X
h dµ−,

for every nonnegative function h ∈ C(X) we have

L(h, y) +
∫

X
h dµ− =

∫
X
h dµ+ ≥ 0.

We estimate
∫

X h dµ− from above to obtain∫
X
h dµ− ≤ ∥h∥X ·

∫
X

1X dµ−

= ∥h∥X ·
∫

X
1X d (sup(−µ, 0))

= ∥h∥X ·
∫

X
1X d

(
1
2(−µ+ |µ|)

)
= ∥h∥X · 1

2 ·
(∫

X
1X d(−µ) +

∫
X

1X d|µ|
)

= ∥h∥X · 1
2 · (−L(1X , y) + ∥µ∥) .

(For the definition and existence of sup(−µ, 0), |µ|, and ∥µ∥ see J. Dieudonné [11,
Chapts. 13.3, 13.9, 13.15, and 13.20]). Moreover,

∥µ∥ = sup
{∣∣∣∣∫

X
f dµ

∣∣∣∣ : f ∈ C(X), ∥f∥X ≤ 1
}

= sup {|L(f, y)| : f ∈ C(X), ∥f∥X ≤ 1}
= ∥εy ◦ L∥.



196 Heinz H. Gonska 15

Thus

0 ≤ L(h, y) +
∫

X
h dµ− ≤ L(h, y) + ∥h∥X · 1

2 · (−L(1X ; y) + ∥εy ◦ L∥) ,
or

L(h, y) ≥ −∥h∥X · 1
2 · (−L(1X ; y) + ∥εy ◦ L∥) .

This implies
L(g − h1; y) ≥ −∥g − h1∥X · 1

2 · (−L(1X ; y) + ∥εy ◦ L∥) , and
L(h2 − g; y) ≥ −∥h2 − g∥X · 1

2 · (−L(1X ; y) + ∥εy ◦ L∥) ;
or
L

(
g − g(gA(y)) · 1X ; y

)
≥

≥ −∥g − h1∥X · 1
2 · (−L(1X ; y) + ∥εy ◦ L∥) − |g|Lip 1 · |L(d(·, gA(y)); y)|,

and
− L

(
g − g(gA(y)) · 1X ; y

)
≥

≥ −∥h2 − g∥X · 1
2 · (−L(1X ; y) + ∥εy ◦ L∥) − |g|Lip 1 · |L(d(·, gA(y)); y)|.

These inequalities yield
|L

(
g − g(gA(y)) · 1X ; y

)
| ≤ max

{
∥g − h1∥X , ∥h2 − g∥X

}
· 1

2 · (∥εy ◦ L∥
− L(1X ; y)) + |g|Lip 1 · |L(d(·, gA(y)); y)|.

Now
∥g − h1∥X = sup {|g(x) − g(gA(y)) + |g|Lip 1 · d(x, gA(y))| : x ∈ X}

≤ 2 · |g|Lip 1 · sup {|d(x, gA(y))| : x ∈ X}
≤ 2 · d(X) · |g|Lip 1,

and
∥h2 − g∥X = sup {|g(gA(y)) + |g|Lip 1 · d(x, gA(y)) − g(x)| : x ∈ X}

≤ 2 · d(X) · |g|Lip 1.

Thus
|(L− Ã)(g, y)| =|L(g − g(gA(y)) · 1X ; y)|

≤
[
d(X) ·

(
∥εy ◦ L∥ − L(1X , y)

)
+ |L(d(·, gA(y)); y)|

]
· |g|Lip 1.

This settles the estimate for Lipschitz functions g. Applying Theorem 3.1
to ∆ = L− Ã gives

|(L− Ã)(f, y)| ≤ max
{

1
2 (∥L∥ + ∥L(1X)∥Y ) , ε−1

[
d(X) ·

(
∥εy ◦ L∥ − L(1X , y)

)
+ |L(d(·, gA(y)); y)|

]}
ω̃(f, ε).

Together with the decomposition for (L− A)(f ; y) from the beginning of the
proof, we arrive at the estimate of Theorem 3.2. □
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Remark 3.3. For estimates on approximation by bounded linear operators
similar to the one of Theorem 3.2 using ω(f, ·) instead of ω̃(f, ·) see Theo-
rem 4.4.

For positive linear operators we have the simpler estimate of

Theorem 3.4 (H. Gonska, [16, Theorem 3.1]). Let A be of the form A(f, y) =
ψA(y) · f(gA(y)), and let L be a positive linear operator, both mapping C(X)
into B(Y ). Then the following inequality holds for all f ∈ C(X), y ∈ Y , and
ε > 0:
|(L−A)(f, y)| ≤

≤ max
{

∥L∥, ε−1 · L(d(·, gA(y)); y)
}

· ω̃(f, ε) + |(L−A)(1X , y)| · |f(gA(y))|.

Proof. Let 0 < ε. Since L is a positive linear operator, εy ◦L = L(·, y) given
by L(·, y) : C(X) ∋ f 7→ L(f, y) ∈ R is a positive linear functional such that
∥εy ◦ L∥ = ∥L(·, y)∥ = |L(1X , y)| = L(1X , y). Moreover, ∥L∥ = ∥L(1X)∥Y , so
that the estimate from Theorem 3.2 recudes to the one in Theorem 3.4. □

However, for positive linear operators a simpler proof of Theorem 3.4 is
available which is given below.

Second proof of Theorem 3.4. First recall that Ã(f, y) = L(1X , y) ·
f(gA(y)). The estimate of |(L − Ã)(g, y)| for functions g ∈ Lip 1 may now
be obtained in the following way.

|(L− Ã)(g, y)| = |L(g − g(gA(y)) · 1X , y)| ≤ L(|g − g(gA(y)) · 1X |, y)
≤ L(d(·, (gA(y)); y) · |g|Lip 1.

Applying Theorem 3.1 to the bounded operator ∆ = L − Ã implies for any
f ∈ C(X), and any ε > 0

|(L− Ã)(f, y)| ≤ max
{

1
2 · ∥L− Ã∥, ε−1 · L(d(·, (gA(y)); y)

}
· ω̃(f, ε)

≤ max
{

∥L∥, ε−1 · L(d(·, (gA(y)); y)
}

· ω̃(f, ε),

and the remaining part of the proof may be carried out as that of Theorem 3.2.
□

In the example to follow we illustrate Theorem 3.4 by discussing two uni-
variate cases.

Example 3.5. (1) If X = K is the unit circle in R2 consisting of all complex
numbers of the form eix, 0 ≤ x < 2π, and equipped with the metric

d(eix, eiy) := min{|x− y|, 2π − |x− y|),
and if A is the canonical injection of CR(K) into BR(K), then for any positive
linear operator L the estimate of Theorem 3.4 reads

|L(f, eix) − f(eix)| ≤
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≤ max
{

∥L∥, ε−1 · L(d(·, eix); eix)
}

· ω̃(f, ε) + |L(1K ; eix) − 1| · |f(eix)|.

Since CR (BR(K)) may be identified with C2π (B2π), the space of real-valued,
2π-periodic and continuous (bounded) functions defined on R, the approx-
imation problem sketched above is equivalent to considering the differences
|L(f, x) − f(x)| for positive linear operators L mapping C2π into B2π, f ∈
C2π, x ∈ R. The above inequality then translates into

|L(f, x) − f(x)| ≤

≤ max
{

∥L∥, ε−1 · L(d(·, x);x)
}

· ω̃(f, ε) + |L(1R;x) − 1| · |f(x)|.

Here, for x fixed, d(·, x) is the “saw tooth function” given below.

x π x+ π 2π

π

0

d(t, x)

t

If L is a singular integral of the form

L(f ;x) = (2π)−1 ·
∫ π

−π
f(x− u) · χ(u) du,

with a positive and even kernel χ ∈ L2π, and such that
∫ π

−π χ(u) du = 2π, then
it is well known that L(d(·, x);x) = (2π)−1 ·

∫ π
−π |u| · χ(u) du and L1R = 1R.

Hence ∥L∥ = 1, and for any f ∈ C2π and ε > 0 we have

|L(f, x) − f(x)| ≤ max
{

1, ε−1 · (2π)−1 ·
∫ π

−π
|u| · χ(u) du

}
· ω̃(f, ε).

If, moreover, χ = χn is a trigonometric polynomial of degree ≤ n, then this
is also the case for Lf = Lnf . Thus in this case any estimate obtained for
|Ln(f, x) − f(x)| in terms of ω̃(f, ·) has to be compared to N.P. Korneičuk’s
estimate for the approximation constant Enf , namely En(f) ≤ 1

2 · ω̃(f, π/(n+
1)). Here the constant 1

2 is best possible; see his book [29, p. 231f.] for details.
Moreover, using Jensen’s inequality, S.B. Stečkin [59] showed that there is a
linear operator An : C2π → Tn (the space of trigonometric polynomials of
degree ≤ n) such that for all f in C2π one has

∥Anf − f∥ ≤ 1
4 · (3 +

√
3) · ω̃(f, π/(n+ 1)) ≤ 1.19 · ω̃(f, π/(n+ 1)).
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It is thus natural to consider what can be obtained using positive linear
operators. Putting ε = π/(n+ 1) in the next to the last inequality we arrive at

|Ln(f, x) − f(x)| ≤

≤ max
{

1, (n+ 1) · π−1 · (2π)−1 ·
∫ π

−π
|u| · χn(u) du

}
· ω̃(f, π/(n+ 1))

= max
{

1, (n+ 1) · π−2 ·
∫ π

0
u · χn(u) du

}
· ω̃(f, π/(n+ 1))

for any positive and even kernel χn of the form

χn(t) = 1 + 2 ·
n∑

k=1
ϱ

(n)
k · cos kt.

Choosing ε = π−1 ·
∫ π

0 u · χn(u) du implies the inequality

|Ln(f, x) − f(x)| ≤ ω̃

(
f, π−1 ·

∫ π

0
u · χn(u) du

)
.

For an application using this choice of ε see the paper of V.V. Žuk and
G.I. Natanson [65, Theor. 2]; they investigated trigonometric polynomial op-
erators Qn : C2π → Tn−1 satisfying

∥Qnf − f∥ ≤ ω̃(f, 2.4307/n).
See Example 3.11 (1) for a continuation of this discussion.

(2) If X = [0, 1] and d(x, y) = |x− y|, then the general estimate implies

|L(f, x) − f(x)| ≤ max
{

∥L∥, ε−1L(| · −x|;x)
}
ω̃(f, ε) + |L(1X ;x) − 1| · |f(x)|.

For L1X = 1X and ε = L(| · −x|;x) this inequality was proved in a paper
of J. Meier and the author [20] using the K-functional approach (see e.g.,
Theorem 3.1). If L is a discrete operator of the form

L(f, x) =
n∑

k=0
f(x(n)

k ) · p(n)
k (x) with p(n)

k (x) ≥ 0 for x ∈ [0, 1],

then the second quantity in the above max is equal to

ε−1
n∑

k=0
|x(n)

k − x| · p(n)
k (x).

For this special case and ∑n
k=0 p

(n)
k = 1, V. Žuk and G. Natanson [64] used

Jensen’s inequality to derive the upper bound 1·ω̃
(
f,

∑n
k=0 |x(n)

k − x| · p(n)
k (x)

)
.

However, an explicit representation of ∑n
k=0 |x(n)

k − x| · p(n)
k (x) has been

given so far only for special operators, e.g., Bernstein’s classical example
(see F. Schurer and F.W. Steutel [53]) and – for a corresponding quantity
– for the operators introduced by Meyer-König and Zeller (see F. Schurer and
F.W. Steutel [54, Lemma 2.3]).
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For further univariate results in terms of ω̃(f, ·) see Example 3.11. Several
estimates for the univariate case in terms of ω(f, ·) instead of ω̃(f, ·) will be
classified in Discussion 4.13.

The right hand side in the estimate of Theorem 3.4 contains two test func-
tions, namely

1X : X ∋ x 7→ 1 ∈ R,
and

d(·, gA(y)) : X ∋ x 7→ d(x, gA(y)) ∈ R.
It is possible to replace both of them by other test functions as will be seen
below. We do this first for 1X . The estimate of the next theorem resembles
one obtained by T. Nishishiraho [42, Lemma 4].

Theorem 3.6. If A is of the form A(f, y) = ψA(y) · f(gA(y)), and L is
a positive linear operator, both mapping C(X) into B(Y ), then for all f ∈
C(X), y ∈ Y, ε > 0 and h ∈ C(X) such that (f/h)(gA(y)) is defined we have

|(L−A)(f, y)| ≤ max
{

∥L∥, ε−1 · L(d(·, gA(y)); y)
}

·

·
(
ω̃(f, ε) + |(f/h)(gA(y))| · ω̃(h, ε)

)
+ |(f/h)(gA(y))| · |(L−A)(h, y)|.

Proof. If A is given as above, and if h ∈ C(X) is such that for the fixed y
the expression (f/h)(gA(y)) is defined, then
|(L−A)(f, y)| ≤ |L(f, y) − (f/h)(gA(y)) · L(h, y)| + |(f/h)(gA(y))L(h, y)−

− ψA(y) · f(gA(y))|
= |L(f, y) − (f/h)(gA(y)) · L(h, y)|

+ |(f/h)(gA(y))L(h, y) − (f/h)(gA(y))ψA(y) · h(gA(y))|
= |L(f, y)−(f/h)(gA(y))·L(h, y)|+|(f/h)(gA(y))|·|(L−A)(h, y)|.

The first term of the last sum can be estimated as follows:
|L(f, y) − (f/h)(gA(y)) · L(h, y)| ≤
≤ |L(f, y) − L(1X , y) · f(gA(y))| + |L(1X , y) · f(gA(y)) − (f/h)(gA(y)) · L(h, y)|
= |(L− Ã)(f, y)| + |(f/h)(gA(y))| · |(Ã− L)(h, y)|.

Here Ã is the operator from the proofs of Theorem 3.2, Theorem 3.4, for which

|(L− Ã)(f, y)| ≤ max
{

∥L∥, ε−1 · L(d(·, gA(y)); y)
}

· ω̃(f, ε).

Using this estimate for both |(L− Ã)(f, y)| and |(Ã− L)(h, y)| gives
|L(f, y) − (f/h)(gA(y)) · L(h, y)| ≤

≤ max
{

∥L∥, ε−1 · L(d(·, gA(y)); y)
}

·
(
ω̃(f, ε) + |(f/h)(gA(y))| · ω̃(h, ε)

)
,

which yields the claim of Theorem 3.6. □
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Obviously, for h = 1X our last estimate is again the one from Theorem 3.4.
It is also possible to replace 1X in a different way:

Theorem 3.7. Let A : C(X) → B(Y ) be of the form A(f, y) = ψA(y) ·
f(gA(y)), let L : C(X) → B(Y ) be a positive linear operator, f ∈ C(X), y ∈ Y
and ε > 0. Moreover, let h ∈ C(X) be such that f/h ∈ C(X) and ∥L∥·∥h∥X +
|L(h, y)| ≠ 0. Then

|(L−A)(f, y)| ≤

≤ max
{

1
2

(
∥L∥ · ∥h∥ + |L(h, y)|

)
, ∥h∥ · ε−1 · L(d(·, gA(y)); y)

}
· ω̃(f/h, ε)

+ |(f/h)(gA(y))| · |(L−A)(h, y)|.
Proof. As in the proof of Theorem 3.6, we first have

|(L−A)(f, y)| ≤ |L(f, y)−(f/h)(gA(y))·L(h, y)|+|(f/h)(gA(y))|·|(L−A)(h, y)|.
The second term is already part of the right hand side in the above estimate.
For the first term we have
|L(f, y) − (f/h)(gA(y)) · L(h, y)| = |L

(
(f/h) · h, y

)
− (f/h)(gA(y)) · L(h, y)|

=
∣∣∣L(

[(f/h) − (f/h)(gA(y))] · h; y
)∣∣∣.

Now let g ∈ Lip 1 be arbitrarily given. Then the last quantity is equal to∣∣∣L(
[(f/h) − g + g − ((f/h) − g + g)(gA(y))] · h; y

)∣∣∣ ≤

≤
∣∣∣L(

[(f/h) − g − ((f/h) − g)(gA(y))] · h; y
)∣∣∣ +

∣∣∣L(
[g − g(gA(y))] · h; y

)∣∣∣
≤ ∥L∥·∥h∥·∥(f/h) − g∥+|L(h, y)|·∥(f/h) − g∥+∥h∥ · |g|Lip 1 · L(d(·, gA(y)); y)

=
(
∥L∥ · ∥h∥ + |L(h, y)|

)
·

·
{

∥(f/h) − g∥ + ∥h∥ ·
(
∥L∥ · ∥h∥ + |L(h, y)|

)−1
· L(d(·, gA(y)); y) · |g|Lip 1

}
.

Thus
|L(f, y) − (f/h)(gA(y)) · L(h, y)| ≤

≤
(
∥L∥ · ∥h∥ + |L(h, y)|

)
·

K

(
∥h∥

(
∥L∥·∥h∥+|L(h, y)|

)−1
·L(d(·, gA(y)); y)·(2/ε)·(ε/2), f/h;C(X),Lip 1

)
≤

(
∥L∥ · ∥h∥ + |L(h, y)|

)
·

· max
{

1, ∥h∥
(
∥L∥ · ∥h∥ + |L(h, y)|

)−1
· L(d(·, gA(y)); y) · 2/ε

}
·

·K
(
ε/2, f/h;C(X),Lip 1

)
= max

{
1
2

(
∥L∥ · ∥h∥ + |L(h, y)|

)
, ∥h∥ · ε−1 · L(d(·, gA(y)); y)

}
· ω̃(f/h, ε).
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This concludes the proof. □

Corollary 3.8. (1) If h = 1X we obtain the inequality

|(L−A)(f, y)| ≤ max
{

1
2

(
∥L∥ + |L(1X , y)|

)
, ε−1 · L(d(·, gA(y)); y)

}
· ω̃(f, ε)

+ |f(gA(y))| · |(L−A)(1X , y)|,
which is slightly better than that of Theorem 3.4.

(2) If Y = X and A(f, x) = f(x) for x ∈ X, then the estimate of Theo-
rem 3.7 becomes

|L(f, x) − f(x)| ≤

≤ max
{

1
2

(
∥L∥ · ∥h∥ + |L(h, y)|

)
, ∥h∥ · ε−1 · L(d(·, x);x)

}
· ω̃(f/h, ε)

+ |(f/h)(x)| · |L(h, x)−h(x)| ≤ ∥h∥ · max
{

∥L∥, ε−1 · L(d(·, x);x)
}

·ω̃(f/h, ε)
+ |(f/h)(x)| · |L(h, x) − h(x)|.

Next we show how the test functions
d(·, gA(y)) : X ∋ x 7→ d(x, gA(y)) ∈ R

can be replaced. To this end let Φ be a function on X2 such that Φ(·, y) ∈
C(X) for all y ∈ X, and that for some fixed q > 0 the condition

d(x, y)q ≤ Φ(x, y) for all x, y ∈ X

holds. For possible choices of Φ see the examples of T. Nishishiraho [43,
p. 445f]. The following theorem is an extension of Theorem 3.2 in our pa-
per [17].

Theorem 3.9. Let A : C(X) → B(Y ) be of the form A(f, y) = ψA(y) ·
f(gA(y)), let L : C(X) → B(Y ) be a positive operator, f ∈ C(X), y ∈ Y , and
ε > 0. Let h ∈ C(X) be such that f/h ∈ C(X). If Φ and q are given as above,
then the following estimates hold:

|(L−A)(f, y)| ≤

≤ max
{

∥L∥, ε−1 · C(L,Φ, A, y)
}

·
{
ω̃(f, ε) + |(f/h)(gA(y))| · ω̃(h, ε)

}
+ |(f/h)(gA(y))| · |(L−A)(h, y)|,

|(L−A)(f, y)| ≤

≤ max
{

1
2 ·

(
∥L∥ · ∥h∥ + |L(h, y)|

)
, ∥h∥/ε · C(L,Φ, A, y)

}
· ω̃(f/h, ε)

+ |(f/h)(gA(y))| · |(L−A)(h, y)|,
where

C(L,Φ, A, y) := inf
{(
L(Φ(·, gA(y))p/q; y)1/p · L(1X ; y)1−1/p

)
: p ≥ 1

}
.
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Proof. (1) is obtained by using Theorem 3.6, estimate (2) with the aid of
Theorem 3.7. In both cases it is only necessary to estimate L(d(·, gA(y)); y)
in order to obtain the claim of Theorem 3.9.

For y fixed, the functional L(∗, y) is a positive linear form on C(X). Thus
if p ≥ 1, Hölder’s inequality implies

L(d(·, gA(y)); y) ≤ L(d(·, gA(y))p; y)1/p · L(1X ; y)1−1/p.

If q > 0 is fixed and such that

d(x, y)q ≤ Φ(x, y) for all x, y ∈ X,

we have

L(d(·, gA(y)); y) ≤ L
(
d(·, gA(y))p; y

)1/p
· L(1X ; y)1−1/p

≤ L
(
Φ(·, gA(y))p/q; y

)1/p
· L(1X ; y)1−1/p.

Hence

L(d(·, gA(y)); y) ≤ inf
{(
L(Φ(·, gA(y))p/q; y)1/p · L(1X ; y)1−1/p

)
: p ≥ 1

}
.

Combining this with the inequalties from Theorem 3.6, Theorem 3.7, respec-
tively, shows the validity of our claim. □

Corollary 3.10 (H. Gonska [17, Corollary 3.3]). For the special case Y =
X, A(f, y) = f(x), h = 1X , L1X = 1X both inequalities of Theorem 3.9 imply

|L(f, x) − f(x)| ≤ max
[
1, ε−1 · inf

{(
L(Φ(·, x)p/q;x)1/p

)
: p ≥ 1

}]
· ω̃(f, ε).

Our next example continues the discussion of Example 3.5.

Example 3.11. 1) If C2π is given as in Example 3.5 (1), then the compu-
tation of L(d(·, x);x) may be cumbersome. From Theorem 3.9 with h = 1R,
q = 1, Φ(x, y) = π · sin 1

2 |x− y|, there follows for any p ≥ 1

|L(f, x) − f(x)| ≤

≤ max
{

∥L∥, ε−1π · L
(
sinp(1

2 | · −x|);x
)1/p

· L(1R;x)1−1/p
}

· ω̃(f, ε)

+ |L(1R;x) − 1| · |f(x)|.

For p = 2 we obtain

|L(f, x) − f(x)| ≤

≤ max
{

∥L∥, ε−1π · L
(
sin2 1

2(· − x);x
)1/2

· L(1R;x)1/2
}

· ω̃(f, ε)

+ |L(1R;x) − 1| · |f(x)|.
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If, as in Example 3.5 (2), Ln is a singular integral with kernel χn being an
even and positive trigonometric polynomial of degree ≤ n and given by

χn(t) = 1 + 2 ·
n∑

k=1
ϱ

(n)
k cos kt,

then Ln1R = 1R and

Ln

(
sin2 1

2(· − x);x
)

= 1
2(1 − ϱ

(n)
1 ).

Hence ∥Ln∥ = 1, and the last inequality becomes

|Ln(f, x) − f(x)| ≤ max
{

1, ε−1 · π ·
(

1
2(1 − ϱ

(n)
1 )

)1/2
}

· ω̃(f, ε).

The crucial quantity
(

1
2(1 − ϱ

(n)
1 )

)1/2
was already determined for quite a num-

ber of kernels; its importance seems to have been first observed by P.P. Ko-
rovkin [31]. In order to make ϱ

(n)
1 as big as possible among all χn’s of the

above form, one has to choose the Fejér-Korovkin kernel in which case

ϱ
(n)
1 = cos π

n+2 .

Because
(

1
2(1 − ϱ

(n)
1 )

)1/2
= sin π

2(n+2) , for the Fejér-Korovkin operators the
general inequality mentioned at the beginning of this example implies

|Ln(f, x) − f(x)| ≤ 1
2π · ω̃

(
f, π

n+1

)
, n ≥ 0.

Note that this result is somewhat worse than the one for the operators Qn

of V.V. Žuk and G.I. Natanson [65] mentioned in Example 3.5 (1). How-
ever, note as well that the above upper bound for approximation by the Fejér-
Korovkin operators was obtained after applying the Cauchy-Schwarz inequality
(which in many cases causes quite bad results).

2) For X = [0, 1], d(x, y) = |x−y|, and for h = 1X , q = 1, Φ(x, y) = d(x, y)
we arrive at (p ≥ 1 arbitrary)

|L(f, x) − f(x)| ≤ max
{

∥L∥, ε−1 · L (| · −x|p;x)1/p · L(1X ;x)1−1/p
}

· ω̃(f, ε)
+ |L(1X ;x) − 1| · |f(x)|.

If p = 2 one has

|L(f, x) − f(x)| ≤ max
{

∥L∥, ε−1 · L
(
(· − x)2;x

)1/2
· L(1X ;x)1/2

}
· ω̃(f, ε)

+ |L(1X ;x) − 1| · |f(x)|,

and for L1X = 1X and ε = L
(
(· − x)2;x

)1/2 (if greater than 0) it reduces to

|L(f, x) − f(x)| ≤ ω̃

(
f ;L

(
(· − x)2;x

)1/2
)
.

This was first proved by J. Peetre [45].
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For a discussion of estimates for the univariate case involving ω(f, ·) instead
of ω̃(f, ·) the reader is referred to Discussion 4.13.

Our next theorem generalizes Theorem 3.4 in another direction. It shows
that this theorem implies a variety of estimates including uniform ones and
estimates in L1 spaces.

Theorem 3.12 (H. Gonska [16, Theorem 3.4]). Let (X, d) be a compact
metric space and Y ̸= 0 be some set. Let L be a positive linear operator and
A be given by Af = ψA(f ◦ gA), both mapping C(X) into B(Y ). Moreover,
let M be a set of positive linear functionals µ defined on B(Y ) such that
pM [h] := sup{µ(|h|) : µ ∈ M} < ∞ for all h ∈ B(Y ), and pM [1Y ] > 0. Then
for all f ∈ C(X) and all ε > 0 the following inequality holds:
pM [Lf −Af ] ≤ pM [(L1X −A1X) · (f ◦ gA)]+

+ max
{

∥L∥ · pM [1Y ], ε−1 · pM [L(d(·, gA(∗)); ∗)]
}

· ω̃(f, ε).

Here L is applied with respect to the variable indicated by “·”, and µ ∈ M is
applied with respect to “∗”.

Proof. If g ∈ Lip 1 is arbitrarily given, then, as in the proof of Theorem 3.2
and in the second proof of Theorem 3.4, the following holds:
|(L−A)(f, y)| ≤

≤ |(L−A)(1X , y)| · |f(gA(y))| + |(L− Ã)(f − g + g; y)|
≤ |(L−A)(1X , y)| · |f(gA(y))| + |(L− Ã)(f − g; y)| + |(L− Ã)(g; y)|
≤ |(L−A)(1X , y)| · |f(gA(y))| + 2 · ∥L∥ · ∥f − g∥X + L(d(·, gA(y)); y) · |g|Lip 1.

Applying the positive functional µ ∈ M to this inequality means
µ(|Lf −Af |) ≤ µ(|L1X −A1X | · |f ◦ gA|) + 2 · ∥L∥·∥f−g∥X · µ(1Y )(*)

+µ(L(d(·, gA(∗)); ∗)) · |g|Lip 1.

If L = 0, then it reads
µ(|Lf −Af |) ≤ µ(|L1X −A1X | · |f ◦ gA|),

implying
pM [Lf −Af ] ≤ pM [(L1X −A1X) · (f ◦ gA)].

Hence in this case our claim is true.

If L ̸= 0, then the right hand side of (∗) may be estimated from above by
pM [(L1X −A1X) · (f ◦ gA)]+2 · ∥L∥ · pM [1Y ]·

·
{

∥f − g∥X + (2 · ∥L∥ · pM [1Y ])−1 · pM [L(d(·, gA(∗)); ∗)] · |g|Lip 1
}
.

Thus in this case we arrive at
µ(|Lf −Af |) ≤ pM [(L1X −A1X) · (f ◦ gA)] + 2 · ∥L∥ · pM [1Y ]·
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·K
(
(2∥L∥ · pM [1Y ])−1 · pM [L(d(·, gA(∗)); ∗)], f ; C(X), Lip 1

)
.

For ε > 0 the second term on the right hand side may be written as

2∥L∥pM [1Y ]·K
(
(2∥L∥pM [1Y ])−1pM [L(d(·, gA(∗)); ∗)] · ε

2 · 2
ε , f ; C(X),Lip 1

)
≤

≤ max
{

∥L∥ · pM [1Y ], ε−1 · pM [L(d(·, gA(∗)); ∗)]
}

· ω̃(f, ε),

and thus we have
µ(|Lf −Af |) ≤ pM [(L1X −A1X) · (f ◦ gA)]+

+ max
{

∥L∥ · pM [1Y ], ε−1 · pM [L(d(·, gA(∗)); ∗)]
}

· ω̃(f, ε).

Passing to the supremum in M now gives the estimate of Theorem 3.12. □

Note that if in Theorem 3.12 one has M = {εy} for some point evaluation
functional εy, y ∈ Y , then the estimate given reduces to that given in Theo-
rem 3.4. The following Corollary 3.13 establishes a similar generalization of
Theorem 3.9 (1) (for the case h = 1X).

Corollary 3.13 (H. Gonska [16, Corollary 3.5]). Let the assumptions of
Theorem 3.12 be fulfilled. If Φ is given on X2 such that Φ(·, y) ∈ C(X) for
all y ∈ X, and that for some q > 0 the condition

d(x, y)q ≤ Φ(x, y) for all x, y ∈ X

holds, then
pM [Lf −Af ] ≤ pM [(L1X −A1X) · (f ◦ gA)]+

+ max
{

∥L∥ · pM [1Y ], ε−1 · C(L,Φ, A,M)
}

· ω̃(f, ε),

where
C(L,Φ, A,M) :=

:= inf
{(
pM [L(Φ(·, gA(∗))p/q, ∗)]

)1/p
· pM [L(1X ; ∗)]1−1/p : p ≥ 1

}
.

Proof. The assertion in Corollary 3.13 results from an estimate of
pM [L(d(·, gA(∗)); ∗)] in Theorem 3.12. For any p ≥ 1 we have

pM [L(d(·, gA(∗)); ∗)] ≤ pM

[
L(Φ(·, gA(∗))p/q, ∗)1/p · L(1X ; ∗)1−1/p

]
.

Applying Hölder’s inequality again, we conclude as in the proof of Theo-
rem 3.12 that

pM

[
L(Φ(·, gA(∗))p/q, ∗)1/p · L(1X ; ∗)1−1/p

]
≤

≤
(
pM

[
L(Φ(·, gA(∗))p/q, ∗)

])1/p
· pM [L(1X ; ∗)]1−1/p .

Passing to the inf over all p ≥ 1 implies
pM [L(d(·, gA(∗)); ∗)] ≤
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≤ inf
{(
pM

[
L(Φ(·, gA(∗))p/q, ∗)

])1/p
· pM [L(1X ; ∗)]1−1/p : p ≥ 1

}
.

This yields the claim of Corollary 3.13. □

Remark 3.14. The estimates given in Theorems 3.4 and 3.12 are best pos-
sible in a certain sense. To show this, let Y = {x0}, A(f, x0) = f(x0), and
L(1X , x0) = 1 for some fixed point x0 in X. In this case the inequality in
Theorem 3.4 (or the one in Theorem 3.12 for M = {εx0}) reduces to

|L(f, x0) − f(x0)| ≤ max
{

1, ε−1 · L(d(·, x0);x0)
}

· ω̃(f, ε).

For L(d(·, x0);x0) = 0 we have |L(f, x0) − f(x0)| ≤ ω̃(f, ε) for all ε > 0, and
thus

|L(f, x0) − f(x0)| ≤ ω̃
(
f, L(d(·, x0);x0)

)
.

If L(d(·, x0);x0) > 0, then choose ε = L(d(·, x0);x0), and this gives the same
inequality.

Now take f(·) = d(·, x0). Hence

(∗) |L(d(·, x0);x0) − d(x0, x0)| = L(d(·, x0);x0) ≤ ω̃
(
d(·, x0), L(d(·, x0);x0)

)
.

If, for instance, X = [a, b] and d(x, y) = |y − x|, then
ω(| · −x0|, h) = min{h,max{b− x0, x0 − a}}

is a concave function, and hence
ω̃(| · −x0|, h) = ω(| · −x0|, h).

In particular, ω̃
(
| · −x0|, L(| · −x0|;x0)

)
= L(| · −x0|;x0), so that inequality (∗)

becomes an equality which shows that the constant 1 in

|L(f, x0) − f(x0)| ≤ 1 · ω̃
(
f, L(d(·, x0);x0)

)
cannot be improved in general.

As a further consequence of Theorem 3.4 we mention
Theorem 3.15 (cf. T. Nishishiraho [43, Th. 4]). Let X be a compact subset

of a real pre-Hilbert space with inner product ⟨·, ∗⟩. Let ε > 0. If L : C(X) →
C(X) is a positive linear operator, then for all f ∈ C(X) and x ∈ X there
holds
|L(f, x) − f(x)| ≤ |f(x)| · |L(1X , x) − 1|+

+ max
{

∥L∥, ε−1 · L(d(·, x)2;x)1/2 · L(1X , x)1/2
}

· ω̃(f, ε).

Here d(x, y) = ⟨x− y, x− y⟩1/2.
Proof. Use Theorem 3.9 (1) with Y = X, A(f, x) = f(x), h = 1X , Φ(x, y) =

d(x, y) and p = 2. □

Under the assumptions of Theorem 3.15 it is of course also possible to give
estimates similar to those in Theorem 3.12 or Corollary 3.13.
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4. ESTIMATES ON BOUNDED AND POSITIVE LINEAR OPERATOR

APPROXIMATION IN TERMS OF MODULI OF CONTINUITY

In this section we shall prove inequalities in terms of the modulus of conti-
nuity. In Section 4.1 we shall give some consequences of Theorem 3.12, thus
employing the relationship between ω̃ and ω as given in Lemma 2.4. As will
be seen in Remark 4.3, in many important cases our technique yields results as
good as those obtained by T. Nishishiraho. Thus even for the special compact
spaces (X, d) considered by Nishishiraho (who used the direct approach), our
general approach via least concave majorants may be more powerful.

Another main point of Section 4 is motivated by an example in Nishishi-
raho’s paper [43, p. 453f.] dealing with Bernstein operators. The estimates
given there are consequences of one of his more general theorems. As will be
discussed in Section 4.2, however, his version of the direct technique is not sen-
sitive enough to imply a certain best possible result obtained by P.C. Sikkema
[58]. Thus the second purpose of this section is to refine the direct technique
in a way such that best possible constants can be obtained when evaluating
the general upper bound.

Finally, in Section 4.3 it will be shown that the indirect and the direct
approach are of equal value in the sense that each of them may give better
results than the other one.

4.1. Estimates in terms of ω via Least Concave Majorants. We first
discuss some of the consequences of Theorem 3.12.

Theorem 4.1 (cf. H. Gonska [16, Theorem 3.9]). Let (X, d) be a compact
metric space such that for all ξ, ε > 0 and all f ∈ C(X) the inequality

ω(f, ξ · ε) ≤ (1 + ηξ) · ω(f, ε)
holds, where η > 0 is a fixed constant. If the assumptions of Theorem 3.12 are
satisfied, then the following hold.

(1) If the function f ∈ C(X) has a concave modulus of continuity, then
for each ε > 0 we have

pM [Lf −Af ] ≤ pM [(L1X −A1X) · (f ◦ gA)]+

+ max
{

∥L∥ · pM [1Y ], ε−1 · pM [L(d(·, gA(∗)); ∗)]
}

· ω(f, ε).

(2) Otherwise we have for any h, ε > 0 the inequality
pM [Lf −Af ] ≤ pM [(L1X −A1X) · (f ◦ gA)]+

+ (1 + ηhε−1) max
{

∥L∥ · pM [1Y ], h−1 · pM [L(d(·, gA(∗)); ∗)]
}

· ω(f, ε).

Proof. The inequality of (1) is an immediate consequence of ω̃(f, ε) =
ω(f, ε). That of (2) is obtained by using the estimate of Theorem 3.12 (with
h instead of ε) and then observing that because of Lemma 2.4 (1) one has

ω̃(f, h) = ω̃(f, h · ε−1 · ε) ≤ (1 + η · h · ε−1) · ω(f, ε),
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where ε > 0 again is arbitrarily given (and independent of h). □

Corollary 4.2. If M = {εy} for y ∈ Y then the estimates of Theorem 4.1
reduce to

|(L−A)(f, y)| ≤|(L−A)(1X , y)| · |f(gA(y))|(i′)

+ max
{

∥L∥, ε−1 · pM [L(d(·, gA(y)); y)
}

· ω(f, ε),

and

|(L−A)(f, y)| ≤|(L−A)(1X , y)| · |f(gA(y))|
(ii′)

+(1+ηhε−1) · max
{

∥L∥, h−1 ·L(d(·, gA(y)); y)
}

· ω(f, ε),

respectively.

Remark 4.3. 1) For h = ε, estimate (2) of Theorem 4.1 was given in
the author’s paper [16]. It is however of advantage to have two independent
parameters h and ε available, as can be seen in (2), for example.

2) In order to compare the result in Theorem 4.1 to one obtained by T. Nishishi-
raho [42], we consider again the following situation:
Y = X, M = {εx} for some fixed point evaluation functional εx, A(f, x) =

f(x), L1X = 1X . Then, for any f ∈ C(X) having a concave modulus of
continuity, the above inequality yields for any ε > 0 Î

|L(f, x) − f(x)| ≤ max
{

1, ε−1 · L(d(·, x);x)
}

· ω(f, ε).

If in Lemma 4 of Nishishiraho’s paper [42] we take g = 1X and Φ(x, y) =
d(x, y), then the lemma implies

|L(f, x) − f(x)| ≤ max
(
1 + ε−1 · η · L(d(·, x);x)

)
· ω(f, ε).

Thus, for η ≥ 1 (which is the case for every coefficient of convex deforma-
tion) and for functions f with the property mentioned above, we can apply
Corollary 4.2 (ii′) to find for any h > 0 the inequality

|L(f, x) − f(x)| ≤ (1 + η · h · ε−1) · max
{

1, h−1 · L(d(·, x);x)
}

· ω(f, ε).

Thus if L(d(·, x);x) > 0 we can choose h = L(d(·, x);x) to arrive at

|L(f, x) − f(x)| ≤
(
1 + ε−1 · η · L(d(·, x);x)

)
· ω(f, ε).

This is exactly the estimate given by T. Nishishiraho [42]. Observe that it
remains true if L(d(·, x);x) = 0.

3) A statement akin to (2) holds with respect to Theorem 4 in M.A. Jiménez
Pozo’s paper [26].
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4) The choice h = L(d(·, x);x) in (2) of this remark is best possible in the
sense that it yields best possible constants. To see this assume that we choose
h = r · L(d(·, x);x) for r < 1. Hence

(1 + η · h · ε−1) · max
{

1, h−1 · L(d(·, x);x)
}

=
(
1+η · ε−1 · r·L(d(·, x);x)

)
·r−1

= r−1 + η · ε−1 · L(d(·, x);x)
> 1 + η · ε−1 · L(d(·, x);x).

If we choose h = r · L(d(·, x);x) for r > 1, then

(1 + η · h · ε−1) · max
{

1, h−1 · L(d(·, x);x)
}

= 1 + η · ε−1 · r · L(d(·, x);x)

≥ 1 + η · ε−1 · L(d(·, x);x).
Thus the choice h = L(d(·, x);x) gives the best constant in front of ω(f, ε).

4.2. Refined estimates in terms of ω using the direct technique. All
estimates of Section 4.1 in terms of ω were consequences of a single estimate
being true for arbitrary metric spaces. The assumption ω(f, ξ · ε) ≤ (1 + ηξ) ·
ω(f, ε) was made in order to enable us to apply Lemma 2.4 and thus to achieve
inequalities in terms of ω instead of ω̃.

As a first result of this section we shall show how this assumption can
be used together with the so-called direct technique for the case of certain
bounded operators. The result given below in Theorem 4.4 resembles that of
Theorem 3.2; the technique of proof is due to M.A. Jiménez Pozo [22].

Theorem 4.4 (cf. M.A. Jiménez Pozo [22, Lemma 2]). Let (X, d) be a
compact metric space such that, for the modulus of continuity of any function
f ∈ CR(X), one has ω(f, ξ · ε) ≤ (1 + ηξ) · ω(f, ε) for all ξ, ε > 0 and some
fixed constant η > 0. Let A be of the form A(f, y) = ψA(y) · f(gA(y)), and let
L be a bounded linear operator, both mapping C(X) into B(Y ). If y ∈ Y is
such that L(1X ; y) ̸= 0, then for all f ∈ C(X) and all ε > 0 we have

|(L−A)(f, y)| ≤

≤
[(

∥εy ◦ L∥ − |L(1X , y)|
)

·
{

1 + η · ε−1 · d(X)
}

+ |L(1X , y)| +
∣∣∣1 + η · ε−1 · L(1X , y)−1 · L(d(·, gA(y)); y)

∣∣∣ ]
· ω(f, ε)

+ |(L−A)(1X , y)| · |f(gA(y))|.
Here d(X) is the diameter of X, and 1X denotes the function X ∋ x 7→ 1 ∈ R.

Proof. Similar to the proof of Theorem 3.2, we first construct two auxiliary
functions h1 and h2. Their definition is based upon the following observations.
If f ∈ C(X) and x ∈ X, then for all t ∈ X

|f(t) − f(gA(y))| ≤
{

1 + η · ε−1 · d(t, gA(y))
}

· ω(f, ε), ε > 0.
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For t ∈ X (and y ∈ Y fixed) we now define

h1(t) := f(gA(y)) −
{

1 + η · ε−1 · d(t, gA(y))
}

· ω(f, ε), and

h2(t) := f(gA(y)) +
{

1 + η · ε−1 · d(t, gA(y))
}

· ω(f, ε).

Due to the above observations for the differences f(t) − f(gA(y)) it is clear
that the continuous functions hi, i = 1, 2, satisfy

h1(t) ≤ f(t) ≤ h2(t), t ∈ X.

Furthermore,
|f(t) − h1(t)| = f(t) − h1(t)

= f(t) − f(gA(y)) +
{

1 + η · ε−1 · d(t, gA(y))
}

· ω(f, ε)

≤ |f(t) − f(gA(y))| +
{

1 + η · ε−1 · d(t, gA(y))
}

· ω(f, ε)

≤ 2 ·
{

1 + η · ε−1 · d(t, gA(y))
}

· ω(f, ε).
Also,

|h2(t) − f(t)| ≤ 2 ·
{

1 + η · ε−1 · d(t, gA(y))
}

· ω(f, ε).
Hence,

max{∥f − hi∥ : i = 1, 2} ≤ 2 ·
{

1 + η · ε−1 · d(X)
}

· ω(f, ε),

where d(X) is the diameter of X.
The assumption that L(1X , y) ̸= 0 (so that ∥εy ◦ L∥ ≠ 0, too) allows us to
introduce the auxiliary functional T given by

T (f) := Ty(f) := |L(1X , y)|
L(1X , y) · ∥εy ◦ L∥

· L(f, y).

For fixed y ∈ Y this is a continuous functional on CR(X). Using the same
technique as in the proof of Theorem 3.2 (representing measures), it may be
seen that for each f ∈ CR(X), f ≥ 0, the inequality

T (f) + ∥f∥ · 1
2(1 −M) ≥ 0

holds; here
M := |L(1X , y)|

∥εy ◦ L∥
≤ 1.

Applying the latter inequality to (f − h1) and (h2 − f) shows that
T (f − h1) + ∥f − h1∥ · 1

2(1 −M) ≥ 0, and
T (h2 − f) + ∥h2 − f∥ · 1

2(1 −M) ≥ 0.
Consequently,

T (f) − f(gA(y)) · T (1X) ≥

≥ −∥f − h1∥ · 1
2(1 −M) −

{
T (1X) + η · ε−1 · T (d(·, gA(y)))

}
· ω(f, ε)
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≥−max{∥f−h1∥ : i=1, 2} · 1
2(1−M)−

{
T (1X)+η · ε−1 ·T (d(·, gA(y)))

}
·ω(f, ε)

≥−max{∥f−h1∥ : i=1, 2}· 1
2(1−M)−

∣∣∣{T (1X)+η · ε−1 ·T (d(·, gA(y)))
}∣∣∣·ω(f, ε).

Similarly, from
T (h2 − f) + ∥f − h2∥ · 1

2(1 −M) ≥ 0
it follows that
T (f) − f(gA(y)) · T (1X) ≤

≤ max{∥f−hi∥ : i = 1, 2}· 1
2(1−M)+

∣∣∣{T (1X)+η · ε−1 ·T (d(·, gA(y)))
}∣∣∣·ω(f, ε).

Thus
|T (f) − f(gA(y)) · T (1X)| ≤

≤ max{∥f−hi∥ : i = 1, 2} · 1
2(1−M)|1 +

∣∣∣T (1X)+η ·ε−1 · T (d(·, gA(y)))
∣∣∣ · ω(f, ε)

≤ (1−M)·
{

1+η · ε−1 ·d(X)
}

·ω(f, ε)+
∣∣∣T (1X)+η ·ε−1 · T (d(·, gA(y)))

∣∣∣·ω(f, ε)

=
[
(1 −M) ·

{
1 + η · ε−1 · d(X)

}
+

∣∣∣T (1X) + η · ε−1 · T (d(·, gA(y)))
∣∣∣] · ω(f, ε).

Recalling the definition of T , the final estimate is now obtained by observing
first that
|(L−A)(f, y)| ≤ |L(f, y) −L(1X , y) · f(gA(y))| + |(L−A)(1X , y)| · |f(gA(y))|,
and then estimating the first term of the upper bound as follows:
|L(f, y) − L(1X , y) · f(gA(y))| = ∥εy ◦ L∥ · |T (f) − f(gA(y)) · T (1X)| ≤

≤ |εy ◦L∥·
[
(1−M) ·

{
1+η · ε−1 · d(X)

}
+

∣∣∣T (1X)+η ·ε−1 ·T (d(·, gA(y)))
∣∣∣]·ω(f, ε)

= ∥εy ◦ L∥ ·
[ (

1 − |L(1X ,y)|
∥εy◦L∥

)
·
{

1 + η · ε−1 · d(X)
}

+
∣∣∣ |L(1X ,y)|

∥εy◦L∥ + η · ε−1 · |L(1X ,y)|
L(1X ,y)·∥εy◦L∥L(d(·, gA(y)); y)

∣∣∣ ]
· ω(f, ε)

=
[

(∥εy ◦ L∥ − |L(1X , y)|) ·
{

1 + η · ε−1 · d(X)
}

+
∣∣∣|L(1X , y)| + η · ε−1 · |L(1X ,y)|

L(1X ,y) L(d(·, gA(y)); y)
∣∣∣ ]

· ω(f, ε).

This yields the inequality of Theorem 4.4. □

Corollary 4.5.
(1) As is immediately seen from the inequality of Theorem 4.4, we also

have that
|(L−A)(f, y)| ≤

[
(∥εy ◦ L∥ − |L(1X , y)|) ·

{
1 + η · ε−1 · d(X)

}
+

+ |L(1X , y)| + η · ε−1 · |L(d(·, gA(y)); y)|
]

· ω(f, ε)
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+ |(L−A)(1X , y)| · |f(gA(y))|.
(2) If L is a positive linear operator, and hence ∥εy ◦L∥ = |L(1X , y)|, then

the above reduces to
|(L−A)(f, y)| ≤

≤
{
L(1X , y)+η ·ε−1 ·L(d(·, gA(y)); y)

}
·ω(f, ε)+|(L−A)(1X , y)| · |f(gA(y))|.

Remark 4.6. For a special case the inequality given in Corollary 4.5 (2)
will appear again in Discussion 4.13 (3), but as a consequence of a differ-
ent inequality. The most important expression in it is the term η · ε−1 ·
L(d(·, gA(y)); y), the occurrence of which is a consequence of the construc-
tion of the continuous functions h1 and h2 in the proof of Theorem 4.4. These
had to be continuous in order to enable us to apply the representation theorem
for continuous linear functionals and to derive the crucial inqualities (see the
proof of Theorem 4.4)

T (f − h1) + ∥f − h1∥ · 1
2(1 −M) ≥ 0, and

T (h2 − f) + ∥h2 − f∥ · 1
2(1 −M) ≥ 0.

However, if the above assumption
ω(f, ξ · ε) ≤ (1 + η · ξ) · ω(f, ε)

is replaced by the slightly stronger one given below, then it would be possible
to replace h1 and h2 by two functions h∗

1 and h∗
2 which are not necessarily

continuous and satisfy
h1 ≤ h∗

1 ≤ f ≤ h∗
2 ≤ h2.

Clearly, the use of these functions would lead to refined inequalities if L were
applicable to, say, bounded functions.

In the remainder of this section we shall assume again that L is a positive
linear operator. We give a development which parallels that of Section 3. The
slightly stronger assumption mentioned in Remark 4.6 follows.

In the sequel we shall assume the existence of a fixed number ϱ > 0 such
that we have

ω(f, ξ · ε) ≤ (1+]ϱξ[) · ω(f, ε) for ξ, ε ≥ 0;
here ]ϱξ[= max{z ∈ Z : z < ϱ · ξ}. As shown in Lemma 1.6 (3), this type
of inequality holds at least for spaces (X, d) having a coefficient of convex
deformation ϱ ≥ 1. In particular, for space (X, d) being metrically convex in
the sense of Menger (and thus ϱ = 1), we have the better inequality

ω(f, ξ · ε) ≤ (1+]ξ[) · ω(f, ε) for ξ, ε ≥ 0.
For approximation by positive linear operators this stronger inequality (as
opposed to the weaker one ω(f, ξ · ε) ≤ (1 + ξ) ·ω(f, ε)) is of great importance
when determining optimal constants (see, e.g., P.C. Sikkema [58]). However,
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the use of the weaker form frequently has the advantage of leading to simpler
estimates.

Corollary 4.5 (2) already contains an inequality concerning the approxima-
tion by positive linear operators which was obtained via the direct technique.
The following theorem is a first step to refine this method in connection with
approximation by such operators. It constitutes an analogy of Theorem 3.4.

Theorem 4.7. Let (X, d) be a compact metric space with d(X) > 0 and
such that for each f ∈ C(X) its modulus of continuity satisfies

ω(f, ξ · ε) ≤ (1+]ϱξ[) · ω(f, ε) for all ξ, ε ≥ 0

and some fixed ϱ > 0. Moreover, let Y ̸= ∅ be some set, ψA : Y → R be
bounded, and let gA : Y → X be any mapping. If A : C(X) → B(Y ) is given
by A(f, y) = ψA(y) · f(g(y)), and if L : B(X) → B(Y ) is a positive linear
operator, then for all f ∈ C(X), y ∈ Y and ε > 0 the following inequalities
hold:

|(L−A)(f, y)| ≤

≤
[
L(1X , y) + L

(
χ{0}∪(1,∞)

{
ε−1 · d(·, gA(y))

}
·
]
ϱ · ε−1 · d(·, gA(y))

[
; y

) ]
· ω(f, ε) + |(L−A)(1X , y)| · |f(gA(y))|.

Here χ{0}∪(1,∞) denotes the characteristic function of the set {0} ∪ (1,∞).

2. If ϱ = 1, then the estimate simplifies to

|(L−A)(f, y)| ≤

≤
[
L(1X , y)+L

(]
ε−1 · d(·, gA(y))

[
; y

) ]
· ω(f, ε)+|(L−A)(1X , y)| · |f(gA(y))|.

An immediate consequence of Theorem 4.7 is

Corollary 4.8. Under the assumptions of Theorem 4.7 the following (slightly
weaker) inequalities also hold:

1. |(L−A)(f, y)| ≤[
L(1X , y)+ϱ ·ε−1 ·L

(
χ(1,∞)

{
ε−1 · d(·, gA(y))

}
· d(·, gA(y)); y

) ]
·ω(f, ε)

+|(L−A)(1X , y)| · |f(gA(y))|.

2. If L(1X , y) = A(1X , y) for some y ∈ Y , then inequality (1) reduces to

|(L−A)(f, y)| ≤

≤
[
A(1X , y) + ϱ · ε−1 · L

(
χ(1,∞)

{
ε−1 · d(·, gA(y))

}
· d(·, gA(y)); y

) ]
· ω(f, ε).
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Proof of Theorem 4.7. As in the proof of Theorem 3.2 first observe that
|(L−A)(f, y)| ≤ |L(f, y) −L(1X , y) · f(gA(y))| + |(L−A)(1X , y)| · |f(gA(y))|.
Hence it remains to estimate the first term on the right hand side of this
inequality. Next observe that for t ∈ X

|f(t) − f(gA(y))| ≤
(
1 +

]
ϱ · ε−1 · d(t, gA(y))

[)
· ω(f, ε), if d(t, gA(y)) > ε,

|f(t) − f(gA(y))| ≤ ω(f, ε) for 0 < d(t, gA(y)) ≤ ε, and
|f(t) − f(gA(y))| = 0 if t = gA(y).

Thus
|f(t) − f(gA(y))| ≤

≤
{

1 + χ{0}∪(1,∞)
{
ε−1 · d(t, gA(y))

}
·
]
ϱ · ε−1 · d(t, gA(y))

[}
· ω(f, ε).

Application of L yields
|L(f, y) − L(1X , y) · f(gA(y))| ≤

≤
[
L(1X , y)+L

(
χ{0}∪(1,∞)

{
ε−1 ·d(·, gA(y))

}
·
]
ϱ · ε−1 ·d(·, gA(y))

[
; y

) ]
·ω(f, ε).

This gives inequality (1).
Inequality (2) is obtained by observing that for ϱ = 1 and all t ∈ X one has

χ{0}∪(1,∞)
{
ε−1 · d(t, gA(y))

}
·
]
ε−1 · d(t, gA(y))

[
=

]
ε−1 · d(t, gA(y))

[
.

Finally, the estimates of the corollary are achieved by observing that

χ{0}∪(1,∞)
{
ε−1 · d(·, gA(y))

}
·
]
ϱ · ε−1 · d(·, gA(y))

[
≤

≤ χ(1,∞)
{
ε−1 · d(·, gA(y))

}
· ϱ · ε−1 · d(·, gA(y)).

Remark 4.9. 1) The functions

X ∋ t 7→ χ{0}∪(1,∞)
{
ε−1 · d(t, gA(y))

}
·
]
ϱ · ε−1 · d(t, gA(y))

[
∈ R,

and
X ∋ t 7→ χ(1,∞)

{
ε−1 · d(t, gA(y))

}
· d(t, gA(y)) ∈ R,

figuring in Theorem 4.7 and Corollary 4.8 are, at least for small values of ε,
not in C(X), but are merely bounded. Thus the assumption that L is defined
for bounded functions is essential.

For the special case X = Y = [a, b], d(x, y) = |x − y| (and thus ϱ = 1),
A(f, x) = f(x), the first of these functions becomes for x fixed in [a, b]:

fε,x : [a, b] ∋ t 7→ ]ε−1 · |t− x|[∈ Z.

This is not a positive function and – as was seen above – enters the estimates
mainly because of the inequality ω(f, ξ · ε) ≤ (1+]ξ[) · ω(f, ε) for the modulus
of continuity. Here is a partial view of its graph:



216 Heinz H. Gonska 35

a x − 2ε x − ε x x + ε x + 2ε x + 3ε b

-1

1

2

3

)

)

[ )( ]

][ (

(

It is evident that the above function is majorized by
[a, b] ∋ t 7→ χ(1,∞){ε−1 · |t− x|} · ε−1 · |t− x| ∈ R.

This is ε−1 times the second function mentioned in this remark. Its funda-
mental importance for the estimates of T. Nishishiraho will become apparent
in Discussion 4.13.

2) The estimate given in Theorem 4.7 is best possible in a certain sense.
For a discussion of this fact the reader is referred to Remark 4.16.

As was the case for the estimate of Theorem 3.4, the direct approach also
allows a partial replacement of the function 1X by suitable functions h. This
will be shown in the following two theorems. The first one constitutes an
analogy to Theorem 3.6.

Theorem 4.10. Let A,L, f, y, ε be given as in Theorem 4.7. If h ∈ C(X)
is such that h(gA(y)) ̸= 0, then

|(L−A)(f, y)| ≤

≤
{
L(1X , y) + L

(
χ{0}∪(1,∞)

{
ε−1 · d(·, gA(y))

}
·
]
ϱ · ε−1 · d(·gA(y))

[
; y

) }
·

· {ω(f, ε) + |(f/h)(gA(y))| · ω(h, ε)} + |(f/h)(gA(y))| · |(L−A)(h, y)|.

Proof. As in the proof of Theorem 3.6 the first observation is that
|L(f, y)−(f/h)(gA(y))·L(h, y)| ≤ |(L−Ã)(f, y)|+|(f/h)(gA(y))|·|(Ã−L)(h, y)|.
Here Ã is again given by Ã(f, y) = L(1X , y) · f(gA(y)). We now estimate
|(L− Ã)(f, y)| and |(L− Ã)(h, y)| as in the proof of Theorem 4.7 (1) to arrive
at

|L(f, y) − (f/h)(gA(y)) · L(h, y)| ≤

≤
{
L(1X , y) + L

(
χ{0}∪(1,∞)

{
ε−1 · d(·, gA(y))

}
·
]
ϱ · ε−1 · d(·gA(y))

[
; y

) }
·

· {ω(f, ε) + |(f/h)(gA(y))| · ω(h, ε)} .
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Adding this quantity to the term |(f/h)(gA(y))| · |(L − A)(h, y)| yields the
estimate of Theorem 4.10. □

As will be seen in Discussion 4.13 (1) and Discussion 4.13 (9), the estimate
of Theorem 4.10 contains all the main results of Nishishiraho’s papers cited
in this work. Before showing this we are going to partially replace 1X by the
second method already employed in Theorem 3.7.

Theorem 4.11. Let A,L, f, y, ε be given as in Theorem 4.7. Moreover, let
h ∈ C(X) be such that f/h ∈ C(X). Then
|(L−A)(f, y)| ≤

≤ ∥h∥ ·
{
L(1X , y)+L

(
χ{0}∪(1,∞)

{
ε−1 · d(·, gA(y))

}
·
]
ϱ · ε−1 · d(·, gA(y))

[
; y

) }
· ω(f/h, ε) + |(f/h)(gA(y))| · |(L−A)(h, y)|.

Proof. As in Theorems 3.6 and 4.10 it suffices to estimate

|L(f, y) − (f/h)(gA(y)) · L(h, y)| =
∣∣∣L(

f/h) · h− (f/h)(gA(y)) · h; y
)∣∣∣

=
∣∣∣L([

(f/h) − (f/h)(gA(y))
]

· h; y
)∣∣∣

≤ ∥h∥ · L
(∣∣∣(f/h) − (f/h)(gA(y))

∣∣∣; y)
.

Also, as in the proof of Theorem 4.7 it may be observed that for t ∈ X one
has

|(f/h)(t) − (f/h)(gA(y))| ≤

≤
{

1 + χ{0}∪(1,∞)
{
ε−1 · d(t, gA(y))

}
·
]
ϱ · ε−1 · d(t, gA(y))

[ }
· ω(f/h, ε),

which implies
|L(f, y) − (f/h)(gA(y)) · L(h, y)| ≤

≤|h|·
{
L(1X , y)+L

(
χ{0}∪(1,∞)

{
ε−1 ·d(·, gA(y))

}
·
]
ϱ·ε−1 ·(.·, gA(y))

[
; y

) }
·ω(f/h, ε).

Combining this with the remaining term |(f/h)(gA(y))| · |(L−A)(h, y)| gives
the estimate of Theorem 4.11. □

The analogy of Corollary 3.8 is the following

Corollary 4.12. (1) If h = 1X , both Theorems 4.10 and 4.11 imply
the estimate of Theorem 4.7 (1).

(2) If Y = X and A(f, x) = f(x), then the estimate of Theorem 4.10
becomes

|L(f, x) − f(x)| ≤
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≤
{
L(1X , y) + L

(
χ{0}∪(1,∞)

{
ε−1 · d(·, x)

}
·
]
ϱ · ε−1 · d(·, x)

[
; y

) }
·

·
{
ω(f, ε) + |(f/h)(x)| · ω(h, ε)

}
+ |(f/h)(x)| · |L(h, x) − h(x)|.

(3) Under the assumptions of (2) the inequality of Theorem 4.11 reduces
to

|L(f, x) − f(x)| ≤

≤ ∥h∥
{
L(1X , x)+L

(
χ{0}∪(1,∞)

{
ε−1 ·d(·, x)

}
·
]
ϱ·ε−1 · d(·, x)

[
; y

) }
ω(f/h, ε)

+ |(f/h)(x)| · |L(h, x) − h(x)|.
□

The following discussion will show how the bounded functions

X ∋ t 7→ χ{0}∪(1,∞)
{
ε−1 · d(t, gA(y))

}
·
]
ϱ · ε−1 · d(t, gA(y))

[
∈ R

may be replaced in the estimates of Theorems 4.7, 4.10, and 4.11. This dis-
cussion will complete the information available from Corollary 4.8 and will
yield results analogous to the ones from Theorem 3.9, among others. It is
also intended to relate the main results of this section to earlier work. At the
same time it will give us an opportunity to briefly review univariate results of
several types, and will thus parallel the discussion conducted in Examples 3.5
and 3.11.

Discussion 4.13. We now discuss some further consequences of Theorem 4.7
and Corollary 4.8 by comparing the estimates given there to such obtained by
other authors and us earlier. For this purpose it suffices to consider the case
where Y = X and A : C(X) → B(X) is the canonical imbedding, so that
gA(x) = x for x ∈ X.

(1) The inequality (2) of Theorem 4.7 implies for this case and ϱ = 1

|L(f, x)−f(x)|≤
{
L(1X ;x)+L

(]
ε−1 · d(·, x)

[
;x

) }
·ω(f, ε)+|(L(1X ;x)−1|·|f(x)|.

If L(1X ;x) = 1, then this simplifies to

|L(f, x) − f(x)| ≤
{

1 + L
(]
ε−1 · d(·, x)

[
;x

) }
· ω(f, ε).

For the special case X = [0, 1] and the Bernstein operators this type of esti-
mate was given by P.C. Sikkema [58, p. 108, formula(4)]; the analogy of the
above expression was used to determine a certain best possible constant in ap-
proximation by these operators. After giving this estimate, Sikkema passes to
the equivalent of the weaker estimate (see [58, p. 109, formula (5)])

|L(f, x) − f(x)| ≤
{

1 + ε−1L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

) }
· ω(f, ε),

which proved to be helpful to determine certain cases where the optimal con-
stant does not occur.
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For the case X = [a, b] and d(x, y) = |x − y| the function to which L is
applied becomes

[a, b] ∋ t 7→ χ(1,∞)
(
ε−1 · |t− x|

)
· ε−1 · |t− x| ∈ R;

its graph is below.

a x − 2ε x − ε x x + ε x + 2ε x + 3ε b

-1

1

2

3

Note that this is a non-negative function, and thus an estimate based upon
the use of this function may be weaker than one based upon the use of fε,x

from Remark 4.9 (1). See Remark 4.16 with respect to the importance of this
statement. Note that T. Nishishiraho’s estimates are based upon the use of

χ(1,∞)
(
ε−1 · d(·, x)

)
· ε−1 · d(·, x),

and thus are necessarily weaker than ours. See (7), (8), and (9) of this dis-
cussion for further information in this regard.

(2) Because of ]a[≤ [a] for a ∈ R and the positivity of L the second inequality
of (1) immediately yields

|L(f, x) − f(x)| ≤
{

1 + L
([
ε−1 · d(·, x)

]
;x

)}
· ω(f, ε).

In connection with approximation of univariate and 2π-periodic functions this
type of estimate seems to have been first used by V.V. Žuk and G.I. Natan-
son [65, Lemma 1]; they were also able to show the optimality of their inequality
for the convolution type operators considered by them.

(3) Because

L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

)
≤ L(d(·, x);x)

the estimate of Corollary 4.8 (1) implies

|L(f, x)−f(x)|≤
{
L(1X ;x)+ϱ · ε−1 · L(d(·, x);x)

}
·ω(f, ε)+|L(1X ;x)−1|·|f(x)|.

(Note that this also follows from Corollary 4.5 (2)). If the latter quantity is
greater than 0, then choosing ε = L(d(·, x);x) gives

|L(f, x)−f(x)| ≤ {L(1X ;x)+ϱ} · ω (f, L(d(·, x);x))+|L(1X ;x)−1| · |f(x)|.
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This estimate remains true if L(d(·, x);x) = 0.
For ϱ = 1, i.e., for metrically convex spaces, this inequality can be found in

a paper of G. Mastroianni [36, p. 345]. Similar results for the univariate case
can be found in papers of R.G. Mamedov [34] (see also his book [35] for both
the C[a, b] and the C2π case) and of T. Popoviciu [46].

(4) Observing further that due to the Cauchy-Schwarz inequality we get

L(d(·, x);x) ≤
√
L(d2(·, x);x) ·

√
L(1X ;x),

it is also true that
|L(f, x) − f(x)| ≤

≤ {L(1X ;x) + ϱ} · ω
(
f,

√
L(d2(·, x);x) ·

√
L(1X ;x)

)
+ |L(1X ;x) − 1| · |f(x)|.

For ϱ = 1 this estimate was also used by. G. Mastroianni [36, p. 345] (see also
H. Shapiro [55, Sec. 8.8].

(5) A slightly modified combination of the use of the Cauchy-Schwarz in-
equality and the particular choice of ε implies
|L(f, x) − f(x)| ≤

≤
{
L(1X ;x) + ϱ

√
L(1X ;x)

}
· ω

(
f,

√
L(d2(·, x);x)

)
+ |L(1X ;x) − 1| · |f(x)|.

For ϱ = 1 and a univariate setting this type of estimate seems to have been
first used by R.A. DeVore [10, p. 28f.].

(6) Another observation is that for d(t, x) ≤ ε we have

ε−1 · χ(1,∞)
(
ε−1 · d(t, x)

)
· d(t, x) = 0 ≤ ε−q · dq(t, x),

and for d(t, x) > ε and all q ≥ 1 the inequality

ε−1 · χ(1,∞)
(
ε−1 · d(t, x)

)
· d(t, x) = ε−1 · d(t, x) ≤ ε−q · dq(t, x)

holds. Thus it follows that for all q ≥ 1

ε−1 · L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

)
≤

≤ ε−q · L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· dq(·, x);x

)
≤ ε−q · L (dq(·, x);x) .

Using this fact in Corollary 4.8 (1) for A as above shows that for all q ≥ 1
|L(f, x)−f(x)| ≤

{
L(1X ;x) + ϱ · ε−q · L (dq(·, x);x)

}
·ω(f, ε)+|L(1X ;x)−1|·|f(x)|.

For the univariate case, i.e., X = [a, b], ϱ = 1, and d(t, x) = |t− x|, L(1X) =
1X , q = 2m with m ∈ N, this type of estimate was first proved by A. Lupaş
and M.W. Müller [33, Theorem 2.2].

Choosing ε such that εq = B−1 · L (dq(·, x);x) for some B > 0, i.e.,
ε−q = B · {L (dq(·, x);x)}−1
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implies

|L(f, x) − f(x)| ≤ {L(1X ;x) + ϱ ·B} · ω
(
f,B−1/q · L (dq(·, x);x)1/q

)
+

+ L(1X ;x) − 1| · |f(x)|.
A similiar estimate was obtained by M.A. Jiménez Pozo [26, Theorem 4].

For ϱ = B = 1 and q = 2 the estimate becomes
|L(f, x) − f(x)| ≤

≤ {L(1X ;x) + 1} · ω
(
f, L

(
d2(·, x);x

)1/2
)

+ |L(1X ;x) − 1| · |f(x)|

≤ ∥L(1X) + 1X∥ · ω
(
f, ∥L(d2(·, ∗); ∗)∥1/2

)
+ ∥L(1X) − 1X∥ · ∥f∥;

here ∥L(d2(·, ∗); ∗)∥ := sup
{
L

(
d2(·, x);x

)
: x ∈ X

}
.

For compact and convex subsets of Rm this uniform estimate was first given
by E. Censor [7, Theorem 1]; a similar estimate with ∥L(1X) − 1X∥ replaced
by |L(1X ;x) − 1| was obtained independently by A.G. Kukuš [32, Lemma 1]
who formulated his result for hypercubes of Rm. Both authors were guided by
the corresponding univariate result as proved by O. Shisha and B. Mond [57,
Theorem 1].

For ϱ = 1, B > 0 and q = 2 the above estimate reads
|L(f, x) − f(x)| ≤

≤ {L(1X ;x) +B} · ω
(
f,B−1/2 · L

(
d2(·, x);x

)1/2
)

+ |L(1X ;x) − 1| · |f(x)|

≤ ∥L(1X) +B∥ · ω
(
f,B−1/2 · ∥L(d2(·, ∗); ∗)∥1/2

)
+ ∥L(1X) − 1X∥ · ∥f∥.

A univariate analogy (with B replaced by B−2) of this type of estimate was
given by B. Mond [39]; a version for continuous functions defined on compact
and convex subsets of Rm can be found in M.A. Jiménez Pozo’s paper [24,
Teorema 1].

(7) If Φ : X ×X → R is a function such that for some q ≥ 1
dq(t, x) ≤ κ · Φ(t, x) for some κ > 0 and t, x ∈ X,

then the estimate of (6) involving an arbitrary ε > 0 implies
(∗)|L(f, x) − f(x)| ≤

≤
{
L(1X ;x) + ϱ · ε−q · κ · L(Φ(·, x);x)

}
· ω(f, ε) + |L(1X ;x) − 1| · |f(x)|.

For the C2π case this approach was used by O. Shisha and B. Mond [56,
p. 335f]; they used the special cases q = 2, κ · Φ(t, x) = π2 · sin2(1

2(t− x)), ε =
π ·

√∥∥Ln
(

sin2(1
2(· − ∗)); ∗

)∥∥, and formulated a uniform version. B. Mond [39,
p. 305] indicated the possibility of introducing an arbitrary constant B > 0
into the estimate and thus to arrive at an inequality analogous to the one at
the end of (6).
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(8) Trivially, as in (6), one also has

ε−1 · χ(1,∞)
(
ε−1 · d(t, x)

)
· d(t, x) ≤ ε−1 · d(t, x)

so that
ε−1 · L

(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

)
≤ ε−1 · L(d(·, x);x).

If Φ is again given as in (7), then the last quantity is less than or equal to

ε−1 · κ1/q · L
(
Φ1/q(·, x);x

)
,

and applying Hölder’s inequality to L
(
Φ1/q(·, x);x

)
yields as an even larger

upper bound for any p ≥ 1

ε−1 · κ1/q ·
{
L

(
Φ(·, x)p/q;x

)}1/p
· {L(1X ;x)}1−1/p .

Altogether we also obtain for p ≥ 1, and dq(t, x) ≤ κ · Φ(t, x) for q ≥ 1 fixed
and all t, x ∈ X the following inequality (ε > 0 arbitrarily given):
(∗∗)|L(f, x) − f(x)| ≤

≤
[
L(1X ;x)+ϱ·ε−1 · κ1/q ·

{
L

(
Φ(·, x)p/q;x

)}1/p
·{L(1X ;x)}1−1/p

]
·ω(f, ε)

+ |L(1X ;x) − 1| · |f(x)|.
This inequality is analogous to the ones of Theorem 3.9. Since q ≥ 1 in this
discussion, we may choose p = q to arrive at a simplified version:

|L(f, x) − f(x)| ≤

≤
[
L(1X ;x) + ϱ · ε−1 · κ1/q · {L (Φ(·, x);x)}1/q · {L(1X ;x)}1−1/q

]
· ω(f, ε)

+ |L(1X ;x) − 1| · |f(x)|.

For the C2π case, ϱ = 1, q = 2, κ = π2, Φ(t, x) = sin2(1
2(t−x)), and the choice

ε = L
(
sin2(1

2(t− x));x
)

the above method was used by R.A. DeVore [10,
p. 30].

(9) Combining inequalites (∗) of (7) and (∗∗) of (8) (for p = q ≥ 1) shows
that for any ε > 0 one has
(∗ ∗ ∗) |L(f, x)−f(x)| ≤ [L(1X ;x) + ϱ ·m(x)] ·ω(f, ε)+ |L(1X ;x)−1| · |f(x)|,
where m(x) :=

min
{
ε−q · κ · L(Φ(·, x);x), ε−1 · κ1/q · {L (Φ(·, x);x)}1/q · {L(1X ;x)}1−1/q

}
.

Estimate (∗ ∗ ∗) is the one upon which T. Nishishiraho’s paper [42] is based
(see Lemma 3 and the subsequent Lemma 4 in [42]).

(10) For the special case ϱ = 1, q = 2, Φ(x, y) = d2(x, y), and (conse-
quently) κ = 1 the inequality of (9) reads
|L(f, x) − f(x)| ≤
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≤
[
L(1X ;x) + min

{
ε−2 · L

(
d2(·, x);x

)
, ε−1 ·

√
L(d2(·, x);x) ·

√
L(1X ;x)

}]
· ω(f, ε) + |L(1X ;x) − 1| · |f(x)|.

In fact, this is exactly the estimate obtained earlier by the author [14]. It was
the starting point for Nishishiraho’s generalizations in [42, 43]. The estimate
(∗ ∗ ∗) was also used as the basic inequality of T. Nishishiraho’s subsequent
paper [44, Proposition 1] where he arrived at generalizations similar to those
in [42, 43]. For the case X = [a, b] the possibility of improving the estimate by
using a min was first observed by M.W. Müller and H. Walk [40, Satz 1].

Remark 4.14. In summary we point out the following:
1) All the estimates in Nishishiraho’s papers [42, 43, 44] are simple conse-

quences of the estimates given in Theorem 4.7 and Corollary 4.8.
2) There seems to be hardly a way around estimating

L
(
χ(1,∞)

(
ε−1 · d(·, gA(y))

)
· d(·, gA(y)); y

)
in order to obtain good orders of approximation (for sequences Ln) as well as
good constants for single operators L. Passing to quantities such as
L (d(·, gA(y)); y) or – even worse – to expresssions such as L

(
d2(·, x);x

)1/2

using the Cauchy-Schwarz inequality in certain instances is simply a means of
destroying information being carried in the operator’s definition. This state-
ment is confirmed in an impressive way by P.C. Sikkema’s [58] work and the
subsequent failure of virtually every more general estimate to reproduce such
a good result for Bernstein polynomials. In an even more impressive way the
destructive effect of using upper bounds such as the ones given above may be
seen by applying R.A. DeVore’s (see Discussion 4.13 (5)) or O. Shisha’s and
B. Mond’s (see Discussion 4.13 (6)) results to classical Hermite-Fejér inter-
polation operators, for instance.

3) In some instances it is even worthwile to evaluate the quantity

L
(
χ{0}∪(1,∞)

{
ε−1 · d(·, gA(y))

}
·
]
ϱ · ε−1 · d(·, gA(y))

[
; y

)
,

used in Theorem 4.7 (1). Remark 4.16 will elucidate this.

It is possible to obtain analogies of Theorem 3.12 and Corollary 3.13 using
the direct approach. For instance, the following is a consequence of Corol-
lary 4.8 (1).

Theorem 4.15. Let the assumptions of Corollary 4.8 (1) be satisfied. More-
over, let M = {µ} be a set of positive linear functionals on B(Y ) such that
pM [h] = sup

{
µ{|h|} : µ ∈ M

}
< ∞ for all h ∈ B(Y ). Then for all f ∈ C(X)

and all ε > 0 the following inequality holds:
pM [Lf −Af ] ≤ pM [(L1X −A1X) · (f ◦ gA)]+

+
{
pM [L1X ]+ϱε−1 · pM

[
L

(
χ(1,∞)

(
ε−1 · d(·, gA(∗))

)
· d(·, gA(∗)); ∗

)]}
·ω(f, ε).
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Here L is applied with respect to the variable indicated by “·”, and µ ∈ M is
applied with respect to “∗”.

The proof of Theorem 4.15 is a simple consequence of Corollary 4.8 and is
similar to that of Theorem 3.12.

It is easily seen that it is also possible to find slightly improved estimates
by using Theorem 4.7 or such involving certain upper bounds of d(·, gA(∗)) as
was for instance done in Corollary 3.13.

As was the case for Theorem 3.12 and Corollary 3.13, the approach of The-
orem 4.15 implies, for instance, uniform estimates if M is a set of point eval-
uation functionals, or estimates in L1-spaces if the functional µ is an integral
operator.

The next remark will discuss the optimality of the estimates given in this
section. Its importance is also evident in view of Discussion 4.13 (see Discus-
sion 4.13 (1) in particular.)

Remark 4.16. As was the case for Theorems 3.4 and 3.12, the estimates
given in Theorem 4.7 are best possible in a certain sense. To see this, again
let Y = {x0}, A(f, x0) = f(x0), and L(1X , x0) = 1 for some fixed x0 ∈ X.We
also assume that (X, d) is metrically convex, so that ϱ = 1. For this special
case Theorem 4.7 implies for all ε > 0

|L(f, x0) − f(x0)| ≤
{

1 + L
(]
ε−1 · d(·, x0)

[
;x0

)}
· ω(f, ε).

Defining fε,x0(·) :=
]
ε−1 · d(·, x0)

[
, it is clear that fε,x0(x0) = −1, that fε,x0

attains only integer values, and that ω(fε,x0 , ε) = 1. Thus

|L(fε,x0 ;x0) − fε,x0(x0)| =
∣∣∣L (]

ε−1 · d(·, x0)
[
;x0

)
− (−1)

∣∣∣
=

{
1 + L

(]
ε−1 · d(·, x0)

[
;x0

)}
· ω(fε,x0 , ε).

Here the absolute value bars may be omitted, because the inequality −1X ≤ fε,x0
and the positivity of L imply

−1 = L(−1X ;x0) ≤ L(fε,x0 ;x0),

and thus
0 ≤ 1 + L(fε,x0 ;x0).

Hence for all ε > 0 and all x0 ∈ X the above estimate is locally the best
possible, in the sense that for the bounded function fε,x0 equality occurs.

For many special cases there are, however, continuous functions serving the
same purpose. We show this by discussing a univariate example.
If X = [a, b], d(x, y) = |x− y|, and if the operator L is given as

L(f, x) =
n∑

k=0
f(xk) · qk(x), n ≥ 0,
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where a ≤ x0 < x1 < . . . < xn ≤ b, and qk(x) ≥ 0 for 0 ≤ k ≤ n, then – after
replacing x0 by x – for this case we have

L
(]
ε−1 · d(·, x)

[
;x

)
=

n∑
k=0

]
ε−1|xk − x|

[
· qk(x).

The next step is to construct a continuous function gε,x such that

L(gε,x;x) = L
(]
ε−1 · d(·, x)

[
;x

)
and ω(gε,x; ε) = 1.

Let gε,x be partially defined by
gε,x(xk) =

]
ε−1|xk − x|

[
, 0 ≤ k ≤ n,(1)

gε,x(x) = − 1, if x ̸= xk for 0 ≤ k ≤ n.(2)

Then it is immediately clear that gε,x coincides with the function
]
ε−1| ·−x|

[
on the point set {xk} ∪ {x}. Hence for an operator of the above type we have
L(gε,x) = L

(
]ε−1| · −x|[

)
. It remains to show that the graph of gε,x can be

completed in a way such that gε,x is continuous and satisfies ω(gε,x, ε) = 1.
W.l.o.g. we assume that x < b and restrict ourselves to the interval [x, b].

Here fε,x :=]ε−1| · −x|[ is a step function such that
fε,x(x) = −1, and
fε,x(y) = k, if x+ kε < y ≤ x+ (k + 1)ε, 0 ≤ k ≤ [(b− x)/ε].

If xn ≤ x, then the values fε,x(y) for y > x do not have any impact on L(fε,x).
In this case define

gε,x(y) = −1 for x < y ≤ b

and go on by carrying out a construction for the interval [a, x] which is ‘sym-
metric’ to the one described below.
We may thus assume that there is at least one point xλ such such x < xλ.
Define ℓ := min{λ : x < xλ}.
For each λ such that ℓ ≤ λ ≤ n let

kλ := max{k : x+ kε < xλ}, and
dλ := xλ − (x+ kλε) > 0.

Let also
d := min{dλ : ℓ ≤ λ ≤ n} > 0, and
d∗ := min{1

2ε, d} > 0.
Now the graph of gε,x is completed in the following way:

gε,x(y) =


−1 if y = x,
fε,x(y) if x+ kε+ d∗ ≤ y ≤ x+ (k + 1)ε for some k ≥ 0,
linearly and continuously extended otherwise.

Note that due to our construction, gε,x indeed satisfies gε,x(xk) =]ε−1|xk − x|[
for ℓ ≤ k ≤ n.



226 Heinz H. Gonska 45

a x x + ε xl x + 2εxl+1 x + 3ε xl+2 b

-1

1

2

3

d∗

d∗

d∗

d∗

Fig. 4.1. Partial view of the step function fε,x and of the continuous
function gε,x.

An analogous construction may be carried out on the interval [a, x] if a < x.
The complete procedure generates a continuous function gε,x for which it is easy
to see that
|L(gε,x;x)−gε,x(x)|= |L(fε,x;x)−fε,x(x)|=

{
1+L

(]
ε−1 · d(·, x)

[
;x

)}
·ω(gε,x; ε),

and hence for the special positive linear operators considered above, the quan-
tity in curly parentheses is also locally optimal if L is considered as an operator
on C(X).

As was the case in Section 3 (Theorem 3.15), there is also a particular con-
sequence of the direct approach for the pre-Hilbert space setting. For the sake
of brevity we restrict ourselves to only giving the following corollary of Discus-
sion 4.13; two of Nishishiraho’s papers [43, Theorem 4] and [44, Theorem 5]
contain similar estimates. However, it has to be noted that the use of refined
estimates of Discussion 4.13 leads to slightly improved inequalities sometimes
yielding better results in applications. We decline to cite these at this point
since their proofs are straightforward.

Theorem 4.17. Let X be a compact and convex subset of a real pre-Hilbert
space with inner product ⟨·, ∗⟩. Let ε > 0. If L is a positive linear operator,
then for all f ∈ C(X) and x ∈ X there holds
|L(f, x) − f(x)| ≤ |f(x)| · |L(1X , x) − 1|+

+
[
L(1X , x)+min

{
ε−2L

(
d2(·, x);x

)
, ε−1

√
L (d2(·, x);x)

√
L(1X , x)

}]
·ω(f, ε).

Here d(x, y) =
√

⟨x− y, x− y⟩.

Proof. If X is a compact and convex set of a real pre-Hilbert space X, then
X equipped with metric d(x, y) =

√
⟨x− y, x− y⟩ is metrically convex. Thus
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the inequality of Discussion 4.13 (10) is applicable to this case, so that the
error estimate above is an immediate consequence of this observation. □

4.3. Comparison of the results of 4.1 and 4.2. In order to conclude this
section we show that both approaches discussed so far in order to obtain
estimates in terms of ω̃ or ω are useful, i.e., none of them yields a better
estimate than the other one in general. Thus the following discussion is of
particular importance. To demonstrate the fact mentioned, we consider the
special situation Y = X, ϱ = 1, A = Id, L(1X , x) = 1 for some x ∈ X.

Discussion 4.18. Theorem 3.4 implies

|L(f, x) − f(x)| ≤ max
{

1, ε−1 · L (d(·, x);x)
}

· ω̃(f, ε) for ε > 0,

and it follows from Corollary 4.8 (2) that we also have

|L(f, x)−f(x)|≤
{

1+ε−1 ·L
(
χ(1,∞)

(
ε−1 ·d(·, x)

)
· d(·, x);x

)}
· ω(f, ε), ε > 0.

1. If f ∈ C(X) is such that ω̃(f, ·) = ω(f, ·), and if ε ≥ L(d(·, x);x), then
the first estimate reduces to |L(f, x) − f(x)| ≤ ω(f, ε), which is clearly better
than or at least as good as the second one. If ε < L(d(·, x);x), then the first
inequality becomes

|L(f, x) − f(x)| ≤ ε−1 · L (d(·, x);x) · ω(f, ε)

≤
{

1 + ε−1 · L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

)}
· ω(f, ε),

the latter inequality following from

L
([

1 − χ(1,∞)
(
ε−1 · d(·, x)

)]
· d(·, x);x

)
≤

≤
∥∥∥[

1 − χ(1,∞)
(
ε−1 · d(·, x)

)]
· d(·, x)

∥∥∥ · L(1X , x)

=
∥∥∥[

1 − χ(1,∞)
(
ε−1 · d(·, x)

)]
· d(·, x)

∥∥∥ = sup {d(t, x) : d(t, x) ≤ ε} = ε.

Thus for a function f having a concave modulus of continuity the first inequal-
ity is also sharper for ε < L(d(·, x);x).

2. If f and ε are given in a way such that ω̃(f, ε) = 2 · ω(f, ε), then the
first inequality from Theorem 3.4 reads

|L(f, x) − f(x)| ≤ 2 · max
{

1, ε−1 · L (d(·, x);x)
}

· ω(f, ε).

For ε ≥ L (d(·, x);x) the right hand side becomes

2 · ω(f, ε) ≥
{

1 + ε−1 · L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

)}
· ω(f, ε)

which is true because of

L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

)
≤ L (d(·, x);x) ≤ ε.

Moreover, if ε < L (d(·, x);x), then

2 · max
{

1, ε−1 · L (d(·, x);x)
}

· ω(f, ε) = 2 · ε−1 · L (d(·, x);x) · ω(f, ε)
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=
[
ε−1 · L (d(·, x);x) + ε−1 · L (d(·, x);x)

]
· ω(f, ε)

>
[
1 + ε−1 · L (d(·, x);x)

]
· ω(f, ε)

≥
{

1 + ε−1 · L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

)}
· ω(f, ε).

Hence in case 2. the second inequality is also better for ε < L(d(·, x);x).
This discussion shows that both quantities in the min of an estimate of the

form

|L(f, x) − f(x)| ≤ min
{

max
[
1, ε−1 · L (d(·, x);x)

]
· ω̃(f, ε),[

1 + ε−1 · L
(
χ(1,∞)

(
ε−1 · d(·, x)

)
· d(·, x);x

)]
· ω(f, ε)

}
may determine the actual value of the min, and so neither of the two ap-
proaches taken above yields better results than the one in general.

5. CONCLUDING REMARKS

A) After submission of the author’s “Habilitationschrift” in 1985 and its
subsequent 1986 publication in “Schriftenreihe des Fachbereichs Mathematik”
of the University of Duisburg, several further papers dealing with related ques-
tions appeared. For obvious reasons, none of them contained estimates better
than the ones given in the above. As a general source for related material we
mention here the book by F. Altomare and M. Campiti [1]. Recent contribu-
tions influenced by the Romanian school are due to D. Andrica, C. Badea, I.
Raşa, and several of their collaborators (see, e.g., [2], [3], [4], [47]). As articles
from China papers by Tian-ping Chen and Wen-ge Zhu ([63], [8]) have to be
mentioned. Related work was also carried out in the work of Ch. Richter and
I. Stephani from the University of Jena (cf. [48], [49], [50], [60], [61]). An excel-
lent survey on Shepard’s method, probably the most significant application of
the general theory presented here, was recently finished by H. Knauf [28]. In
regard to the latter technique, there is also the interesting work of the group
around Gh. Coman from Cluj-Napoca (see, e.g., [9] and the references given
there).

B) In our recent paper “The second order modulus again: some still (?) open
problems” (see [19]) we asked the following question: Is there a generalization
of ω2 to C(X, d), where (X, d) is a compact metric space with at least some
suitable geometric structure? Here we would like to suggest the following
definition.

Suppose (X, d) is metrically convex in the sense of Menger. Then, for given
x, y ∈ X there is always a point z ∈ X such that

d(x, y) = 1
2d(x, y) + 1

2d(x, y) = d(x, z) + d(z, y). (∗)
Now consider all differences of the form

|f(x) − 2f(z) + f(y)|, where d(x, y) ≤ h.
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Then put

ω2(f ;h) := sup
{

|f(x)−2f(z)+f(y)| : d(x, y) ≤ h and z such that (∗) holds
}

.
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[32] O.G. Kukuš, Estimate of the rate of convergence of linear positive operators in the case
of functions of a finite number of variables, in Mathematical Analysis and Probability,
pp. 95–100, “Naukova Dumka”, Kiev, 1978, MR 82m:41022 (in Russian).
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Rend. Circ. Mat. Palermo (2) Suppl., 52 (1998), pp. 793–804, Zbl. 980.44823.
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