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EXTENSION OF PRIMAL-DUAL INTERIOR POINT METHOD
BASED ON A KERNEL FUNCTION

FOR LINEAR FRACTIONAL PROBLEM

MOUSAAB BOUAFIA1 and ADNAN YASSINE2

Abstract. Our aim in this work is to extend the primal-dual interior point
method based on a kernel function for linear fractional problem. We apply the
techniques of kernel function-based interior point methods to solve a standard
linear fractional program. By relying on the method of Charnes and Cooper [8],
we transform the standard linear fractional problem into a linear program. This
transformation will allow us to define the associated linear program and solve
it efficiently using an appropriate kernel function. To show the efficiency of our
approach, we apply our algorithm on the standard linear fractional programming
found in numerical tests in the paper of A. Bennani et al. [3], we introduce the
linear programming associated with this problem. We give three interior point
conditions on this example, which depend on the dimension of the problem.
We give the optimal solution for each linear program and each linear fractional
program. We also obtain, using the new algorithm, the optimal solutions for the
previous two problems. Moreover, some numerical results are illustrated to show
the effectiveness of the method.
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1. INTRODUCTION

Linear programming (LP) is the most famous technique in operations re-
search aimed at finding a global minimum or maximum of a linear program
subject to certain constraints [11]. While a linear fractional programming
(LFP) problem is one whose objective function has a numerator and a de-
nominator and are very useful in production planning, financial and corporate
planning, health care and hospital planning. Several methods to solve this
problem have been proposed [14]. The linear fractional programming (LFP)
is a special class of fractional programming which can be transformed into a
linear programming problem by the method of Charnes and Cooper [8].
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Polynomial time Interior Point Methods (IPMs) for solving linear program-
ming were first proposed by Karmarkar [10]. This method, and its vari-
ants that were developed subsequently, are now called interior-point methods
(IPMs). For a survey, we refer to recent books on the subject, as Bai et al.
[2], Peng et al. [12], Roos et al. [13] and Ye [16]. In order to describe the
idea of this paper, we need to recall some ideas underlying new primal-dual
(IPMs). The kernel functions play an important role in the design and analy-
sis of interior-point methods (IPMs). They are not only used for determining
the search directions but also for measuring the distance between the given
iterate and the µ-center for the algorithms. Currently, (IPMs) based on kernel
function is one of the most effective methods for solving linear optimization
problem (LO) and other convex optimization problems and is a very active
research area in mathematical programming [1, 2, 4, 5, 6, 7, 9]. Recently in
2021, A. Bennani et al. [3], is to solve (LFP) it by the projection method of
interior points introduced by Ye–Lustig [15]. The purpose of this work is to
present primal-dual interior-point methods (IPMs) based on a kernel function
for solving the standard (LFP).

The paper is organized as follows: In Section 2 we present our new results
is generic primal-dual IPMs based on a kernel function for solving the stan-
dard (LFP). Some interesting and useful properties of the kernel function are
provided in Section 3. In Section 4, we present the numerical examples are
illustrated to show the efficiency of the method. Finally, we are finishing the
paper with some remarks and a general conclusion showing the added value
of our work.

2. GENERIC PRIMAL-DUAL IPMs FOR LFP

We consider the linear fractional problem (LFP) in standard format:

(1) (LFP) min
{
cT x+α
dT x+β : Ax = b, x ≥ 0

}
,

where A ∈ Rm×n, rank(A) = m, b ∈ Rm, c, d ∈ Rn, and α, β ∈ R with
dTx + β > 0 Charnes and Cooper [8], considered (LFP) by introducing the
following change of variables:

y = tx and t = 1
dT x+β > 0.

We have

(2)

cT x+α
dT x+β = (cTx+ α) 1

dT x+β
= (cTx+ α)t
= cTxt+ αt
= cT y + αt

Now we transform the constraints Ax = b We replace x by y
t ; we obtain

(3) Ax = b ⇔ Ay
t = b ⇔ Ay − bt = 0.
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We also have

(4) t = 1
dT x+β ⇔ dTxt+ βt = 1 ⇔ dT y + βt = 1.

Then, (LFP) becomes equivalent to the following linear program (P)

(5) (P)


min cT y + αt
Ay − bt = 0
dT y + βt = 1
y, t ≥ 0

which can be written in the following standard form

(6) (P)


min(cT , α)

(
y
t

)
(

A −b
dT β

)(
y
t

)
=
( 0

1

)
(y, t) ≥ 0

and its dual problem

(7) (D)


max z(m+ 1)(

AT d
−bT β

)
z + s =

(
c
α

)
s ≥ 0

with z(m+ 1) is the component m+ 1 of the vector z ∈ Rm+1.
To make it easier to write, we put

(8) B =
(

A −b
dT β

)
∈ R(m+1)×(n+1), BT =

(
AT d
−bT β

)
∈ R(n+1)×(m+1)

and (cT , α) = CT

where Y [n] = y, is the vector of the first n components of Y and Y (n+ 1) = t
is the component n + 1 of the vector Y ∈ Rn+1. Then each (P) and (D) will
be as follows

(9) (P)


minCTY

BY =
( 0

1

)
Y ≥ 0

and

(10) (D)


max z(m+ 1)
BT z + s = C
s ≥ 0.

Throughout of this paper, we assume that:
(H1): The matrix B has full ranked, i.e., rank(B) = m+ 1 ≤ n+ 1;
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(H2): (P) and (D) satisfy the interior point condition IPC, i.e., there exist
(Y 0, z0, s0) such that

(11) BY 0 =
( 0

1

)
, Y 0 > 0, BT z0 + s0 = C, s0 > 0.

It is well known that the triple (Y, z, s) is optimal for (P) and (D) if and
only if

(12) (PD)


BY =

( 0
1

)
, x ≥ 0,

BT z + s = C, s ≥ 0,
Y z = 0,

where the vector Y z denotes the componentwise product of the vectors Y and
z. The basic idea of primal-dual interior-point algorithms is to replace the
third equation in (12) which is commonly known as complementarity condition
for (P) and (D), by the parameterized equation Y z = µe, with µ > 0 where e
denotes the n-dimensional vector of ones. Thus, we consider the system

(13) (PD)µ


BY =

( 0
1

)
, x ≥ 0,

BT z + s = C, s ≥ 0,
Y z = µe.

Due to assumptions (H1) and (H2), system (13) has a unique solution for
each µ > 0, denoted (Yµ, zµ, sµ). The set of all solutions is called the µ-center
(or the central path) of (P) and (D). It has been shown that when µ tends to
zero, the limit of the central path exists and converges to the optimal solutions
of (P) and (D).

Now, applying Newton’s method to system (13) for computing the search
direction

(∆Yµ,∆zµ,∆sµ),
leads to the following linear system

(14)


B∆Y = 0,
BT∆z + ∆s = 0,
s∆Y + Y∆s = µe− Y s.

Let us define the scaled vector v and the scaled search directions vectors dY
and ds as follows

(15) v =
√

Y s
µ , dY = v∆Y

Y , ds = v∆s
s .

System (15) can be rewritten as follows:

(16)


AdY = 0,
A
t∆z + ds = 0,

dY + ds = v−1 − v = −∇Φc (v) .
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where A = 1
µAV

−1X,V = diag(v), X = diag(x), and

(17) Φc (v) = Φc (Y, s;µ) =
n∑
i=1

ψc (vi) ,

is the proximity barrier function of the classical kernel function ψc (t)

(18) ψc (t) = t2−1
2 − log t.

The Newton iterate with step size α is constructed according to
(19) Y+ = Y + α∆Y, z+ = z + α∆z, s+ = s+ α∆s.
where, the step size α satisfies (0 < α ≤ 1).

Now, we can define the norm-based proximity measure δ(v) as
(20) δ (v) = 1

2 ∥∇Φc (v)∥ = 1
2 ∥dY + ds∥ .

The generic of interior point methods (IPMs) for linear fractional problem
(LFP) outlined above can be summarized in the following algorithm is shown
in Fig. 1.

Generic Primal-dual IPMs for LFP
Input:
A proximity the new function ΦN (v);
a threshold parameter τ > 1;
an accuracy parameter ϵ > 0;
a fixed barrier update parameter θ, 0 < θ < 1;

(Y 0, z0, s0) is a strictly feasible point and µ0 = 1
begin
Y = Y 0; z = z0; s = s0; µ = µ0; v =

√
Y s
µ .

while Y T s ≥ ϵ do
begin (outer iteration)
µ = (1 − θ)µ;
while ΦN (Y, s;µ) > τ do
begin (inner iteration)

solve the system (14),
the proximity classical barrier function Φc (v)
replaced by the new a proximity barrier function ΦN (v)
to obtain (∆Y,∆z,∆s);
choose a suitable step size α;

Y = Y + α∆Y ; z = z + α∆z; s = s+ α∆s;
v =

√
Y s
µ ;

end (inner iteration)
end (outer iteration)

end.

Fig. 1. Generic algorithm.
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3. SCHEME FOR ANALYZING A KERNEL-FUNCTION-BASED ALGORITHM

In this section, we investigate some properties of the kernel function which
are essential to our complexity analysis. We call ψN (t) : R++ → R+ a kernel
function if ψN (t) is twice differentiable and satisfies the following conditions
[1, 9]:

ψ′
N (1) = ψ(1) = 0,

ψ′′
N (t) > 0,

lim
t→0+

ψN (t) = lim
t→+∞

ψN (t) = +∞.

We derive complexity limits for large and small update methods. By sum-
marizing a theoretical scheme to determine the algorithmic complexity, this is
based on some lemmas and the scheme for analyzing a kernel-function-based
algorithm that will turn out to be useful. Which we summarize in the following
algorithm [1, 2, 4, 5, 6, 7, 9]:

Step 1: Specify a kernel function ψN (t);
an update parameter µ, 0 < µ < 1;
a threshold parameter τ > 1; and an accuracy parameter ϵ > 0.
Step 2: Solve the equation −1

2 ψ
′
N (t) = s to get ρ(s), the inverse function

of
−1
2 ψ

′
N (t) , t ∈]0, 1].

If the equation is hard to solve, derive a lower bound for ρ(s).
Step 3: Calculate the decrease of ΦN (v) during an inner iteration in terms

of δ for the default step size ∼
α from

ΦN (v+) − ΦN (v) = f(∼
α) ≤ −δ2

ψN ”(ρ(2δ))

Step 4: Solve the equation ψN (t) = s to get ϱ(s), the inverse function of
ψN (t) , t ≥ 1.

If the equation is hard to solve, derive lower and upper bounds for ϱ(s).
Step 5: Derive a lower bound for ± in terms of ΦN (v) by using

δ(v) ≥ 1
2ψ

′
N (ϱ(ΦN (v))).

Step 6: Using the results of step 4 and step 5 find a valid inequality of
the form

f(∼
α) ≤ −κΦN (v)1−γ

for some positive constants κ and γ, with γ ∈]0, 1] as small as possible.
Step 7: Calculate the upper bound of (ΦN )0 from

(ΦN )0 ≤ nψN
(
ϱ( τ

n
)√

1−θ

)
≤ n

2ψ
′′
N (1)

(
ϱ( τ

n
)√

1−θ − 1
)2
.

Step 8: Derive an upper bound for the total number of iterations by using
that

(ΦN )γ
0

θκγ log(nϵ )
is an upper bound for this number.
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Step 9: Set τ = O(n) and θ = Θ(1) to calculate a complexity bound
for large-update methods. And set τ = O(1) and θ = Θ( 1√

n
) to calculate a

complexity bound for small-update methods.

4. NUMERICAL TESTS

Consider the following problem

(LFP)m


min cT x+2m

dT x+1 ,

Ax = b,
x ≥ 0,

where n = 2m, A (i, j) =
{ 0 if i ̸= j and j ̸= i+m

1 if i = j or j = i+m
c (i) = 2m − 1, c (i+m) = 2m, b (i) = 2, d(i) = d(i + m) = 1, for i =

1, . . . ,m.
The linear programming (P)m associated with this problem is

(P)m


min(cT , 2m)

(
y
t

)
(

A −b
dT 1

)(
y
t

)
=
( 0

1

)
(y, t) ≥ 0

and the interior-point condition IPC, we give three interior-point condition
IPC1 :

y0(i) = y0(i+m) = 1
2m+1 , z

0(i) = 0, s0(i) = c(i) = 2m− 1,
s0(i+m) = c(i+m) = 2m, for i = 1, . . . ,m.

t = 1
2m+1 , z

0(m+ 1) = 0, s0(2m+ 1) = 2m.

x

IPC2 :
y0(i) = 2

3(2m+1) , y
0(i+m) = 4

3(2m+1) ,

z0(i) = 0, s0(i) = c(i) = 2m− 1, s0(i+m) = c(i+m) = 2m for i = 1, . . . ,m.
t = 1

2m+1 , z
0(m+ 1) = 0, s0(2m+ 1) = 2m.

IPC3 :
y0(i) = 2− 1

m
(2m+1) , y

0(i+m) = 1
m(2m+1) ,

z0(i) = 0, s0(i) = c(i) = 2m− 1, s0(i+m) = c(i+m) = 2m for i = 1, . . . ,m.
t = 1

2m+1 , z
0(m+ 1) = 0, s0(2m+ 1) = 2m.

The optimal solution of (P)m is
y∗(i) = 2

2m+1 , y
∗(i+m) = 0, for i = 1, . . . ,m.
t∗ = 1

2m+1
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then the optimal solution of (LFP)m is

x∗(i) = y∗(i)
t∗ = 2, x∗(i+m) = y∗(i+m)

t∗ = 0, for i = 1, . . . ,m

To prove the effectiveness of the interior point methods (IPMs) for linear
fractional problem (LFP) defined in the Fig. 1 Generic algorithm. Our ex-
periments of the above problem from, were performed on a standard PC. The
kernel function translates the classic central path method is (see [9]),

ψc(t) = t2−1
2 − log(t)

and the step size α, we take 0 < α < α : α = 1
1+(2δ+

√
1+4δ)2 . To be solved, we

used the software Dev Pascal. We have taken ϵ = 10−4, µ0 = 1, θ = 1
2 , τ = n.

In the table of results, (ex (m,n)): m is the number of constraints and
n is the number of variables, (Itr O) represents the number of outer itera-
tion necessary to obtain the optimal solution. (Itr T) represents the number
of total iteration iteration necessary to obtain the optimal solution. (Med =
total iteration
outer iteration) represent the median value of the number of internal itera-
tions. And (time(s)) represents the computation time. We summarize this
numerical study in Tables 1 to 3

ex (m,n) Itr O Itr T Med time (s)
(5, 10) 19 665 35 0.02
(25, 50) 21 1730 82.38 2.19
(50, 100) 22 2789 126.77 25.10
(75, 150) 22 3648 202.39 113.90
(100, 200) 23 4655 202.39 351.83

Table 1. Results of using IPC1.

ex (m,n) Itr O Itr T Med time (s)
(5, 10) 19 663 34.89 0.02
(25, 50) 21 1734 82.57 2.10
(50, 100) 22 2810 127.73 25.48
(75, 150) 22 3681 167.32 116.80
(100, 200) 23 4695 204.13 368.04

Table 2. Results of using IPC2.

Comments. The numerical experiments carried out show the effectiveness
of our method, applied to the problem cited above, on all instances used.

Also, these results have confirmed that the difference in time is due to the
solve the system (14), this is because the results of solving a linear fractional
programming problem implementing three interior point conditions.

We also point out that when the dimension of the problem becomes large,
the computation time increases, the biggest of these times as shown in tables
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ex (m,n) Itr O Itr T Med time (s)
(5, 10) 19 676 35.58 0.02
(25, 50) 21 1867 88.90 2.36
(50, 100) 22 3103 141.05 27.89
(75, 150) 22 4122 187.36 130.00
(100, 200) 23 5307 230.74 401.94

Table 3. Results of using IPC3.

(The first table is 351.83s; The second table is 368.04s; The third table is
401.94s).

These numerical results consolidate and confirm our theoretical results.

5. CONCLUSION

We have applied a new approach, which consists in transforming a frac-
tional linear program into a linear program and solving it efficiently using a
primal-dual interior points method (IPMs) based on a kernel function. Solving
the associated linear program gives us the optimal solution of the linear frac-
tional program (LFP). The method seems simple to solve any linear fractional
problem of any dimension and any size. We prove the efficiency of the interior
point methods (IPMs) for the linear fractional problem (LFP) defined in Fig. 1
Generic algorithm. To prove the efficiency of our approach, we applied the
new algorithm on the standard linear fractional problem presented in the tests
in [3] giving three interior point conditions. We obtained the optimal solutions
for each associated linear program and of the linear fractional program. The
numerical results of our experimental tests show the effectiveness of our ap-
proach and constitute an original and important theoretical contribution to
improve the computational complexity of the problem studied.

Acknowledgements. The authors are very grateful to the anonymous
referees for their suggestions and helpful comments, which significantly im-
proved the the presentation of this paper.
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