FORWARD-BACKWARD SPLITTING ALGORITHM
WITH SELF-ADAPTIVE METHOD FOR FINITE FAMILY
OF SPLIT MINIMIZATION AND FIXED POINT PROBLEMS
IN HILBERT SPACES

HAMMED A. ABASS, KAZEEM O. AREMU, OLEWALE. K. OYEWOLE, AKINDELE A. MEBAWONDU and OJEN K. NARAIN

Abstract. In this paper, we introduce an inertial forward-backward splitting method together with a Halpern iterative algorithm for approximating a common solution of a finite family of split minimization problem involving two proper, lower semicontinuous and convex functions and fixed point problem of a nonexpansive mapping in real Hilbert spaces. Under suitable conditions, we proved that the sequence generated by our algorithm converges strongly to a solution of the aforementioned problems. The stepsizes studied in this paper are designed in such a way that they do not require the Lipschitz continuity condition on the gradient and prior knowledge of operator norm. Finally, we illustrate a numerical experiment to show the performance of the proposed method. The result discussed in this paper extends and complements many related results in literature.

MSC. 47H06, 47H09, 47J05, 47J25.

Keywords. Nonexpansive mapping, minimization problem, inertial method, forward-backward splitting method, fixed point problem.

1Department of Mathematics and Applied Mathematics, Sefako Makgatho Health sciences University, P.O. Box 94, Medunsa 0204, Ga-Rankuwa, South Africa, e-mail: hammedabass548@gmail.com, Abassh@ukzn.ac.za.
2Department of Mathematics and Applied Mathematics, Sefako Makgatho Health sciences University, P.O. Box 94, Medunsa 0204, Ga-Rankuwa, South Africa, Department of Mathematics, Usmanu Danfodiyo University Sokoto, PMB 2364, Sokoto state, Nigeria e-mail: aremu.kazeem@udusok.edu.ng, aremukazeemolalekan@gmail.com.
3School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, e-mail: oyewolelavalekazeem@gmail.com.
4Department of Computer science and Mathematics, Mountain Top University, Prayer City, Ogun state, Nigeria, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, e-mail: dele@aims.ac.za, aamebawondu@stu.edu.ng.
5School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, e-mail: naraino@ukzn.ac.za.
1. INTRODUCTION

Let H be a real Hilbert space with inner product $\langle \cdot , \cdot \rangle$, the induced norm $\| \cdot \|$ and $f, g : H \to \mathbb{R} \cup \{+\infty\}$ be two proper, lower semi-continuous and convex functions in which f is Fréchet differentiable on an open set containing the domain of g. The Convex Minimization Problem (CMP) is formulated as follows:

\[\min_{x \in H} \{ f(x) + g(x) \}. \]

We denote by Υ the solution set of (1). The CMP (1) is a general form of the classical minimization problem which is given as:

\[f(x) = \min_{y \in H} f(y). \]

The minimization problems (1), (2) and their other modifications are known to have notable applications in optimal control, signal processing, system identification, machine learning, and image analysis; see, e.g., [5, 3, 2, 26]. It is well known that CMP (1) relates to the following fixed point equation:

\[x = \text{prox}_{\beta g}(x - \beta \nabla f(x)), \]

where β is a positive real number and prox_g is the proximal operator of g the Moreau-Yosida resolvent of g in Hilbert space is defined as follows:

\[J^g_\lambda(x) = \text{prox}_{\lambda g}(x) = \arg\min_{y \in H} \{ g(y) + \frac{1}{2\lambda} \| y - x \|^2 \}, \forall x \in H, \]

In 2012, Lin and Takahashi [28] introduced the following forward-backward algorithm:

\[x_{n+1} = \alpha_n F(x_n) + (1 - \alpha_n) \text{prox}_{\beta_n g}(x_n - \beta_n \nabla f(x_n)), \]

where $F : H \to H$ is a contraction, \{\alpha_n\} \subset (0, 1), \{\beta_n\} \subset (0, +\infty), ∇f is Lipschitz continuous and g is convex and lower-semicontinuous function. They obtained a strong convergence result of algorithm (5) under the following mild conditions:

\[\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty, \]

\[\sum_{n=1}^{\infty} \alpha_n = \infty, \sum_{n=1}^{\infty} |\beta_n - \beta_{n+1}| < \infty, \quad 0 < a \leq \beta_n \leq \frac{2}{L}, \]

where L is the Lipschitz constant of ∇f. Also, Wang and Wang [39] proposed the following forward-backward splitting method: find $x_0 \in H$ such that

\[x_{n+1} = \alpha_n F(x_n) + \gamma_n x_n + \mu_n \text{prox}_{\beta_n g}(x_n - \beta_n \nabla f(x_n)), \]

where \{\alpha_n\} \subset (0, 1), \{\mu_n\} \subset (0, 2), \{\gamma_n\} \subset (2, 1) and $\alpha_n + \gamma_n + \mu_n = 1$ and $F : H \to H$ is a contraction. They proved that the sequence (6) converges
strongly to a solution of Υ.

Bello and Nghia [10] in 2016 investigated the forward-backward method using linesearch that eliminates the undesired Lipschitz assumption on the gradient of f. They proposed the following algorithm and established its weak convergence:

Algorithm 1.

Initialization: Take $x_0 \in \text{dom } g$, $\sigma > 0$, $\theta \in (0, 1)$, $\delta \in (0, \frac{1}{2})$.

Iterative steps: Calculate x_n and set

$$x_{n+1} = \text{prox}_{\beta_n g}(x_n - \beta_n \nabla f(x_n))$$

with the $\beta_n = \text{Linesearch}(x_n, \sigma, \theta, \delta)$ given as:

Input: Set $\beta = \sigma$ and $J(x, \beta) = \text{prox}_{\beta g}(x - \beta \nabla f(x))$ with $x \in \text{dom } g$

While

$$\beta \|\nabla f(J(x, \beta)) - \nabla f(x)\| > \delta \|J(x, \beta) - x\|$$

do $\beta = \theta \beta$.

End While

Output β.

Stop Criteria. If $x_{n+1} = x_n$, then stop.

Very recently, Kunrada and Cholamjiak [27] proposed the forward-backward algorithm involving the viscosity approximation method and steppsize that does not require the Lipschitz continuity condition on the gradient as follows:

Algorithm 2.

Initialization: Let $F : \text{dom } g \to \text{dom } g$ be a contraction. Let $x_0 \in \text{dom } g$, $\sigma > 0$, $\theta \in (0, 1)$, $\delta \in (0, \frac{1}{2})$, take $x_0 \in \text{dom } g$ and

$$y_n = \text{prox}_{\beta_n g}(x_n - \beta_n \nabla f(x_n)),$$

where $\beta_n = \sigma \theta_{m_n}$ and m_n is the smallest nonnegative integer such that

$$2\beta_n \max\left\{\|\nabla f(\text{prox}_{\beta_n g}(y_n - \beta_n \nabla f(y_n))) - \nabla f(y_n)\|, \|\nabla f(x_n) - \nabla f(y_n)\|\right\} \leq \delta \left(\|(\text{prox}_{\beta_n g}(y_n - \beta_n \nabla f(y_n)) - y_n\| + \|x_n - y_n\|\right) .$$

Construct x_{n+1} by

$$x_{n+1} = \alpha_n F(x_n) + (1 - \alpha_n) \text{prox}_{\beta_n g}(y_n - \beta_n \nabla f(y_n)).$$

They proved the strong convergence theorem for Algorithm 2 under some weakened assumptions on the steppsize.
We observe that the choice of stepsizes in Algorithm 1 and Algorithm 2 heavily depend on the linesearches which are known to slow down the rate of convergence in iterative algorithms (see [25, 34]).

The Split Feasibility Problem (SFP) was first introduced in [16] by Censor and Elfving. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H_1 and H_2 respectively and $A : H_1 \to H_2$ be a bounded linear operator. The SFP is defined as follows:

Find $x^* \in C$ such that $Ax^* \in Q$.

The SFP arises in many fields in the real world, such as signal processing, medical image reconstruction, intensity modulated radiation therapy, sensor network, antenna design, immaterial science, computerized tomography, data denoising and data compression [7, 12, 11, 15, 17]. Several SFP variant for different optimization problems have been extensively studied [...]. Let C and Q be nonempty closed and convex subsets of real Hilbert spaces H_1 and H_2, $g : H_1 \to \mathbb{R} \cup \{+\infty\}$ and $f : H_2 \to \mathbb{R} \cup \{+\infty\}$ be two proper and lower semicontinuous convex functions. Let $A : H_1 \to H_2$ be a bounded linear operator, then the Split Minimization Problem (SMP) is to find

\begin{equation}
 x^* \in C \text{ such that } x^* = \arg\min_{x \in C} g(x)
\end{equation}

and such that

\begin{equation}
 y^* = Ax^* \in Q \text{ solves } y^* = \arg\min_{y \in Q} f(y).
\end{equation}

Many researchers have employed different types of iterative algorithms to study SMP (7) and (8) in Hilbert and Banach spaces. For instance, Abass et al. [5] proposed a proximal type algorithm to solve SMP (7) and (8) in Hilbert spaces. They established the sequence generated from the their proposed algorithm strongly converges to the solution set of the SMP. Very recently, Abass et al. [3] introduced another proximal type algorithm to approximate solutions of systems of SMP and fixed point problems of nonexpansive mappings in Hilbert spaces. They showed that their algorithm converges to a common solution of the SMP and fixed points of the nonlinear mappings.

Constructing iterative schemes with a faster rate of convergence are usually of great interest. The inertial-type algorithm which was originated from the equation for an oscillator with damping and conservative restoring force has been an important tool employed in improving the performance of algorithms and has some nice convergence characteristics. In general, the main feature of the inertial-type algorithms is that we can use the previous iterates to construct the next one. Since the introduction of inertial-like algorithm, many authors have combined the inertial term $[\theta_n(x_n - x_{n-1})]$ together with different kinds of iterative algorithms being Mann, Kranoselski, Halpern, Viscosity, to mention few to approximate solutions of fixed point problems and optimization problems. Most authors were able to prove weak convergence results while few proved strong convergence results.
Polyak [33] was the first author to propose the heavy ball method, Alvarez and Attouch [6] employed this to the setting of a general maximal monotone operator using the Proximal Point Algorithm (PPA), which is called the inertial PPA, and is of the form:

\[
\begin{align*}
 y_n &= x_n + \theta_n(x_n - x_{n-1}), \\
 x_{n+1} &= (I + r_n B)^{-1} y_n, \quad n > 1.
\end{align*}
\]

They proved that if \(\{r_n\} \) is non-decreasing and \(\{\theta_n\} \subset [0, 1) \) with

\[
\sum_{n=1}^{\infty} \theta_n \|x_n - x_{n-1}\|^2 < \infty, \tag{10}
\]

then the Algorithm (9) converges weakly to a zero of \(B \). More precisely, condition (10) is true for \(\theta_n < \frac{1}{4} \). Here \(\theta_n \) is an extrapolation factor. Also see [1, 4, 6, 18, 20, 24, 28] for results on inertial method.

We highlight our contributions in this paper as follows:

- Unlike the result of [10] which proved weak convergence, we proved a strong convergence theorem for the sequence generated by our algorithm. Note that in solving optimization problems, strong convergence algorithms are more desirable than the weak convergence counterparts.

- The stepsize used in our algorithm is chosen self-adaptively and not restricted by any Lipschitz constant. This improves the corresponding results of [5, 10, 24].

- The method of proof in our convergence analysis is simpler and different from the method of proof used by many other authors such as [2, 10, 38, 30].

- The CMP considered in our article generalizes the one considered in [3] when \(f \) is identically zero.

- We would like to emphasize that the main advantage of our algorithm is that it does not require the information of the Lipschitz constant of the gradient of functions which makes it more practical for computing.

Inspired by the works aforementioned and the ongoing works in this direction, we develop an inertial-Halpern forward-backward splitting method for approximating a common solution of a finite family of SMP associated with two proper, lower semicontinuous and convex functions; and fixed point problem of a nonexpansive mapping in real Hilbert spaces. Under suitable conditions, we establish that the sequence generated by our algorithm converges strongly to a solution of the aforementioned problems. The selection of the stepizes in our algorithm do not require the Lipschitz continuity condition on the gradient and does not need the prior knowledge of operator norm. Finally, we illustrate a numerical experiment to show the performance of the proposed method. Our result extends and complements many related results in the literature.
2. PRELIMINARIES

We state some known and useful results which will be needed in the proof of our main theorem. In the sequel, we denote strong and weak convergence by "→" and "⇀", respectively.

Definition 3. Let C be a convex subset of a vector space X and $f : C \to \mathbb{R} \cup \{+\infty\}$ be a map. Then,

(i) f is convex if for each $\lambda \in [0, 1]$ and $x, y \in C$, we have

$$f(\lambda x + (1 - \lambda) y) \leq \lambda f(x) + (1 - \lambda) f(y),$$

(ii) f is called proper if there exists at least one $x \in C$ such that $f(x) \neq +\infty$,

(iii) f is lower semi-continuous at $x_0 \in C$ if

$$f(x_0) \leq \lim\inf_{x \to x_0} f(x).$$

Let H be a real Hilbert space, for all $x \in H$, we have

$$\|x + y\|^2 = \|x\|^2 + 2\langle x, y \rangle + \|y\|^2,$$

and

$$\|x + y\|^2 \leq \|x\|^2 + 2\langle y, x + y \rangle.$$

Lemma 4 ([19]). Let H be a real Hilbert space, then for all $x, y \in H$ and $\alpha \in (0, 1)$, the following inequalities holds:

$$\|\alpha x + (1 - \alpha)y\|^2 = \alpha\|x\|^2 + (1 - \alpha)\|y\|^2 - \alpha(1 - \alpha)\|x - y\|^2.$$

$$2\langle x, y \rangle = \|x\|^2 + \|y\|^2 - \|x - y\|^2 = \|x + y\|^2 - \|x\|^2 - \|y\|^2.$$

Definition 5. Let H be a real Hilbert space, the subdifferential of h at x is defined by

$$\partial h(x) = \{v \in H : \langle v, y - x \rangle \leq h(y) - h(x), \ y \in H\}.$$

Lemma 6 ([14]). Let H be a real Hilbert space. The subdifferential operator ∂h is maximal monotone. Furthermore, the graph of ∂h, $\text{Gra}(\partial h) = \{(x, v) \in H \times H : v \in \partial h(x)\}$ is demiclosed, i.e., if the sequence $(x_n, v_n) \subset \text{Gra}(\partial h)$ satisfies that $(x_n)_{n \in \mathbb{N}}$ converges weakly to x and $(v_n)_{n \in \mathbb{N}}$ converges weakly to v, then $(x, v) \in \text{Gra}(\partial h)$.

We briefly recall that the proximal operator $\text{prox}_g : H \to \text{dom}(g)$ with $\text{prox}_g(z) = (I + \partial g)^{-1}(z)$, $z \in H$, where I is the identity operator. It is well known that the proximal operator is single-valued with full domain. it is also known that

$$z - \frac{\text{prox}_g(\beta z)}{\beta} \in \partial g(\text{prox}_g(\beta z)), \ \forall z \in H, \beta > 0.$$
Proposition 7 ([9]). Let H be a real Hilbert space and $h : H \to \mathbb{R} \cup \{+\infty\}$ be a proper, lower semicontinuous and convex function. Then, for $x \in \text{dom}(h)$ and $y \in H$

$$h'(x, y - x) + h(x) \leq h(y).$$

Lemma 8 ([41]). Let C be a nonempty, closed and convex subset of a real Hilbert space H and $T : C \to C$ be a nonexpansive mapping. Then $I - T$ is demiclosed at 0 (i.e., if $\{x_n\}$ converges weakly to $x \in C$ and $\{x_n - Tx_n\}$ converges strongly to 0, then $x = Tx$).

Lemma 9 ([3]). Let H be a real Hilbert space and $f_j : H \to (-\infty, \infty]$, $j = 1, 2, \ldots, m$ be proper convex and lower semi-continuous functions. Let $T : H \to H$ be a nonexpansive mapping, then for $0 < \lambda \leq \mu$, we have that

$$F\left(T \prod_{j=1}^{m} J_{\mu}^{(j)}\right) \subseteq \left(F(T) \cap \left(\bigcap_{j=1}^{m} F(J_{\lambda}^{(j)})\right)\right).$$

Lemma 10 ([8, 26]). Let $\{a_n\}$ be a sequence of non-negative real numbers, $\{\gamma_n\}$ be a sequence of real numbers in $(0, 1)$ with conditions $\sum_{n=1}^{\infty} \gamma_n = \infty$ and $\{d_n\}$ be a sequence of real numbers. Assume that

$$a_{n+1} \leq (1 - \gamma_n)a_n + \gamma_n d_n, \quad n \geq 1.$$

If $\lim \sup_{k \to \infty} d_{n_k} \leq 0$ for every subsequence $\{a_{n_k}\}$ of $\{a_n\}$ satisfying the condition:

$$\lim \sup_{k \to \infty} (a_{n_k} - a_{n_k+1}) \leq 0,$$

then $\lim_{n \to \infty} a_n = 0$.

3. MAIN RESULTS

Throughout this section, we assume that

1. H_1 and H_2 are real Hilbert spaces, $A : H_1 \to H_2$ is a bounded linear operator with $A \neq \emptyset$. Let $f, g : H_1 \to \mathbb{R} \cup \{+\infty\}$ are two proper, lower semi-continuous and convex functions with $\text{dom} g \subseteq \text{dom} f$. The function f is Fréchet differentiable on an open set containing $\text{dom} g$.

The gradient ∇f is uniformly continuous on any bounded subset of $\text{dom} g$ and maps any bounded subset of $\text{dom} g$ to a bounded subset in H_1.

2. For each $j = 1, 2, \ldots, m$, let $h_j : H_2 \to \mathbb{R} \cup \{+\infty\}$ be proper, lower semi-continuous and convex function. Suppose $S : H_2 \to H_2$ be a nonexpansive mapping, then we define

$$\Gamma := \left\{ \min_{z \in H_1} \{f + g\} \text{ and } Az \in \text{Fix}(S) : Az \in \bigcap_{j=1}^{m} \arg\min_{y \in H_2} h_j(y) \right\} \neq \emptyset.$$
Algorithm 11.
Initialization: Let $\sigma > 0, \mu \in (0, 1), \delta \in (0, \frac{1}{2}), 0 < \lambda \leq \lambda_n$ and $u, x_0, x_1 \in H_1$ be chosen arbitrary.

Iterative steps: Calculate x_{n+1} as follows:

Step 1: Given the iterates x_{n-1} and x_n for each $n \geq 1$, choose θ_n such that

$$\theta_n = \begin{cases} \min \left\{ \theta, \frac{\epsilon_n}{\|x_n - x_{n-1}\|} \right\}, & \text{if } x_n \neq x_{n-1}; \\ \theta, & \text{otherwise.} \end{cases}$$

$$u_n = x_n + \theta_n (x_n - x_{n-1}),$$

Step 2: The stepsise

$$\gamma_n = \begin{cases} \frac{\| (\Pi_{j=1}^{m} \text{prox}_{\lambda_n h_j} - I)Au_n \|^2}{2\| A^*(\Pi_{j=1}^{m} \text{prox}_{\lambda_n h_j} - I)Au_n \|^2}, & (\Pi_{j=1}^{m} \text{prox}_{\lambda_n h_j} - I)Au_n \neq 0; \\ \gamma > 0, & \text{otherwise.} \end{cases}$$

Compute

$$y_n = u_n + \gamma_n A^*(\Pi_{j=1}^{m} \text{prox}_{\lambda_n h_j} - I)Au_n),$$

Step 3: Compute

$$w_n = \text{prox}_{\lambda_n g}(y_n - \lambda_n \nabla f(y_n)),\quad \text{where } \lambda_n = \sigma \mu^{m_n} \text{ and } m_n \text{ is the smallest nonnegative integer such that }$$

$$\lambda_n \| \nabla f(w_n) - \nabla f(y_n) \| \leq \delta \| w_n - y_n \|.$$

Step 4: Construct x_{n+1} by

$$x_{n+1} = \beta_n u + (1 - \beta_n)w_n.$$

Let $n := n + 1$ and return to step 1.

Remark 12. We assume that $\{\epsilon_n\}$ is a positive sequence such that $\epsilon_n = o(\alpha_n)$, which implies that $\lim_{n \to \infty} \frac{\epsilon_n}{\alpha_n} = 0$ and $\{\alpha_n\} \subset (0, 1)$ satisfies the following conditions:

$$\lim_{n \to \infty} \beta_n = 0, \quad \sum_{n=1}^{\infty} \beta_n = \infty.$$

From (12), it is easy to see that

$$\lim_{n \to \infty} \frac{\theta_n}{\beta_n} \| x_n - x_{n-1} \| = 0.$$

Indeed, we get that $\theta_n \| x_n - x_{n-1} \| \leq \epsilon_n$ for each $n \geq 1$, which together with $\lim_{n \to \infty} \frac{\epsilon_n}{\beta_n} = 0$ implies that

$$\lim_{n \to \infty} \frac{\theta_n}{\beta_n} \| x_n - x_{n-1} \| \leq \lim_{n \to \infty} \frac{\epsilon_n}{\beta_n} = 0.$$
Theorem 13. Let \(\{x_n\} \) be a sequence generated by (11). Then \(\{x_n\} \) is bounded.

Proof. Let \(z \in \Gamma \), and \(\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} Az = Az \), then we obtain from (11) that

\[
\|y_n - z\|^2 = \|u_n + \gamma_n A^* (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n - z\|^2 \\
= \|u_n - z\|^2 + \gamma_n^2 \|A^* (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n\|^2 \\
+ 2\gamma_n \langle u_n - z, A^* (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \rangle,
\]

(15)

where

\[
\langle u_n - z, A^* (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \rangle = \\
= \langle Au_n - Az, (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \rangle \\
= \langle \text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} Au_n - Az \\
-(\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n, (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \rangle \\
= \langle \text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} Au_n - Az, (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \rangle \\
- \langle (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n, (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \rangle \\
= \langle \text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} Au_n - Az, (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \rangle \\
- \| (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \|^2 \\
= \frac{1}{2} \left(\| \text{SII}_{j=1}^m Au_n - Az \|^2 + \| \text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} Au_n - Au_n \|^2 \\
- \| (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \|^2 \right) \\
- \| (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \|^2 \\
= \frac{1}{2} \| \text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} Au_n - Az \|^2 + \frac{1}{2} \| \text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} Au_n - Au_n \|^2 \\
- \frac{1}{2} \| Au_n - Az \|^2 - \| (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \|^2 \\
\leq \frac{1}{2} \| Au_n - Az \|^2 - \frac{1}{2} \| \text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} Au_n - Au_n \|^2 - \frac{1}{2} \| Au_n - Az \|^2 \\
(16) \\
= \frac{1}{2} \| (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \|^2.
\]

On combining (15) and (16), we obtain that

\[
\|y_n - z\|^2 \leq \|u_n - z\|^2 + \gamma_n^2 \|A^* (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n\|^2 \\
- \gamma_n \| (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \|^2 \\
= \|u_n - z\|^2 - \gamma_n \| (\text{SII}_{j=1}^m \text{prox}_{\lambda_n h_j} - I) Au_n \|^2
\]
Hence, by applying the condition \(\theta \) (19), where the last inequality follows from step 3 of (11). It then follows that \(1 \geq 1 \geq 1 \geq 1 \).

On combining (22) and (23) with any \(f \) and \(y \), we obtain

\[
\| y_n - z \| \leq \| u_n - z \| + \beta_n M_1.
\]

By applying (11) and (11), we observe that

\[
g(x) - g(w_n) \geq \left\langle \frac{y_n - w_n}{\lambda_n}, x - w_n \right\rangle \forall x \in \text{dom}(g).
\]

Also the convexity of \(f \) implies

\[
f(x) - f(y) \geq \left\langle \nabla f(y), x - y \right\rangle \forall x \in \text{dom}(f), y \in \text{dom}(g).
\]

On combining (22) and (23) with any \(x \in \text{dom}(g) \subseteq \text{dom}(f) \) and \(y = y_n \in \text{dom}(g) \), we obtain

\[
g(x) - g(w_n) + f(x) - f(y_n) \geq
\]

\[
\geq \left\langle \frac{y_n - w_n}{\lambda_n}, x - w_n \right\rangle + \left\langle \nabla f(y_n), x - y_n \right\rangle
\]

\[
= \frac{1}{\lambda_n} \langle y_n - w_n, x - w_n \rangle + \langle \nabla f(y_n) - \nabla f(w_n), w_n - y_n \rangle + \langle \nabla f(w_n), w_n - y_n \rangle
\]

\[
\geq \frac{1}{\lambda_n} \langle y_n - w_n, x - w_n \rangle - \| \nabla f(y_n) - \nabla f(w_n) \| \| w_n - y_n \| + \langle \nabla f(w_n), w_n - y_n \rangle
\]

\[
\geq \frac{1}{\lambda_n} \langle y_n - w_n, x - w_n \rangle - \frac{\delta}{\lambda_n} \| y_n - w_n \|^2 + \langle \nabla f(w_n), w_n - y_n \rangle,
\]

where the last inequality follows from step 3 of (11). It then follows that

\[
\langle y_n - w_n, w_n - x \rangle \geq
\]
Replacing $x = y_n$ and $y = w_n$ in (21), we obtain that
\[f(y_n) - f(w_n) \geq \langle \nabla f(w_n), y_n - w_n \rangle. \]

This, together with (25) yields
\[\langle y_n - w_n, w_n - x \rangle \geq \lambda_n \left[f(y_n) + g(w_n) - (f + g)(x) + f(w_n) - f(y_n) \right] - \delta \|y_n - w_n\|^2. \]

On using (11), (20) and (28), we get
\[\lambda_n \left[(f + g)(w_n) - (f + g)(x) \right] - \delta \|y_n - w_n\|^2. \]

From (11), (20) and (28), we get
\[||x_{n+1} - z|| = \|\beta u + (1 - \beta_n)w_n - z\| \]
\[\leq \beta_n \|u - z\| + (1 - \beta_n)\|w_n - z\| \]
\[\leq \beta_n \|u - z\| + (1 - \beta_n) \left(\|x_n - z\| + \beta_n M_1 \right) \]
\[= (1 - \beta_n)\|x_n - z\| + \beta_n \left(\|u - z\| + M_1 \right) \]
\[\leq \max\{\|x_n - z\| + M_1, \|u - z\|\}, \]
\[\vdots \]
\[\leq \max\{\|x_1 - z\| + M_1, \|u - z\|\}. \]

Hence, the sequence \(\{x_n\} \) is bounded. Consequently, it follows that (15)–(28) that the sequence \(\{u_n\}, \{y_n\} \) and \(\{w_n\} \) are bounded. \hfill \Box

Lemma 14. Assume that \(\{y_n\} \) is defined as stated in (11), then
\[\|y_n - z\|^2 \leq \|u_n - z\|^2 - \|y_n - u_n\|^2 + 2\gamma_n \|y_n - u_n\| \cdot \|A^*(\text{SFF}_{j=1}^m \text{prox}_{\lambda_n h_j} - I)Au_n\|. \]

Proof.
\[\|y_n - z\|^2 = \|(u_n + \gamma_n A^*(T - I)Au_n) - z\|^2 \]
\[\leq \langle u_n - z, u_n + \gamma_n A^*(\text{SFF}_{j=1}^m \text{prox}_{\lambda_n h_j} - I)Au_n - z \rangle \]
\[= \frac{1}{2} \left(\|u_n - z\|^2 + \|u_n + \gamma_n A^*(\text{SFF}_{j=1}^m \text{prox}_{\lambda_n h_j} - I)Au_n - z\|^2 \right) \]
\[- \|y_n - z - (u_n + \gamma_n A^*(\text{SFF}_{j=1}^m \text{prox}_{\lambda_n h_j} - I)Au_n)\|^2. \]
Thus, we conclude that

\[
\|y_n - z\|^2 \leq \|u_n - z\|^2 - \|y_n - u_n\|^2 + 2\gamma_n \|y_n - u_n\| \cdot \|A^*(S\Pi_{j=1}^n \text{prox}_{\lambda_n h_j} - I)Au_n\|.
\]

\(\square\)

Theorem 15. Assume (1)–(2) holds. Then the sequence \(\{x_n\}\) generated by (11) strongly converges to the solution \(x^* \in \Gamma\), where \(x^* = P_\Gamma(x^*)\) denotes the metric projection of \(H_1\) onto the solution set \(\Gamma\).

Proof. Let \(x^* \in \Gamma\), then we have from Algorithm 11 that

\[
\|u_n - z\|^2 = \|x_n + \theta_n(x_n - x_n-1) - z\|^2 \\
= \|(x_n - z) + \theta_n(x_n - x_n-1)\|^2 \\
= \|x_n - z\|^2 + 2\theta_n\langle x_n - z, x_n - x_n-1 \rangle + \theta_n^2\|x_n - x_n-1\|^2 \\
\leq \|x_n - z\|^2 + 2\theta_n\|x_n - z\| \cdot \|x_n - x_n-1\| + \theta_n^2\|x_n - x_n-1\|^2 \\
\leq \|x_n - z\|^2 + \theta_n\|x_n - x_n-1\| \cdot 2\|x_n - z\| + \theta_n\|x_n - x_n-1\|^2 \\
= \|x_n - z\|^2 + \theta_n\|x_n - x_n-1\|^2 M_2,
\]

for some \(M_2 > 0\), where \(M_2 = 2\|x_n - x^*\| + \theta_n\|x_n - x_n-1\|\). Now from (11) (17), (28), (29) and (30), we obtain that

\[
\|w_n - z\|^2 \leq \|x_n - z\|^2 + \theta_n\|x_n - x_n-1\| M_2 - \|y_n - u_n\|^2 \\
+ 2\gamma_n \|y_n - u_n\| \cdot \|A^*(S\Pi_{j=1}^n \text{prox}_{\lambda_n h_j} - I)Au_n\| \\
- (1 - 2\delta)\|y_n - w_n\|^2 - \frac{1}{2} \frac{\|\langle S\Pi_{j=1}^n \text{prox}_{\lambda_n h_j} - I)Au_n\|^2}{\|A^*(S\Pi_{j=1}^n \text{prox}_{\lambda_n h_j} - I)Au_n\|^2}.
\]

We conclude from Algorithm 11 and (31), we have that

\[
\|x_{n+1} - z\|^2 \leq (1 - \beta_n)\|x_n - z\|^2 + (1 - \beta_n)\theta_n\|x_n - x_n-1\| M_2
\]
Forward-backward splitting method for split minimization problem

\[-\frac{1}{2}(1 - \beta_n) \left\| (\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_n \right\|^4 \]

\[- (1 - \beta_n) \left\| y_n - u_n \right\|^2 \]

\[+ 2\gamma_n (1 - \beta_n) \left\| y_n - u_n \right\| \cdot \left\| A^* (\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_n \right\| \]

\[= (1 - \beta_n)(1 - 2\delta) \left\| y_n - u_n \right\|^2 + \beta_n(2\langle u - z, x_{n+1} - z \rangle) \]

\[= (1 - \beta_n)\left\| x_n - z \right\|^2 \]

\[+ \beta_n \left[\frac{\theta_n}{\beta_n} \left\| x_n - x_{n-1} \right\| (1 - \beta_n)M_2 + 2\langle u - z, x_{n+1} - z \rangle \right] \]

Putting \(d_n = \left[\frac{\theta_n}{\beta_n} \left\| x_n - x_{n-1} \right\| (1 - \alpha_n)M_2 + 2\langle u - z, x_{n+1} - z \rangle \right] \), in view of Lemma 10, we need to prove that \(\limsup_{k \to \infty} d_{n_k} \leq 0 \) for every \(\left\{ \left\| x_{n_k} - x^* \right\| \right\} \) satisfying the condition

\[\limsup_{k \to \infty} \left\{ \left\| x_{n_k} - x^* \right\| - \left\| x_{n_{k+1}} - x^* \right\| \right\} \leq 0. \]

To show this, suppose that \(\left\{ \left\| x_{n_k} - x^* \right\| \right\} \) is a subsequence of \(\left\{ \left\| x_n - x^* \right\| \right\} \) such that (34) holds. Then

\[\limsup_{k \to \infty} \left(\left\| x_{n_k} - x^* \right\|^2 - \left\| x_{n_{k+1}} - x^* \right\|^2 \right) = \]

\[= \liminf_{k \to \infty} \left(\left(\left\| x_{n_k} - x^* \right\| - \left\| x_{n_{k+1}} - x^* \right\| \right) \left(\left\| x_{n_k} - x^* \right\| + \left\| x_{n_{k+1}} - x^* \right\| \right) \right) \]

\[\leq 0. \]

From (32) and (35), we get

\[\limsup_{k \to \infty} \left((1 - \beta_n_k) \left\| (\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_{n_k} \right\|^4 \right) \leq \]

\[\leq (1 - \beta_n_k)\left\| x_{n_k} - x^* \right\|^2 - \left\| x_{n_{k+1}} - x^* \right\|^2 \]

\[+ \beta_n_k \left[\frac{\theta_n}{\beta_n} \left\| x_{n_k} - x_{n_{k-1}} \right\| (1 - \beta_n_k)M_2 + 2\langle u - z, x_{n+1} - z \rangle \right] \]

\[= \limsup_{k \to \infty} \left(\left\| x_{n_k} - x^* \right\|^2 - \left\| x_{n_{k+1}} - x^* \right\|^2 \right) \]

\[\leq 0. \]

Thus,

\[
\lim_{k \to \infty} \frac{\left\| (\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_{n_k} \right\|^4}{\left\| A^*(\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_{n_k} \right\|^4} = 0,
\]

which implies that

\[\frac{1}{\left\| A^* \right\|^2} \left\| (\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_{n_k} \right\| = \]

\[= \left\| (\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_{n_k} \right\| \cdot \frac{\left\| (\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_{n_k} \right\|^4}{\left\| A^*(\text{SIT}_m^m \text{prox}_{\lambda_n h_j} - I) Au_{n_k} \right\|^4} \]
\[\| (\sum_{j=1}^{m} \text{prox}_{\lambda_k h_j} - I) A u_{n_k} \| \rightarrow 0. \]

Hence,
\[\lim_{k \to \infty} \| (\sum_{j=1}^{m} \text{prox}_{\lambda_k h_j} - I) A u_{n_k} \| = 0. \]

Also, using the same approach as in (36), we obtain that
\[\lim_{k \to \infty} \| y_{n_k} - u_{n_k} \| = 0. \]

Using (32), we get
\[\limsup_{k \to \infty} \left((1 - \beta_{n_k})(1 - 2\delta)\| y_{n_k} - w_{n_k} \|^2 \right) \leq \]
\[\leq (1 - \beta_{n_k})\| x_{n_k} - x^* \|^2 - \| x_{n_k+1} - x^* \|^2 \]
\[+ \beta_{n_k} \left[\frac{\theta_{n_k}}{\beta_{n_k}} \| x_{n_k} - x_{n_k-1} \| (1 - \beta_{n_k}) M_2 + 2 \langle u - z, x_{n_k+1} - z \rangle \right] \]
\[= \limsup_{k \to \infty} \left(\| x_{n_k} - x^* \|^2 - \| x_{n_k+1} - x^* \|^2 \right) \]
\[\leq 0. \]

Thus, we obtain that
\[\lim_{k \to \infty} \| y_{n_k} - w_{n_k} \| = 0. \]

From (11), we have
\[\| u_{n_k} - x_{n_k} \| \leq \beta_{n_k} \left[\frac{\theta_{n_k}}{\beta_{n_k}} \| x_{n_k} - x_{n_k-1} \| \right] \rightarrow 0, \text{ as } k \to \infty. \]

From (39), (40) and (41), we obtain that
\[\lim_{k \to \infty} \| u_{n_k} - w_{n_k} \| = 0 = \lim_{k \to \infty} \| y_{n_k} - x_{n_k} \|. \]

Moreover, applying (41) and (42), we get
\[\lim_{k \to \infty} \| w_{n_k} - x_{n_k} \| = 0. \]

Using (11), we obtain that
\[\lim_{k \to \infty} \| x_{n_k+1} - w_{n_k} \| = 0. \]

Considering (44), we achieve
\[\| x_{n_k+1} - x_{n_k} \| \leq \beta_{n_k} \| u - x_{n_k} \| + (1 - \beta_{n_k})\| w_{n_k} - x_{n_k} \| \rightarrow 0, \text{ as } k \to \infty. \]

Since \(\{ x_{n_k} \} \) is bounded, there exists a subsequence \(\{ x_{n_{k_j}} \} \) of \(\{ x_{n_k} \} \) which converges weakly to \(x^* \). Also, from (41), (42) and (43), there exist subsequence \(\{ u_{n_{k_j}} \} \) of \(\{ u_{n_k} \} \), \(\{ y_{n_{k_j}} \} \) of \(\{ y_{n_k} \} \) and \(\{ w_{n_{k_j}} \} \) of \(\{ w_{n_k} \} \) which converge weakly to \(x^* \). Using (38), Lemma 8, Lemma 9 and the fact that \(A \)
is a bounded linear operator, $Ax^* \in F(S \cap \bigcup_{j=1}^{m} \text{prox}_{\lambda_n h_j})$ which implies that $Ax^* \in F(S) \cap F(\text{prox}_{\lambda_n h_j})$, $j = 1, 2, \cdots, m$. Hence, we show that $z \in \Upsilon$.

From the statements in (11), we get that
\[
\lim_{j \to \infty} \| \nabla f(w_{nk_j}) - \nabla f(y_{nk_j}) \| = 0.
\]
(46)

Since $w_{nk_j} = \text{prox}_{\lambda_{nk_j}} g(y_{nk_j} - \lambda_{nk_j} \nabla f(y_{nk_j}))$, it follows from (11) that
\[
y_{nk_j} - \lambda_{nk_j} \nabla f(y_{nk_j}) - w_{nk_j} \lambda_{nk_j} \in \partial g(w_{nk_j}),
\]
(47)

which implies that
\[
\frac{x_{nk_j} - w_{nk_j}}{\lambda_{nk_j}} + \nabla f(w_{nk_j}) - \nabla f(x_{nk_j}) \in \nabla f(w_{nk_j}) + \partial g(w_{nk_j}) \subseteq \partial(f + g)(w_{nk_j}).
\]
(48)

Passing $j \to \infty$ and by applying Lemma 8 and (40), we obtain that $x^* \in \Upsilon$. Hence, we conclude that $x^* \in \Gamma$. Also, we show that
\[
\lim_{k \to \infty} \langle x_{nk+1} - x^*, f(x_{nk}) - x^* \rangle \leq 0.
\]
(49)

On substituting (49) into (33) and applying Lemma 10, we conclude that \{ x_n \} converges strongly to z. \hfill \Box

4. NUMERICAL EXAMPLE

In this section we give a numerical example in an m-dimensional space of real numbers to support our main result.

Example 16. Let $H_1 = H_2 = \mathbb{R}^m$ with the Euclidean norm. For each $x \in H_1$, define $f, g : H_1 \to \mathbb{R} \cup \{ +\infty \}$ by
\[
f(x) = \frac{1}{2} \| Ax - b \|^2, \quad g(y) = \frac{1}{2} \| By - c \|^2,
\]
where $A, B \in \mathbb{R}^{m \times m}$ and $b, c \in \mathbb{R}^m$. It is easy to see that f and g are proper lower semicontinuous. Also, we know by [21] that
\[
\text{prox}_{\lambda f}(x) = \arg \min_{y \in \mathbb{R}^m} \left[f(y) + \frac{1}{2\lambda} \| y - x \|^2 \right] = (I + A^T A)^{-1}(x + A^T b).
\]
Now, let $A : H_1 \to H_2$ be defined by

$$A(x) = \left(\frac{x}{1.5}\right), \ \forall x = \{x_i\}_{i=1}^m$$

then

$$A^T(x) = \left(\frac{y}{1.5}\right), \ \forall y = \{y_i\}_{i=1}^m.$$

For each $j = 1, 2, x \in H_2$, let $h_j : H_2 \to \mathbb{R} \cup \{+\infty\}$ be given by

$$h_j(x) = \frac{1}{2}\|P_jx - q_j\|^2,$$

where $P_1, P_2 \in \mathbb{R}^{m \times m}$ and $q_1, q_2 \in \mathbb{R}^m$.

As before,

$$\text{prox}_{\lambda h_j}(x) = (I + P_j^TP_j)^{-1}(x + P_jq_j).$$

Fig. 1. Top left: Case I, Top right: Case II,
Bottom left: Case III, Bottom right: Case IV.
Let the mapping $S : H_2 \to H_2$ be defined by $S(x) = \frac{x}{2}$. For this example, choose $\beta_n = \frac{1}{2n+3}$, $u = \frac{1}{2}$, $\delta = \frac{1}{4}$, $\mu = \frac{1}{8}$, $\sigma = \frac{3}{2000}$ and $\epsilon_n = \frac{1}{n^{1/2}}$. We choose the initial points $x_0, x_1 \in \mathbb{R}^m$ randomly in $(0,1)$. By using $\|x_{n+1} - x_n\|^2 \leq 10^{-4}$ as our stopping criterion, we conduct this example for various values of m.

Case I: $m = 10$;
Case II: $m = 15$;
Case III: $m = 20$;
Case IV: $m = 50$.

The results of this experiment are reported in Fig. 1.

REFERENCES

Received by the editors: July 23, 2023; accepted: October 23, 2023; published online: December 28, 2023.