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Abstract. In this paper, we introduce an inertial forward-backward splitting
method together with a Halpern iterative algorithm for approximating a common
solution of a finite family of split minimization problem involving two proper,
lower semicontinuous and convex functions and fixed point problem of a nonex-
pansive mapping in real Hilbert spaces. Under suitable conditions, we proved
that the sequence generated by our algorithm converges strongly to a solution
of the aforementioned problems. The stepsizes studied in this paper are de-
signed in such a way that they do not require the Lipschitz continuity condition
on the gradient and prior knowledge of operator norm. Finally, we illustrate a
numerical experiment to show the performance of the proposed method. The
result discussed in this paper extends and complements many related results in
literature.
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1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-), the induced norm
I -]l and f,g : H — RU {400} be two proper, lower semi-continuous and
convex functions in which f is Fréchet differentiable on an open set containing
the domain of g. The Convex Minimization Problem (CMP) is formulated as
follows:

(1) géi]r{l{f(w) +g(z)}.

We denote by T the solution set of (1). The CMP (1) is a general form of the
classical minimization problem which is given as:

(2) f(x) = {,%551 f(y).

The minimization problems (1), (2) and their other modifications are known
to have notable applications in optimal control, signal processing, system iden-
tification, machine learning, and image analysis; see, e.g., [5, 3, 2, 26]. It is
well known that CMP (1) relates to the following fixed point equation:

(3) x = proxg,(z — BV f(z)),
where 3 is a positive real number and prox, is the proximal operator of g the
Moreau-Yosida resolvent of g in Hilbert space is defined as follows:

(4)  J{(x) = prox, g(x) = argmin, ¢ 5 {g(y) + o lly — x||2}, VzeH,

where argmin ¢ := {f € H:g(T) <g(x) forall z € H} .

In 2012, Lin and Takahashi [28] introduced the following forward-backward
algorithm:
(5) Tpt1 = anF (1) + (1 — ap) proxg,  (zn — BuV f (1)),

where F' : H — H is a contraction, {a,} C (0,1),{8n} C (0,400), Vf is
Lipschitz continuous and g is convex and lower-semicontinuous function. They
obtained a strong convergence result of algorithm (5) under the following mild
conditions:

o0
lim «a, =0, g lay, — apg1] < 00,
n—o0 1

n=

[e.9] oo

Zan:maz‘ﬁn_ﬁn+l|<ooa 0<a§ﬁn§%v

n=1 n=1
where L is the Lipschitz constant of V f. Also, Wang and Wang [39] proposed
the following forward-backward splitting method: find zy € H such that

(6) Tpy1 = anF(20) + YnTn + pin pl“OXBng(:L‘n = BV f()),

where {ay,} C (0,1), {pn} € (0,2), {7} C (=2,1) and o, + v + pn, = 1 and
F : H — H is a contraction. They proved that the sequence (6) converges
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strongly to a solution of Y.

Bello and Nghia [10] in 2016 investigated the forward-backward method using
linesearch that eliminates the undesired Lipschitz assumption on the gradient
of f. They proposed the following algorithm and established its weak conver-
gence:

ALGORITHM 1.
Initialization: Take xo € domg, o > 0,0 € (0,1),0 € (0, %)
Iterative steps: Calculate x,, and set

Tpyl = proxﬁng(wn — BV f(2n))

with the B, = Linesearch(xy,,0,0,0) given as:
Input: Set f = o and J(x, 8) = proxg, (v — BV f(z)) with v € dom g
While

BIVF(J(x, 8)) = V()| > dl[J(z,8) — x|

do 8 =00.
End While
Output B.
Stop Crriteria. If xp11 = T, then stop.

Very recently, Kunrada and Cholamjiak [27] proposed the forward-backward
algorithm involving the viscosity approximation method and stepsize that does
not require the Lipschitz continuity condition on the gradient as follows:

ALGORITHM 2.
Initialization: Let F' : domg — domg be a contraction. Let xo € domg,
o>0,0€(0,1),6 €(0,3), take zo € dom g and

Yn = prOXBng(xn - ﬁnvf(xn))v
where B, = 00y, and m,, is the smallest nonnegative integer such that
2B max{ ||V f(010% 5,0 (U = BV F (9n))) = VFWa)ll, [V () = V F ()|} <
< 6 (]| (prox s, (Wn — BaV F(yn)) = nll + 20 = vl )
Construct p41 by

Tny1 = anF(2n) + (1 — an) proxﬁng(yn = BV f(yn))-

They proved the strong convergence theorem for Algorithm 2 under some
weakened assumptions on the stepsize.
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We observe that the choice of stepsizes in Algorithm 1 and Algorithm 2
heavily depend on the linesearches which are known to slow down the rate of
convergence in iterative algorithms (see [25, 34]).

The Split Feasibility Problem (SFP) was first introduced in [16] by Censor
and Elfving. Let C' and @) be nonempty closed convex subsets of real Hilbert
spaces H; and Hs respectively and A : H; — Hs be a bounded linear operator.
The SFP is defined as follows:

Find * € C such that Az™ € Q.

The SFP arises in many fields in the real world, such as signal processing,
medical image reconstruction, intensity modulated radiation therapy, sensor
network, antenna design, immaterial science, computerized tomography, data
denoising and data compression [7, 12, 11, 15, 17]. Several SFP variant for
different optimization problems have been extensively studied [...]. Let C' and
() be nonempty closed and convex subsets of real Hilbert spaces H; and Ha,
g:Hi = RU{+o0} and f: Hy - RU {400} be two proper and lower semi-
continuous convex functions. Let A : H; — Hs be a bounded linear operator,
then the Split Minimization Problem (SMP) is to find

(7) z* € C such that 2" = argmin ¢ g(x)
and such that
(8) the point y* = Az" € Q solves y* = argmin, ¢, f(y).

Many researchers have employed different types of iterative algorithms to
study SMP (7) and (8) in Hilbert and Banach spaces. For instance, Abass et
al. [5] proposed a proximal type algorithm to solve SMP (7) and (8) in Hilbert
spaces. They established the sequence generated from the their proposed algo-
rithm strongly converges to the solution set of the SMP. Very recently, Abass
et al. [3] introduced another proximal type algorithm to approximate solu-
tions of systems of SMP and fixed point problems of nonexpansive mappings
in Hilbert spaces. They showed that their algorithm converges to a common
solution of the SMP and fixed points of the nonlinear mappings.

Constructing iterative schemes with a faster rate of convergence are usually
of great interest. The inertial-type algorithm which was originated from the
equation for an oscillator with damping and conservative restoring force has
been an important tool employed in improving the performance of algorithms
and has some nice convergence characteristics. In general, the main feature
of the inertial-type algorithms is that we can use the previous iterates to
construct the next one. Since the introduction of inertial-like algorithm, many
authors have combined the inertial term [6,,(z,, —x,—1)] together with different
kinds of iterative algorithms being Mann, Kranoselski, Halpern, Viscosity, to
mention few to approximate solutions of fixed point problems and optimization
problems. Most authors were able to prove weak convergence results while few
proved strong convergence results.
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Polyak [33] was the first author to propose the heavy ball method, Alvarez
and Attouch [6] employed this to the setting of a general maximal monotone
operator using the Proximal Point Algorithm (PPA), which is called the iner-
tial PPA, and is of the form:

(9) Yn = Tp + en(l‘n - l‘nfl),
Tpi1 = (I +7r,B) typ,n > 1.

They proved that if {r,} is non-decreasing and {6, } C [0, 1) with
oo

(10) Z OnllTn — xnfl||2 < o0,
n=1

then the Algorithm (9) converges weakly to a zero of B. More precisely,
condition (10) is true for 6,, < % Here 0, is an extrapolation factor. Also see
[1, 4, 6, 18, 20, 24, 28] for results on inertial method.

We highlight our contributions in this paper as follows:

e Unlike the result of [10] which proved weak convergence, we proved a
strong convergence theorem for the sequence generated by our algo-
rithm. Note that in solving optimization problems, strong convergence
algorithms are more desirable than the weak convergence counterparts.

e The stepsize used in our algorithm is chosen self-adaptively and not
restricted by any Lipschitz constant. This improves the corresponding
results of [5, 10, 24].

e The method of proof in our convergence analysis is simpler and dif-
ferent from the method of proof used by many other authors such as
[2, 10, 38, 30].

e The CMP considered in our article generalizes the one considered in
[3] when f is identically zero.

e We would like to emphasize that the main advantage of our algorithm
is that it does not require the information of the Lipschitz constant of
the gradient of functions which makes it more practical for computing.

Inspired by the works aforementioned and the ongoing works in this di-
rection, we develop an inertial-Halpern forward-backward splitting method
for approximating a common solution of a finite family of SMP associated
with two proper, lower semicontinuous and convex functions; and fixed point
problem of a nonexpansive mapping in real Hilbert spaces. Under suitable
conditions, we establish that the sequence generated by our algorithm con-
verges strongly to a solution of the aforementioned problems. The selection of
the stepsizes in our algorithm do not require the Lipschitz continuity condi-
tion on the gradient and does not need the prior knowledge of operator norm.
Finally, we illustrate a numerical experiment to show the performance of the
proposed method. Our result extends and complements many related results
in the literature.
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2. PRELIMINARIES

We state some known and useful results which will be needed in the proof of
our main theorem. In the sequel, we denote strong and weak convergence by
7—” and ”—,” respectively.

DEFINITION 3. Let C be a convex subset of a vector space X and f : C' —
RU {400} be a map. Then,

(i) f is convex if for each A € [0,1] and z,y € C, we have
fz+ (1= Ny) < Af(x) + (1 =N f(),
(ii) f is called proper if there exists at least one x € C' such that
f(@) # +o0,
(iii) f s lower semi-continuous at xo € C if
f(zo) < liminf f(x).
T—IT0
Let H be a real Hilbert space, for all x € H, we have
Iz + 11 = llz[|* + 2{z, y) + Iy,
and
le +ylI* < Il + 2y, @ + ).

LEMMA 4 ([19]). Let H be a real Hilbert space, then for all z,y € H and
a € (0,1), the following inequalities holds:

loz + (1 = a)yl® = allzl* + (1 = &)llyl* - a1 = a)llz — yl*.
20z, y) = 2l + ly1? = llz = yl* = =+ yl* = l«]® — [ly*.

DEFINITION 5. Let H be a real Hilbert space, the subdifferential of h at x
is defined by

Oh(x) = {UGH s (v,y —x) < h(y) — h(z), yEH}.

LEMMA 6 ([14]). Let H be a real Hilbert space. The subdifferential operator
Oh is mazximal monotone. Furthermore, the graph of Oh,Gra(0h) = {(x,v) €
H x H : v € 0Oh(x)} is demiclosed, i.e., if the sequence (xy,v,) C Gra(dh)
satisfies that {xn}nen converges weakly to x and {vy}nen converges weakly to
v, then (z,v) € Gra(0oh).

We briefly recall that the proximal operator prox, : H — dom(g) with
prox,(z) = (I +8g)~'(2), z € H, where I is the identity operator. It is well
known that the proximal operator is single-valued with full domain. it is also
known that

(11) %3@(2) € dg(proxg,(z)), Vze€ H,3>0.
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PROPOSITION 7 ([9]). Let H be a real Hilbert space and h : H — RU{+o0}
be a proper, lower semicontinuous and convex function. Then, for x € dom(h)
andy € H

W(z,y—x)+h(z) < h(y).

LEMMA 8 ([41]). Let C be a nonempty, closed and convex subset of a real
Hilbert space H and T : C — C' be a nonexpansive mapping. Then I — T
is demiclosed at 0 (i.e., if {xn} converges weakly to x € C and {x,, — Tzy}
converges strongly to 0, then x = Tx).

LEMMA 9 ([3]). Let H be a real Hilbert space and fj : H — (—00,00], j =
1,2,...,m be proper convexr and lower semi-continuous functions. Let T :
H — H be a nonexpansive mapping, then for 0 < A < u, we have that

F (ijjljlgﬂ) C (F(T) n (ﬁF (Jﬁj)))) .

LEMMA 10 ([8, 26]). Let {a,} be a sequence of non-negative real numbers,

&)
{1} be a sequence of real numbers in (0,1) with conditions Y vy, = oo and
n=1

{dn} be a sequence of real numbers. Assume that
An+41 < (1 - ’)’n)an + %‘Ldm n > 1.

Iflimsupdy,, <0 for every subsequence {an, } of {an} satisfying the condition:

k—o0
llkjrrl_}solip(amc — ap+1) <0, then nh_)ngo an = 0.

3. MAIN RESULTS

Throughout this section, we assume that

(1) Hy and Ho are real Hilbert spaces, A : Hy — Hs is a bounded linear
operator with A # (). Let f,g : Hi — R U {+o0} are two proper,
lower semi-continuous and convex functions with dom g C dom f. The
function f is Fréchet differentiable on an open set containing dom g.
The gradient V f is uniformly continuous on any bounded subset of
dom g and maps any bounded subset of dom g to a bounded subset in
H,.

(2) For each j = 1,2,---,m, let h; : H» — RU {+00} be proper, lower
semi-continuous and convex function. Suppose S : Ho, — Hs be a
nonexpansive mapping, then we define

r:= {Znelgll{f + g} and Az € Fix(5) : Az € ]Q argmin ¢ 7, hj(y)} # 0.



116  H.A. Abass, K.O. Aremu, O.K. Oyewole, A.A. Mebawondu and O.K. Narain 8

ALGORITHM 11.
Initialization: Let o > 0, € (0,1),d € (0, %),0 <A< A\, and u, g, 21 € Hy
be chosen arbitrary.
Tterative steps: Calculate x,11 as follows:
Step 1: Given the iterates x,_1 and x, for each n > 1, choose 0, such that
0< 6, <80, where

12) D LR e § M R SR
0, otherwise.

Up = Ty + Hn(xn - xn—1)7

Step 2: The stepsize

||(Sl_[;"”:1 ProXy, p —I)Aun||2 SIp™ NA ‘
(13) Yr = 2||A*(SH;” 1 PTOXx p —D)Au,[?° ( j=1 prOX)\nhj - ) Un 7& 0;

v >0, otherwise.

Compute
Yn = tn + AT (SIIL proxy 5, —1)Auy),
Step 3: Compute
(14) wy, = proxy o (Yn — AV f(yn)),
where A\, = o™ and my, is the smallest nonnegative integer such that
AV f(wn) =V f (yn)l] < 6ljwn = ynl|-
Step 4: Construct T,41 by
Tnt1 = Buu+ (1 — Bp)wn.

Let n:=n+1 and return to step 1.

REMARK 12. We assume that {€,} is a positive sequence such that €, =
o(an), which implies that limy, oo 5= = 0 and {an} C (0,1) satisfies the
following conditions:

o0
nlgrgoﬁn =0, Z:lﬁn = 0.

From (12), it is easy to see that

nh_g.lo %Hxn — Tp—1|| = 0.

Indeed, we get that 0, ||z, — zp—1|| < €, for each n > 1, which together with
limy, oo g—’; = 0 implies that

: 0 ; €n _
A5, gl = nall < lig 5 =0
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THEOREM 13. Let {z,} be a sequence generated by (11). Then {xz,} is
bounded.

Proof. Let z € I', and SIJ., prox, j Az = Az, then we obtain from (11)
that

lyn = 21* = llun + yn A" (ST, proxy, ,, —1)Aup — z|°
= [lun — 2|* + 77| A* (ST prox,, p; —1) Auy|?
(15) + 29 un — 2, A*(STIFL, proxy, p,, —I)Aun),

<un — 2z, A*(SIIL proxy, p, —I)Aun> =
= <Aun — Az, (SIIJL | proxy, p, —I)Aun>
= <SH;»":1 proxy, ,, Aun — Az
— (SHJL proxy, ,, —1)Auy, (SIIJZ, proxy p, —I)Aun>
= <SH;»n:1 proxy, p, Aun — Az, (SIJL, prox, —I)Aun>
— <(SH§”:1 proxy, p, —I)Aun, (SIJL, proxy j_ —I)Aun>
= <SH?1:1 proxy, p, Aun — Az, SIIL proxy p,, Aupn — Aun>
— [J(STZ, ProXy, p; —I)AUnHQ

- é(HSH}":lAun — Az:||2 + ||SH}”:1 ProXy, s, Au,, — AunH2

— [[SHJL, proxy, p, Aup — Az — (SIIL, proxy 4, —I)AunHz)
— (ST, proxy, p, —1) Au|®
= %HSH?‘ZI ProXy, j, Au,, — A2H2 + %HSH;-”Zl PIOXy 4, Au,, — Aun”2
= gllAup — Az||* — || (ST, proxy, p, —1) Aun|?
< 1| Au, — Az|)? - %HSH}”:l proxy, , Aun — Auy ||* - | Au, — Az||)?
(16) = FH[[(SILZy proxy,p, —1)Aun .
On combining (15) and (16), we obtain that
lyn = 201 < llun — 2% + 22| A" (ST proxy, ,; —1) Aug|?
— Yl (ST proxy, p, —1) Aun|?

= llutn = 21> = 30 [ | (ST proxy ,, —1) Au ||
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— Yl A*(STE, proxy ,, — 1) Aun|?]

I(STIZ, proxy,, . 1) Aun||*
_ 2 1 Jj=1
(17) - Hun — ZH 2 [[A=(STIT proxznjhj —1)Au, 2"

Using (13), we have that
(18) lyn = 201 < Jlun — 2.
Hence, from (11), we have
lyn — 2| < llun — 2||
= ||lzn + Op(zn, — TH—1) — 2|
< |l@n — 2| + Opllzn — zn_1]|
(19) = ||xn_z||+5ng*2”$n_$nfl”
Hence, by applying the condition Z—ZHmn — Zp—1|| = 0, there exists a constant

My > 0 such that
S llwn — || < My, Vn>1,

and so,
(20) lyn = 2| < |l — 2]l + B M.
By applying (11) and (11), we observe that

—wn, n—Proxy o (Yn—AnVf(yn
(21) e Vf(y,) = LRt VW) G p(y ) € dg(y,).

An n

From the convexity of g, we obtain

(22) (@) - glwn) > (B52 — Vf(yn),z —wp)  Va € dom(g).

Also the convexity of f implies
(23)  f(@)— fy) > (Vi(@y)z—y) Vo€ dom(f),y € dom(g).

On combining (22) and (23) with any « € dom(g) C dom(f) and y =y, €
dom(g), we obtain

9(x) = glwn) + f(@) = f(yn) >
> (5 — Y f(yn),w = wa ) + (Vf(Yn), @ — yn)

(Yn = wasw = wn) + (V F(yn) = VF (), wn =y ) + (VF (), wn = y)
(Y — Was @ = wa) = |V f () = V. (wa) | 1w = yall + (Y (wn), wn = yn)

\%
= 21~

~— >

3

(24
> 3 (Y — wo, @ = wa) = Ly — wnll? + (Vf(wn), wn = ),
where the last inequality follows from step 3 of (11). It then follows that

<yn — Wnp, Wn _$> >
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(25)
> [ F(yn) + 9(wn) = ( +9) (@) + (V f(wn), wn = ya)] = 6llyn — wal®.
Replacing = = y,, and y = w,, in (21), we obtain that

fyn) = f(wn) =V f(wn),yn — wy).
This, together with (25) yields

(Yn—Wn, wn—T) > A [f(yn)'i‘g(wn)_(f + g)(x)+f(wn>_f(yn)] —5Hyn—wnH2

(26) = Ma[(f +9)(wn) = (f + 9)(x)] = Ollyn — wa*.
On using
2(yn — W, wn = @) = [y — 2|® = lyn — wal® ~ wn — 2|,
we obtain from (26) that
(27)

lwn =21 < llyn — 2l = 20 [(f + 9) (wn) = (f + 9)(2)] — (1 = 26) | yn — wall*.
Since z € I', then we obtain from (27), we obtain that
(28) lwn = 21* < llyn = 2% = (1 = 28)[lyn — wall*.
From (11), (20) and (28), we get
[2n1 = 2]l = [[Bu+ (1 = Bn)wn — 2]
< Ballu =zl + (1 = Bo)llwn — 2|
< Bnllu =zl + (1 = Bu)[llzn — 2 + Bn ]
= (1= Bn)llzn — 2l + Bulllu — 2] + Mi]
< max{[lzn — 2] + My, [[u — 2|},

< max{||zy — z|| + My, [Ju — z||}.

Hence, the sequence {z,} is bounded. Consequently, it follows that (15)—
(28) that the sequence {uy}, {yn} and {w,} are bounded. O

LEMMA 14. Assume that {y,} is defined as stated in (11), then
lyn—211* < llun = A" = lyn—1n > +270lyn —wwnl|- | A* (ST, proxy,p,, —1) Aun||.
Proof.
lyn — 2% =

|(up + YA (T — I)Auy,) — z”2

Un — 2, Uun + 1 A" (STIL, proxy 5, —1)Auy — z>

IN
NI=

[lan = 2? + llem + 0 A (ST, prosy,, =) At = [

= llyn — 2 = (un + 1 A" (STIFL, proxy 5, —1)Au,) — z||2}
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< 3| lyn = 202+ llun = 2112 + v (Al A" (ST proxy ) —1) Aug |
— (ST, proxy,,, —1) Aug|?)
~ |y — 2 = (un + 3 A (STIL prox, , —1)Auy, — 2)|?]

< ${lyn = 212 + llun = 2012 = (llgn — unl®
+ | A% (STITLy proxy, p,, —T) Aup||?
_ 2%<yn — Up, A" (STIL, prox, . —I)Aun>)}
< 3 [Ilgn — 27 + lum = 212 = llym = wall®
+ 29[y — wn| - [|A*(STI proxy , —1) Au ]
Thus, we conclude that
(29)
lym — 2* <
< = 2% = llyn = unll? + 270 llgn — | - | A*(ST, proxy p, —1) Auy|.
O

THEOREM 15. Assume (1)-(2) holds. Then the sequence {z,} generated by
(11) strongly converges to the solution x* € I', where x* = Pr(z*) denotes the
metric projection of Hi onto the solution set I.

Proof. Let x* € T', then we have from Algorithm 11 that
[un — ZH2 = [|#n + On(zn — 2n—1) — 2”2

= [[(zn — 2) + On(zn — mn,1)||2
= |lzn — 2|12 + 200 (zn — 2,20 — Tp1) + 02| 2 — 2p 1|
< lzn — Z||2 + 20y [|zn — 2] - [lzn — za-all + 0721”1% — Tn—1]|
< lzn — ZH2 + Onllzn — o1 || [2llzn — 2 + Onllzn — 2p-1l]]

(30) = |20 = 2l” + Onll 2 — 201 | Mo,

for some My > 0, where My = 2|z, — *|| + 0p ||z, — zp—1]|. Now from (11)

(17), (28), (29) and (30), we obtain that

lwn = 2)1* <[lzn = 211 + Onll2n — Tp1l| M2 = |lyn — un?
+ 29nllyn — unll - [A*(STIEL, proxy, p,; —1) Aun |

|(STIZ, proxy,, . —1) Aun|*
2 1 Jj=1 nh.
(31) — (1 =20)|lyn — wnl* - 2 [A(5IT, prox/\n;j “DAuwZ

We conclude from Algorithm 11 and (31), we have that
[@n1 — ZH2 < (1= Bp)llwn — Z||2 + (1 = Bn)bnllzn — zn—1| M2
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(ST proxy,, —1) Aunl|*

1
B 5(1 B 5n) [A* (ST, PrOX b —1)Aun|?

—(1— /Bn)”yn - UnH2
+ 29 (1 = Bn)lyn — ual| - [A*(SIL, proxy ,, —1) Aun|

(32) — (1= Ba) (1 = 26)lyn — wnll® + Bn(2(u — 2, 2n11 — 2))
= (1 - B)llzn — 27
(33) + Bn {gz”:::n — Zp—1|[(1 = Bn)Ma + 2{u — 2, Tpy1 — z>}

Putting d,, = {Z,:Hwn — Tp1||(1 — an)Ma + 2(u — 2, Tpy1 — z)], in view of

Lemma 10, we need to proof that limsupd,, < 0 for every {||z,, — z*||} of
k—o00
{||zn, — =*||} satisfying the condition

(34) limsup { ||z, — | = [|2n,., —2"|[} <0.

k—o00

To show this, suppose that {||x,, —z*|} is a subsequence of {||z, — *|}

such that (34) holds. Then

lim sup(||zn, — 2*(* = |#n,,, — z[?) =

k—o0
= tipinf ((fen, — 2"l = e, = 1) (12, = 271 + fong, — 2°1)
(35) <0.
From (32) and (35), we get
. ||(SHT:1 prox)\nkhj —I)AunkH4
h}cILSolip ((1 - 5nk) [A*(STI7, PrOXa,, 1) Aun, |2 >

< (1= Bnllwn, = 2"[* = llong, — ="

On,
+ B | F-l2m, ~ Bt (L= )M+ 2{u = 2, s — )]

= lim sup (||xnk — x*||2 — | Tngyr — $*||2>
—00

(36) <0.

Thus,
[(STI7L proxy,, n, —1)Aun |I*
[[A* (ST proxy,, p; —1)Aun [

(37) lim

k—o0

=0,

which implies that
Al (ST prosy, 1) A, || =

= || (SHm rox *I)Au || ) H(SH;'L:I Proxy, —I)Aun,
= 7=1 p Any Nk ||A||||(SH§” 1 prox/\nk h 7[)Aunk I
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(ST prosy, g, —1) Aung |12

S AT, prox,, n, —DAun | 0.
Hence,
(38) klggo I(STIFL proxy,, p, —1) Aup, || = 0.

Also, using following the same approach as in (36), we obtain that
(39) i [y, — un, ]| = 0.

Using (32), we get

im sap (1= 50,)(1 = 20) o, — ) <
k—o00
< (1= B, = | = [y — P

On
B 2 e = (L= B )M + 2= 2, s = 2)

— limsup (nxnk — 2" = @ngs, — x*u2)
k—o0

<0.
Thus, we obtain that
(40) i [, — 1 | = 0.
From (11), we have
(41) s = Tyl < By | 522 |, = Tny-all| = 0, as k= oo.
From (39), (40) and (41), we obtain that
(42) i [, — | =0 = lim [y, — 2,

Moreover, applying (41) and (42), we get

(43) klggo Hwnk — Ty, | =o0.
Using (11), we obtain that
(44) klinc}o ”wnk‘f'l = Wny, ” =0.

Considering (44), we achieve
(45) ||$nk+1 - xnk” < ﬁnk”“ o xnk” + (1 - Bnk)Hwnk - x”k” — 0, k — oo.

Since {zp, } is bounded, there exists a subsequence {xnkj} of {zp, } which
converges weakly to x*. Also, from (41), (42) and (43), there exist sub-
sequence {“nkj} of {unk},{ynk]} of {yn, } and {wnkj} of {wy,} which con-
verge weakly to z*. Using (38), Lemma 8, Lemma 9 and the fact that A
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is a bounded linear operator, Az* € F(SIIJL, proxy, »;) Which implies that
Az* € F(S) ﬂF(prox)\nkhj),j =1,2,---m. Hence, we show that z € T.
From the statements in (11), we get that

(46) i (95 (ne,) = Ve = 0
Since Wny, = prox)\nkj g(ynkj - )‘nkj Vf(ynkj )), it follows from (11) that

ynk.f)\nk.vf(ynk)*w”n .
(47) - € dg(wny,),

which implies that
(48)

27nk

S 4V f(wny,) = V() € VS (wny,) + 09l ) € O(f + 9)(wn, ).

J

Passing j — oo and by applying Lemma 8 and (40), we obtain that z* € Y.
Hence, we conclude that «* € I'. Also, we show that

klggo<xnk+l - l’*, f(ank) - CC*> S 0.
Let z = Prf(z), then we have from (45) that
klirgo <xnk+l - 7f(xnk) -z > = jli{go <xnkj - af(‘rnkj) -z >
< (z—a", f(z) — 7).
Hence, we obtain that

kll—>rgo<$nk+1 - ':U*v f(xnk) - .’L'*> < <Z - $*7 f(Z) - $*>

(49) <0.
On substituting (49) into (33) and applying Lemma 10, we conclude that {x,}
converges strongly to z. ]

4. NUMERICAL EXAMPLE

In this section we give a numerical example in a m-dimensional space of real
numbers to support our main result.

EXAMPLE 16. Let Hy = Hy = R™ with the Euclidean norm. For each
x € Hy, define f,g: H — RU {+oc0} by

fx) = 3llAz =], g(y) = 511By — ¢l

where A, B € R™™ and b,c € R™. It is easy to see that f and g are proper
lower semicontinuous. Also, we know by [21] that

prox,s(z) = argminyepr | £(y) + 35y — =[]
= (I 4+ ATA) Yz + ATb).
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Now, let A : Hi — Hs be defined by
A(z) = (%), Vo= {zi}il

then
AT (z) = (f5) . Yy = {1
For each j = 1,2, v € Hy, let hj : Hy — RU {+o00} be given by
hj(a) = 3llPjz — q5]1%,
where Py, P, € R™*™ and ¢, g2 € R™.

As before,
_ T -1
proxy, (z) = (I + PTP) 7 (o + Pigy).
12 60
?
10 /‘\ 50 M
| Il
d| |
|
8t ‘\ af | |
\ |
|
\ I
&6 ‘\‘ Ssop |
|
‘\ N
|
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at <§ ?3 ﬂ 4 0| |
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Fig. 1. Top left: Case I, Top right: Case II,
Bottom left: Case III, Bottom right: Case IV.
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Let the mapping S : Hy — Hy be defined by S(x) =
choose B, =

ini
as

5. For this example,
ﬁ, = nflg We choose the
tial points xg,x1 € R™ randomly in (0,1). By using ||zp41 — x, % < 1074
our stopping criterion, we conduct this example for various values of m.

—1 s_1 1 — _3
U=3,0=7g, [t =75, 0= g0 onden =

Case I: m = 10;

Case II: m = 15;
Case III: m = 20;
Case IV: m = 50.

(1]

(8]

[9]

[10]

[11]

The results of this experiment are reported in Fig. 1.
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