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LOCALIZATION OF NASH-TYPE EQUILIBRIA
FOR SYSTEMS WITH A PARTIAL VARIATIONAL STRUCTURE

ANDREI STAN∗

Abstract. In this paper, we aim to generalize an existing result by obtaining
localized solutions within bounded convex sets, while also relaxing specific initial
assumptions. To achieve this, we employ an iterative scheme that combines
a fixed-point argument based on the Minty-Browder Theorem with a modified
version of the Ekeland variational principle for bounded sets. An application to a
system of second-order differential equations with Dirichlet boundary conditions
is presented.

MSC. 35B38, 47J25, 47J30, 47H10.
Keywords. Nash equilibrium, iterative methods, Ekeland variational principle,
monotone operator.

1. INTRODUCTION

Numerous problems can be reduced to a fixed point equation N(u) = u,
where N is some operator. It is said that the equation has a variational form
(or admits a variational structure) if it is equivalent with a critical point equa-
tion E′(u) = 0. Also, in real word processes, one may need the solution to be
positive and finite or limited in some sense. From a mathematical perspective,
it means that the solution lies in a bounded subset of the positive cone of all
states.

We aim to generalize a result from [1], where a system of three equations
N1(u, v, w) = u

N2(u, v, w) = v

N3(u, v, w) = w,

was studied, so that one of the equations lacked the variational structure. In
[1], sufficient conditions have been established for the system to admit a solu-
tion throughout the whole space, so that the second and third components of
the solution represent a Nash equilibrium for the associated energy functionals.
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In the present paper, a system with n equations is considered,

(1)



N1(u1, . . . , un) = u1

. . .

Np(u1, . . . , up, . . . , un) = up

. . .

Nn(u1, . . . , un) = un

where only the last n-p equations admit a variational structure. Our goal is
to find a solution (u1

∗, . . . , up
∗, . . . , un

∗ ), such that (up+1
∗ , . . . , un

∗ ) is a Nash equi-
librium for the corresponding energy functionals. Furthermore, this solution
is intended to be localized in a bounded set of a positive cone. Localization
is obtained in the Cartesian product of n-p bounded sets, as defined below.
Specifically,

(up+1
∗ , . . . , un

∗ ) ∈ Kp+1 × · · · × Kn,

where Ki is a positive cone of some Hilbert space Xi, with the corresponding
inner product (· , ·)i and norm | · |i. Additionally, we require that

rq ≤ lq(uq
∗) ; |uq

∗|q ≤ Rq (q = {p + 1, . . . , n}) ,

for some positive real numbers rq < Rq, and a concave upper semicontinous
functional lq : Kq → R+.

The study of systems with two equations, whose solutions represent a Nash-
equilibrium localized in some conical sets, was previously made in [2] or [3].
This was achieved imposing a Perov contraction condition and making use
of Ekeland variational principle. In this paper, we use a monotony condition
instead of Lipschitz one, inspired by [4] and [5].

The idea of Nash equilibrium dates back to 1838, in a paper of Cournot [6],
where the best output of a firm depending on the output of other firms was
studied. Later, in 1951, the existence of a such equilibrium for any finite game
was proved by John Forbes Nash [7]. From the physical point of view, a Nash
equilibrium of a interconnected system with several entities, is that state in
which the energy of each entity is minimal one with respect to the others.

The Nash equilibrium regards non-cooperative games, specifically those in
which each player is unaware of how its change affects the output of the others.
Heed that there are some other types of equilibrium, such as Pareto equilibrium
for a cooperative game in which all parts are equal and collaborate to attain
some (Pareto) optimal solution. If we are taking about a leading game, in
which an individual (leader) takes the first step and all the others (followers)
move accordingly, then we were dealing with a Stackelberg model and its
equilibrium is called Stackelberg equilibrium.

The outline of this paper is as follows: We commence with Section 2, where
several auxiliary results are presented. Section 3 provides the main theoretical
result while Section 4 is dedicated to an application for a system of three
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second order differential equations subject to Dirichlet boundary conditions.
Finally, we illustrate the application through a specific system.

2. PRELIMINARIES

Throughout this paper, Rn is endowed with the usual scalar product denoted
by x·y =

∑n
i=1 xiyi and the Euclidian norm |x| =

(∑n
i=1 x2

i

) 1
2 . Also we consider

the Hadamard product

◦ : Rn × Rn → Rn; x ◦ y = (x1y1, . . . , xnyn)T .

Unless otherwise noted, all vectors from Rn are considered to be column.

Proposition 1. Let M = (mij)1≤i,j≤n ∈ Mn,n (R+) be a matrix with posi-
tive entries and let x = (xi), y = (yi), z = (zi) ∈ Rn

+. If

Mx ◦ y ≤ z

then
Mx · y ≤

√
n|z|.

Proof. Note that
n∑

j=1
mijxjyi ≤ zi, for i = 1, . . . , n.

Thus,

Mx · y =
n∑

i=1

n∑
j=1

mijxjyi ≤
n∑

i=1
zi.

The conclusion immediately follows from the Cauchy-Schwartz inequality, as
we have

∑n
i=1 zi ≤

√
n|z|.

□

A square matrix of non-negative numbers A = [ai,j ]1≤i,j≤n ∈ Mn,n (R) is
said to be convergent to zero if Ak → On as k → ∞, where On is the zero
matrix. In the following, we outline a few characterizations of such matrices.

Theorem 2 (see, e.g., [5], [8], [9]). The following statements are equivalent:
(i) A is convergent to zero.
(ii) ρ(A) < 1, where ρ(A) represent the spectral radius of matrix A.
(iii) I − A is non-singular, and its inverse has nonnegative entries.
(iv) There exist a positive diagonal matrix D = (dii)1≤i≤n such that

D(I − A)x · x > 0, for all x ∈ Rn \ {0}.

For any r ∈ {1, . . . , n}, denote with Ar := [ai,j ]1≤i,j≤r a submatrix of A.

Lemma 3. If matrix A is convergent to zero, then Ar is also convergent to
zero.
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Proof. Note that

A =
[
Ar B
C D

]
,

where B ∈ Mr,n−r (R), C ∈ Mn−r,r (R) and D ∈ Mn−r,n−r (R) are block
matrices. Thus,

Ak =
[
Ak

r + P 1
k−1 P 2

k
P 3

k P 4
k

]
where P 1

m, P 2
m, P 3

m, P 4
m are some matrix polynomials of order m evaluated at

Ar, B, C, D. Now, since Ak → On, clearly Ak
r + P 1

n−1 → On. Thus Ar is
convergent to zero. □

For the proof of our main result (Theorem 7), we need the following con-
vergence lemma.

Lemma 4 (see, e.g., [1, Lemma 2.2]). Let (Ak,p)k≥1 , (Bk,p)k≥1 be two
sequences of vectors in Rn

+ (column vectors) depending on a parameter p, such
that

Ak,p ≤ MAk−1,p + Bk,p

for all k and p, where M ∈ Mn(R+) is a matrix with spectral radius less than
one. If the sequence (Ak,p)k≥1 is bounded uniformly with respect to p and
Bk,p → On as k → ∞ uniformly with respect to p, then Ak,p → On as k → ∞
uniformly with respect to p.

Let (X, | · |X) be a Hilbert space together with the scalar product (· , ·)X ,
X∗ its dual and let ⟨· , ·⟩∗ be the dual paring between X∗ and X.

For the convenience of the reader, we recall a theorem of Minty-Browder for
operators from a Hilbert space to its dual. An operator T : X → X∗ is called
strongly monotone if there exists a real constant c > 0 such that

⟨T (u) − T (v) , u − v⟩∗ ≥ c|u − v|2X , for all u, v ∈ X.

Theorem 5 (Minty-Browder, see, e.g., [10, Theorem 9.14]). Let T : X →
X∗ be a continuous and strongly monotone operator. Then T is bijective.

The following result is a variation of the Ekeland variational principle within
a convex conical set (see, e.g., [3]). Let K ⊂ X be a cone, and let l : K → R be
an upper semicontinuous concave functional. Additionally, suppose we have an
operator N : X → X and a functional E : X → R, such that E′(u) = u−N(u)
for all u ∈ X. Consider two real numbers 0 < r < R, and let the convex
conical set Kr,R be defined by

Kr,R := {u ∈ K | r ≤ l(u), |u|X ≤ R}.

Lemma 6 (see, e.g., [3, Lemma 2.1]). Assume the following conditions are
satisfied:

(i) The functional E is bounded from below on Kr,R, i.e.,
m := inf

Kr,R

E(·) > −∞.
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(ii) There exists ε > 0 such that for all u ∈ Kr,R satisfying both |u| = R
and l(u) = r, we have E(u) ≥ m + ε.

(iii) l(N(u)) ≥ r, for all u ∈ Kr,R.

Then, there exists a sequence (un) ∈ Kr,R such that

E(un) ≤ m + 1
n ,

and
|E′(un) + λnun|X ≤ 1

n ,

where

λn =
{

− 1
R2 (E′(un), un)X , when |un|X = R and (E′(un), un)X < 0

0, otherwise.

3. MAIN RESULT

Let (Xi, | · |i) be Hilbert spaces identified with their duals (i ∈ {1, . . . , n}).
Denote X := X1 ×· · ·×Xn and X1,q := X1 ×· · ·×Xq (q ∈ {1, . . . , n}) together
with the norms |u|X = |u1|1 + · · · + |un|n and |u|X1,q := |u1|1 + · · · + |uq|q,
respectively. Similarly, Xq denotes the space obtained from X by excluding
Xq, i.e.,

Xq := X1 × · · · × Xq−1 × Xq+1 × · · · × Xn.

For simplicity, for any q ∈ {1, . . . , n}, we refer to

(u1, . . . , uq)T as u1,q, (uq+1, . . . , un)T as uq+1,n

and

(N1(u), . . . , Nq(u))T as N1,q(u), (Nq+1(u), . . . , Nn(u))T as Nq+1,n(u).

With these notations, we have

u =
(
u1,p, up+1,n

)T

and
(N1(u), . . . , Nn(u))T = (N1,q(u), Nq+1,n(u))T .

On X1,q, we consider the vector-valued inner product

⟨u, v⟩ :=
(
(u1, v1)1, . . . , (uq, vq)q

)T
∈ Rq,

and vector valued norm

∥u∥ :=
(
|u1|1, . . . , |uq|q

)T
∈ Rq,

for any u = (u1, . . . , uq), v = (v1, . . . , vq) ∈ X1,q. Note that these notations
are consistent with respect to Hadamard product since ⟨u , u⟩ = ∥u∥ ◦ ∥u∥.

In the following, we assume that the operators N1, . . . , Nn are continu-
ous and that Np+1, . . . , Nn admit a variational structure, i.e., for each q ∈
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{p + 1, . . . , n}, there exists a functional Eq : X → R such that for every
(u1, · · · , uq−1, uq+1, · · · , un) ∈ Xq, the functional

Eq(u1, · · · , uq−1, ·, uq+1, · · · , un)

has a Fréchet derivative Eqq. Furthermore, this derivative is given by

(2) Eqq(u) = uq − Nq(u).

For each q ∈ {p + 1, . . . , p}, let Kq ⊂ Xq be a cone and lq : Kq → R+ be an
upper semicontinous and concave functional such that lq(0) = 0. Additionally,
consider rq, Rq ∈ R+, and define (Kq)rq ,Rq ⊂ Kq as

(Kq)rq ,Rq := {uq ∈ Kq : rq ≤ lq(uq), |uq|q ≤ Rq}.

Denote
K := (Kp+1)rp+1,Rp+1 × · · · × (Kn)rn,Rn

and

Kq := (Kp+1)rp+1,Rp+1×· · ·×(Kq−1)rq−1,Rq−1×(Kq+1)rq+1,Rq+1×· · ·×(Kn)rn,Rn .

Theorem 7. Under the above notations, let us assume the following:
(h1) There exists a matrix A = [aij ]1≤i,j≤n convergent to zero such that

(3) ⟨N1,n (u) − N1,n (v) , u − v⟩ ≤ A∥u − v∥ ◦ ∥u − v∥,

i.e.,

(4)
〈
Ni(u) − Ni(v), ui − vi

〉
≤

n∑
j=1

∣∣∣ui − vi
∣∣∣
i

n∑
j=1

∣∣∣uj − vj
∣∣∣
j

, (i ∈ {1, . . . , n}) ,

for all u = (u1, . . . , un), v = (v1, . . . , vn) ∈ X.
For each q ∈ {p + 1, . . . , n}, one has

(h2)

lq (Nq(u)) ≥ rq for all u ∈ X1,p × K,

Nq(u) − uq − λ uq ̸= 0 for all λ > 0 and u ∈ X1,p × K with |uq|q = Rq.

(h3) There exist m := infu∈X1,p×K Eq(u) > −∞ and ε > 0 such that

Eq(u) ≥ inf
(Kq)rq,Rq

Eq(u1, . . . , uq−1, · , uq+1, . . . , un) + ε,

for all (u1, . . . , uq−1, uq+1, un) ∈ X1,p × Kq which satisfies lq(uq) = rq

and |uq|q = Rq, simultaneously.
(h4) The operator Nq

(
0X1 , . . . , 0Xp , · · ·

)
is bounded on K.

Then there exists two points u1,p
∗ ∈ X1,p and up+1,n

∗ ∈ K such that

u∗ = (u1,p
∗ , up+1,n

∗ )
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is a solution of (1) and up+1,n
∗ is a Nash equilibrium in K for the functionals

(Ep+1, . . . , En), i.e.,

Eq(u∗) = inf
(Kq)rq,Rq

Eq(u1,q−1
∗ , · , uq+1,n

∗ ) (q = p + 1, . . . , n) .

Proof. Step 1: Construction of the approximation sequence.
Note that the submatrix Ap = [aij ]1≤i,j≤p converges to zero as a consequence
of Lemma 3. Thus, Theorem 2 guarantees the existence of a diagonal matrix
D = (dii)1≤i≤p with dii > 0 (i = 1, . . . , n) such that D(I − Ap) is positive
definite, i.e.,

(5) c := inf
x∈Rp\{0}

D(I − Ap)x · x

|x|2
> 0.

Let up+1,n
0 ∈ K be arbitrarily chosen and let T : X1,p → X∗

1,p be defined by

T (u1,p) = D
(
u1,p − N1,p

(
u1,p , up+1,n

0

))
, for all u1,p = (u1, . . . , up) ∈ X1,p.

For any u1,p, u1,p ∈ X1,p, relations (4) yields

(6)

〈
T (u1,p) − T (u1,p) , u1,p − u1,p

〉∗
=

=
p∑

i=1
dii|ui − ui|2i −

(
Ni(u1,p, up+1,n

0 ) − Ni(u1,p, up+1,n
0 ) , ui − ui

)
i

≥
p∑

i=1
dii|ui − ui|2i − dii

p∑
j=1

aij |ui − ui|i|uj − uj |j .

Thus, since
p∑

i=1
dii|ui − ui|2i − dii

p∑
j=1

aij |uq − ui|i|uj − uj |j =

= D(Ip − Ap)∥u1,p − u1,p∥ · ∥u1,p − u1,p∥,

from relation (5) we deduce〈
T (u1,p) − T (u1,p) , u1,p − u1,p

〉
≥ c|u1,p − u1,p|2X1,p

.

Consequently, T is strongly monotone. As T is clearly continuous, Theorem 5
guarantees that it is a bijection from X to X∗. Therefore, there exist a unique
u1,p

1 ∈ X1,p such that T (u1,p
1 ) = 0, i.e.,

u1,p
1 = N1,p

(
u1,p

1 , up+1,n
0

)
.
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For each q ∈ {p + 1, . . . , n}, we fix u1,q−1
1 previously determined and uq+1,n

0
initially set. Following Lemma 6, we may find uq

1 ∈ (Kq)rq ,Rq such that

Eq

(
u1,q

1 , uq+1,n
0

)
≤ inf

(Kq)rq,Rq

Eq

(
u1,q−1

1 , · , uq+1,n
0

)
+ 1 ,∣∣∣Eqq

(
u1,q

1 , uq+1,n
0

)
+ λq

1uq
1

∣∣∣
q

≤ 1 ,

where

λq
1 :=

− 1
R2

q

(
Eqq

(
u1,q

1 , uq+1,n
0

)
,uq

1

)
q

, if |uq
1|q =Rq and

(
Eqq

(
u1,q

1 , uq+1,n
0

)
, uq

1

)
q
<0

0, otherwise
Repeating the process for each step k, we construct recursively a sequence

uk = (u1
k, . . . , up

k, up+1
k , . . . , un

k)T ∈ X1,p × K

such that
(7) u1,p

k = N1,p

(
u1,p

k , up+1,n
k−1

)
.

and

(8)
Eq

(
u1,q

k , uq+1,n
k−1

)
≤ inf

(Kq)rq,Rq

Eq

(
u1,q−1

k , · , uq+1,n
k−1

)
+ 1

k ,∣∣∣Eqq

(
u1,q

k , uq+1,n
k−1

)
+ λq

kuq
k

∣∣∣
q

≤ 1
k ,

where

λq
k :=

− 1
R2

q

(
Eqq

(
u1,q

k , uq+1,n
k−1

)
, uq

k

)
q
, if |uq

k|q =Rq and
(
Eqq

(
u1,q

k ,uq+1,n
k−1

)
, uq

k

)
q
<0

0, otherwise.

for each q ∈ {p + 1, . . . , n}.

Step 2: Boundedness of the sequence (u1
k, . . . , up

k) .

Condition (h4) guarantees that the sequence N1,p(0, up+1,n
k−1 ) is uniformly

bounded, i.e., there exists M > 0 such that

M0 = sup
k∈N

∣∣∣N1,p(0, up+1,n
k−1 )

∣∣∣
X

.

Since u1,p
k = N1,p

(
u1,p

k , up+1,n
k−1

)
, one has

∥u1,p
k ∥ ◦ ∥u1,p

k ∥ =
〈
u1,p

k , N1,p

(
u1,p

k , up+1,n
k−1

)〉
≤

〈
u1,p

k , N1,p

(
u1,p

k , up+1,n
k−1

)
− N1,p

(
0, up+1,n

k−1

)〉
+ M0∥u1,p

k ∥

≤ Ap∥u1,p
k ∥ ◦ ∥u1,p

k ∥ + M0∥u1,p
k ∥.(9)

Multiplying both sides of (9) with the diagonal matrix D, we obtain

D(Ip − Ap)∥u1,p
k ∥ ◦ ∥u1,p

k ∥ ≤ M0D∥u1,p
k ∥.
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Therefore, relation (5) together with Proposition 1 leads to
√

nM0|u1,p|X1,p ≥ D(Ip − Ap)∥u1,p
k ∥ · ∥u1,p

k ∥ ≥ c|u1,p|2X1,p
,

which guarantees the boundedness of the sequence u1,p
k .

Step 3: Convergence to zero of the real sequence
(
λq

k

)
.

Let q ∈ {p + 1, . . . , n} and assume(
Eqq

(
u1,p

k , up+1,n
k−1

)
, uq

k

)
q

< 0.

Observe that
λq

k ≤ − 1
R2

q

(
Eqq

(
u1,p

k , up+1,n
k−1

)
, uq

k

)
q

= −1 + 1
R2

q

(
uq

k, Nq

(
u1,p

k , up+1,n
k−1

))
.

Thus, the integration of elementary computations with the monotonicity of
Nq ensures that

λq
k ≤ 1

Rq
M0 + 1

R2
q

∣∣uq
k

∣∣
q

p∑
i=1

aqi

∣∣up
k

∣∣
q

Now, the sequence
(
λq

k

)
is bounded as a consequence of Step 2. Hence, even-

tually passing to a subsequence,
(
λq

k

)
converges to a non-negative real number

λq. Further, since
(
u1,q

k

)
and

(
uq+1,n

k−1

)
are bounded, they have convergent

subsequences whose limits are denoted by u1,p and uq+1,n, respectively. Now,
if we take the limit in (8), we obtain

E11(u1,q, uq+1,p) + λq (u1,q, uq+1,p) = 0,

where |uq|q = Rq if λq ≥ 0. In this case, the Leray-Schauder boundary con-
dition in the second relation of (h2) is contradicted, leading to the conclusion
that λq

k → 0 as k → ∞.

Step 4: Convergence of the sequence (u1
k, . . . , un

k).

For any q ∈ {1, . . . , n}, let us denote

xq(k, m) :=
∣∣∣uq

k+m − uq
k

∣∣∣
q

,

cq(k, m) :=

0, if q ≤ p∣∣∣Eqq

(
u1,q

k+m, uq+1,n
k+m−1

)
− Eqq

(
u1,q

k , uq+1,n
k−1

)∣∣∣
q

, if p + 1 ≤ q,

and

x(k, m) :=
(
x1(k, m), . . . , xn(k, m)

)T
,
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c(k, m) :=
(
c1(k, m), . . . , cn(k, m)

)T
.

Hence,

xq(k, m)2 =
(
uq

k+m − uq
k , Nq(u1,q

k+m, uq+1,n
k+m−1) − Nq(u1,q

k , uq+1,n
k−1 )

)
−

(
uq

k+m − uq
k , Eqq(u1,q

k+m, uq+1,n
k+m−1) − Eqq(u1,q

k , uq+1,n
k−1 )

)
q

.

Using the monotonicity assumption of Nq, we derive the subsequent inequality

xq(k, m)2 ≤ xq(k, m)

 q∑
j=1

aq,j xj(k, m) +
n∑

j=q+1
aq,j xj(k − 1, m)

(10)

+ xq(k, m)c(k, m).
We can put relations (10) in vector form as

x(k, m) ◦ x(k, m) ≤ A′ x(k, m) ◦ x(k, m) + A′′ x(k − 1, m) ◦ x(k, m)(11)
+ c(k, m) ◦ x(k, m),

where

A′ =
[
a′

ij

]
1≤i,j≤n

with a′
ij =

{
0, if 0 ≤ i ≤ j

aij , otherwise
,

A′′ = A − A′.

Observe that (11) is equivalent with
x(k, m) ≤ A′x(k, m) + A′′x(k − 1, m) + c(k, m),

and consequently,
(12) x(k, m) ≤

(
I − A′)−1

A′′x(k − 1, m) +
(
I − A′)−1

c(k, m).
In order to continue our proof, we need to show that cq(k, m) → 0 uniformly
with respect to m. If q ≤ p then there is nothing to prove. Let p + 1 ≤ q.
Then

(13)

c(k, m) =
∣∣∣Eqq

(
u1,q

k+m, uq+1,n
k+m−1

)
− Eqq

(
u1,q

k , uq+1,n
k−1

)∣∣∣
q

≤
∣∣∣Eqq

(
u1,q

k+m, uq+1,n
k+m−1

)
+ λq

k+m uq
k+m

∣∣∣
q

+
∣∣∣Eqq

(
u1,q

k , uq+1,n
k−1

)
+ λq

k uq
k

∣∣∣
q

+
∣∣∣λq

k+m uq
k+m − λq

k uq
k

∣∣∣
q

.

Now, we conclude that cq(k, m) → 0 uniformly with respect to m since each
term of the right-hand side of (13) converges to zero as a consequence of (8)
and Step 3.

Following [1], the matrix (I − A′)−1 A′′ is convergent to zero. Consequently,
from Lemma 4 we deduce that x(k, m) → 0 uniformly with respect to m, i.e.,
the sequences

(
u1

k

)
, . . . , (un

k) are Cauchy. Denote with u1
∗, . . . , un

∗ their limits.
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Step 5: Passing to the limit.
Passing to limit in (7) and (8) we deduce that u∗ =

(
u1

∗, . . . , un
∗

)
solves the

system (1), i.e.,
u∗ = N1,n (u∗) ,

and
Eq(u∗) = inf

(Kq)rq,Rq

Eq(u1
∗, . . . , uq−1

∗ , ·, uq+1
∗ , . . . , un

∗ ),

for each q ∈ {p + 1, . . . , n}. □

Remark 8 (Perov contraction condition). If instead of condition (h1), we
assume that N = (N1, . . . , Nn) is a Perov contraction, then we can relax the
spaces X1, . . . , Xp to complete metric spaces. In this particular case, the fixed
point u1,p

k from (7) can be derived directly since the operator

Nq(u1, . . . , uq−1, · , uq+1, . . . , un)

is a Lipschitz contraction, for each (u1, . . . , uq−1, uq+1, . . . , un) ∈ Xq. The
above result generalizes the one provided in [1], since the monotony condition
(3) is weaker than a Perov contraction condition. For example, if n = 1, any
decreasing function satisfies (3), but obviously not all of them are Lipschitz.

Remark 9 (Multiplicity solutions). Note that if we choose
rq

1, rq
2, . . . , rn

1 , rn
2 > 0 and Rq

1, Rq
2, . . . , Rn

1 , Rn
2 > 0

such that
(14) Rq

1 < lq(rq
2), (q = p + 1, . . . , n)

then (Kq)rq
1 ,Rq

1
∩ (Kq)rq

2 ,Rq
2

= ∅. Thus, multiple solutions localized in different
conical sets can be found, if different pairs (rq

i , Rq
i ) with property (14) are cho-

sen. This localized solution may have the same components for the equations
without a variational structure, but different for the others equations.

Remark 10 (Limit cases). In our theory, the constants rq and Rq can
approach their limit values, meaning rq = 0 when we seek solutions within a
ball, and Rq = ∞ when we aim to find upper unbounded solutions.

4. APPLICATION

We apply the results from Section 3 to the Dirichlet problem

(15)



−u′′(t) = f1(t, u(t), v(t), w(t), u′(t))
−v′′(t) = f2(t, u(t), v(t), w(t))
−w′′(t) = f3(t, u(t), v(t), w(t)) on (0, T )
u(0) = u(T ) = 0
v(0) = v(T ) = 0
w(0) = w(T ) = 0

,
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where the functions f1 : (0, T ) × R4 → R+, f2, f3 : (0, T ) × R3 → R+ are of
Carathéodory type. We emphasize that the presence of u′ on the right side of
the first equation, as opposed to equations 2 and 3, makes it to lose the varia-
tional structure. Moreover, the Hilbert spaces X1, X2, X3 from Theorem 7, are

the Sobolev space H1
0 (0, T ) endowed with the inner product (u, v)H1

0
=

∫ T

0
u′v′

and the norm |u|H1
0

=
( ∫ T

0
(u′)2

) 1
2 .

Due to the continuous embeddings

H1
0 (0, T ) ⊂ C[0, T ] ⊂ L2 (0, T ) ⊂

(
H1

0 (0, T )
)′

,

the Poincaré inequality (see, e.g., [11], [12, Remark 3.3]) holds with λ1 = π2

T 2

(see, [12, p. 72]), i.e.,

|u|L2 ≤ 1√
λ1

|u|H1
0

= T
π |u|H1

0
,
(
u ∈ H1

0 (0, T )
)

,

where λ1 is the first eigenvalue of the Dirichlet problem −u′′ = λu, u(0) =
u(T ) = 0. Additionally, a positive constant c > 0 exists such that for all
t ∈ (0, T ) and u ∈ H1

0 (0, T ), the following inequality holds true

|u(t)| ≤ c|u|H1
0
.

Notably, c can be chosen as
√

T . Indeed, from Cauchy-Schwartz inequality we
immediately have

|u(t)| = |u(t) − u(0)| ≤
∫ t

0

∣∣u′(x)
∣∣ dx

≤
∫ T

0
|u′(x)|dx ≤ |u′|L2 |1|L2 =

√
T |u|H1

0
, for all t ∈ (0, T ).

Let
(
H1

0 (0, T )
)′ be the dual space of H1

0 (0, T ) and let (· , ·)′ be the dual
pairing between

(
H1

0 (0, T )
)′ and H1

0 (0, T ), i.e., for any h ∈
(
H1

0 (0, T )
)′ and

ϕ ∈ H1
0 (0, T ), (h, ϕ)′ stands for the value of the functional h evaluated at the

element ϕ. From Riesz’s representation theorem, for each h ∈
(
H1

0 (0, T )
)′,

there exists a unique uh ∈ H1
0 (0, T ) such that

(h, ϕ)′ = (uh, ϕ)H1
0
, for every ϕ ∈ H1

0 (0, T ).

Therefore, we can define the solution operator S :
(
H1

0 (0, T )
)′ → H1

0 (0, T ),
where S(h) = uh. If h ∈ L2(0, T ), then S(h) admits a representation via
Green function G(t, s) : (0, T )2 → R+ (see, e.g., [13, Example 1.8.18]),

G(t, s) =
{

s
(
1 − t

T

)
, s ≤ t

t
(
1 − s

T

)
, s ≥ t,

specifically S(h)(t) =
∫ T

0 G(t, s)h(s)ds.
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Let K := K2 = K3 be the cone of nonegative functions from H1
0 (0, T ) and

[a, b] be a fixed compact subinterval of (0, T ). Additionally, we consider the
concave upper semicontinous functionals l2, l3 : K → R+,

l1(u) = l2(u) = min
t∈[a,b]

u(t) (u ∈ K) ,

and the conical sets

(K)rj ,Rj
= {u ∈ Kj | rj ≤ lj(u), |u|H1

0
≤ Rj} (j ∈ {2, 3}) ,

where 0 < rj < Rj are real numbers.
Note that the second and third equations from (15) admit a variational form

given by the energy functionals E2, E3 : H1
0 (0, T ) × K × K → R,

E2(u, v, w) := 1
2 |v|2H1

0
−

∫ T

0
F2(·, u, v, w)

E3(u, v, w) := 1
2 |w|2H1

0
−

∫ T

0
F3(·, u, v, w)

where

F2(x, u(x), v(x), w(x)) :=
∫ v(x)

0
f2(x, u(x), s, w(x))ds

F3(x, u(x), v(x), w(x)) :=
∫ w(x)

0
f2(x, u(x), v(x), s)ds.

If we identify H1
0 (0, T ) with its dual, we deduce

E22(u, v, w) = v − Sf2(u, v, w),
E33(u, v, w) = w − Sf3(u, v, w).

Therefore, the system (15) is equivalent with the following fixed point equation
N1(u, v, w) = u,

N2(u, v, w) = v,

N3(u, v, w) = w,

where 
N1(u, v, w) = Sf1(·, u, v, w, u′)
N2(u, v, w) = Sf2(·, u, v, w)
N3(u, v, w) = Sf3(·, u, v, w).

Let us denote

m := min
t∈[a,b]

∫ T

0
G(t, s)ds = min

t∈[a,b]
t(T −t)

2 = min
{

a(T −a)
2 , b(T −b)

2

}
.

Theorem 11. Let the above assumptions be satisfied. Furthermore, assume
the following
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(H1) There exist aij , a14 > 0 (i, j ∈ {1, 3}) such that for all real numbers
x1, . . . , x4 and x1, . . . , x4 we have

(16)

(x1 − x1) (f1(t, x1, ..., x4) − f1(t, x1, ..., x4)) ≤ |x1 − x1|
4∑

j=1
a1j |xj − xj |

(xi − xi) (fi(t, x1, x2, x3) − fi(t, x1, x2, x3)) ≤ |xi − xi|
3∑

j=1
aij |xj − xj |,

where i ∈ {2, 3}.
(H2) The functions fi(t, x, y, z), for i = 2, 3, satisfy:

(i) they are monotonically increasing with respect to the variables y
and z.

(ii)

(17) fi(t, ·, r2, r3) ≥ ri
m(b−a)

and

(18) |fi(t, ·, 0, 0)|L2 ≤ π
T R2 − T

π (ai2R2 + ai3R3)

for all t ∈ (0, T ).
(iii) there are real numbers M1, M2, M3, M4 > 0 such that

f2(t, ·, cR2, cR3) ≤ M1 ; f2(t, ·, 0, r3) ≥ M2

f3(t, ·, cR2, cR3) ≤ M3 ; f3(t, ·, r2, 0) ≥ M4

for every t ∈ (0, T ) and

TcR2M1 − R2
2

2 < r2(b − a)M2,

T cR3M3 − R2
3

2 < r3(b − a)M4.

Then there exists (u∗, v∗, w∗) ∈ H1
0 (0, T ) × (K2)r2,R2 × (K3)r3,R3 a solution

of the system (15) such that (v∗, w∗) is a Nash equilibrium for the energy
functionals of the second and third equations.

Proof. The proof entails checking that all conditionTheorem 7 are fulfilled.
Verification of the condition (h1). Let u, u, v, v, w, w ∈ H1

0 (0, T ). Then,
from (16) we have

(N1(u, v, w) − N1(u, v, w) , u − u)H1
0

=

=
(
S f1(·, u, v, w, u′) − S f1(·, u, v, w, u′)) , u − u

)
H1

0

=
(
f1(·, u, v, w, u′) − f1(·, u, v, w, u′) , u − u

)
L2

≤ a11|u − u|2L2 + a12|v − v|L2 |u − u|L2 + a13|w − w|L2 |u − u|L2

+ a14|u′ − u′|L2 |u − u|L2

≤
(
a11

T 2

π2 + a14
T
π

)
|u − u|2H1

0
+ a12

T 2

π2 |u − u|H1
0
|v − v|H1

0
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+ a13
T 2

π2 |u − u|H1
0
|w − w|H1

0
.

Similarly
(N2(u, v, w) − N2(u, v, w) , v − v)H1

0
≤

≤ T 2

π2 |v − v|H1
0

[
a21|u − u|H1

0
+ a22|v − v|H1

0
+ a23|w − w|H1

0

]
,

and
(N3(u, v, w) − N3(u, v, w) , w − w)H1

0
≤

≤ T 2

π2 |w − w|H1
0

[
a31|u − u|H1

0
+ a23|v − v|H1

0
+ a33|w − w|H1

0

]
.

If the matrix

(19) A = T 2

π2


(
a11 + π

T a41
)

a12 a13
a21 a22 a23
a31 a32 a33


is convergent to zero, then (h1) is fulfilled.

Let u ∈ H1
0 (0, T ), v ∈ (K2)r2,R2 , w ∈ (K3)r3,R3 . Since f2 has positive values,

using assumption (H2) we deduce

N2(u(t), v(t), w(t)) =
∫ T

0
G(t, s)f2(s, u(s), v(s), w(s))ds

≥
∫ b

a
G(t, s)f2(s, u(s), v(s), w(s))ds

≥
∫ b

a
G(t, s)f2(s, u(s), r2, r3)ds

≥ m(b − a)f2(ξ, u(ξ), r2, r3) ≥ r2,

for all t ∈ (0, T ), where some ξ ∈ (a, b). This guarantees that l2(N2(u, v, w)) ≥
r2. Moreover, if |v|H1

0
= R2, it follows that N2(u, v, w) ̸= (1 + λ)v for every

λ > 0. Indeed, if we assume the contrary, then
(1 + λ)|v|2H1

0
= (1 + λ)R2

2 = (N2(u, v, w), v)H1
0

= (f2(u, v, w), v)L2 =
∫ T

0
v(s)f2(s, u(s), v(s), w(s))ds

=
∫ T

0
v(s) [f2(s, u(s), v(s), w(s)) − f2(s, u(s), 0, 0)] ds

+
∫ T

0
v(s)f2(s, u(s), 0, 0)ds.

Using the monotonicity conditions of f2, we easily deduce

(1 + λ)|v|2H1
0

≤
∫ T

0
v(s) [a22v(s) + a23w(s)] ds + |v|L2 |f2(·, u(·), 0, 0)|L2

≤ T 2

π2

[
a22R2

2 + a23R2R3
]

+ T
π R2|f2(·, u(·), 0, 0)|L2 .
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Hence, relation (18) yields

(1 + λ)|v|2H1
0

≤ R2
2,

which is a contradiction. Applying the same reasoning, a similar relation also
holds for f3, and therefore condition (h2) is verified.

Verification of conditions (h3), (h4). One easily sees that for any v ∈
(K2)r2,R2 and w ∈ (K3)r3,R3 , one has

(20) 0 ≤ v(t) ≤ cR2 ; 0 ≤ w(t) ≤ cR3.

Consequently,

|N1(0, v, w)| =
∫ T

0
G(t, s)f1(s, 0, v(s), w(s), 0)ds

≤
∫ T

0
G(t, s)f1(s, 0, cR2, cR3, 0)ds

≤ T |G|∞|f1(θ, 0, cR2, cR3, 0)|∞,

for some θ ∈ (0, T ). Hence, condition (h4) holds true.
Since

F2(t, u(t), v(t), w(t)) ≤ cR2f2 (t, u(t), cR2, cR3) , for all t ∈ (0, T ),

we can deduce

E2(u, v, w) ≥ −
∫ T

0
cR2f2(x, u(x), cR2, cR3)dx

≥ −cR2

∫ T

0
[f2(x, u(x), cR2, cR3) − f2(x, u(x), 0, 0)] dx

− cR2|f(·, u(·), 0, 0)|L1

≥ −cR2
2T (a22cR2 + a23cR3) − cR2|f(·, u(·), 0, 0)|L1 > −∞,

which guarantees that E2 is lower bounded on H1
0 (0, T )×(K2)r2,R2 ×(K3)r3,R3 .

Furthermore, when l2(v) = r2 and |v|H1
0

= R2 simultaneously, it follows that

E2(u, v, w) =
|v|2

H1
0

2 −
∫ T

0

∫ v(x)

0
f2(x, u(x), v(x), w(x))dsdx

≥ R2
2

2 −
∫ T

0

∫ cR2

0
f2(x, u(x), s, cR3)dsdx

≥ R2
2

2 −
∫ T

0
cR2f2(x, u(x), cR2, cR3)dx

≥ R2
2

2 − cR2TM1 ≥ −r2(b − a)M2 + ε.(21)

On the other hand,

E2(u, r2, w) = −
∫ T

0

∫ r

0
f2(x, u(x), s, w(x))dsdx
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≤ −
∫ b

a

∫ r2

0
f2(x, u(x), 0, r3)dsdx

= −
∫ b

a
r2f2(x, u(x), 0, r3)dx ≤ −r2(b − a)M2.(22)

From (21) and (22), we easily deduce
E2(u, v, w) ≥ −r2(b − a)M2 + ε ≥ E2(u, r2, w) + ε.

Following the same reasoning for E3 and f3 we obtain
inf

H1
0 (0,T )×(K)r2,R2 ×(K)r3,R3

E3(·) > −∞

and E3(u, v, w) ≥ E3(u, v, w) + ε whenever l3(w) = r3 and |w|H1
0

= R3 simul-
taneously. Thus conditions (h3) is satisfied.

As all the assumptions of Theorem 7 are satisfied, there exists
(u∗, v∗, w∗) ∈ H1

0 (0, T ) × (K2)r2,R2 × (K3)r3,R3

a solution to system (15), such that (v∗, w∗) is a Nash equilibrium for the
energy functionals (E2, E3). □

Example 12. Let the system

(23)


−u′′(t) = ā1

(
e−u2(t) + e−(u′(t))2

+ e−v2(t) + e−w2(t)
)

−v′′(t) = ā2
(
e−u2(t) + arctan(v(t) + 2w(t)) + π

2

)
−w′′(t) = ā2

(
e−u2(t) + arctan(2v(t) + w(t)) + π

2

) on (0, 3),

with Dirichlet boundary conditions
u(0) = u(3) = 0
v(0) = v(3) = 0
w(0) = w(3) = 0,

where āi (i = 1, 3) are positive real numbers.
We apply the results from Theorem 11 with,

f1 (x1, x2, x3, x4) = ā1
(
e−x2

1 + e−x2
2 + e−x2

3 + e−x2
4
)

f2 (x1, x2, x3) = ā2
(
e−x2

1 + arctan (x2 + x3) + π
2

)
f3 (x1, x2, x3) = ā3

(
e−x2

2 + arctan (x2 + x3) + π
2

)
Here, we choose c =

√
3 and set R1 = R2 = ∞. The value of r is determined

in such a way that, for each i = 2, 3, there exist suitable constants ā2 and ā3
such that the following inequality has solutions:
(24) āi

(
arctan 2r + π

2
)

≥ r.

The closed interval [a, b] is selected to be [1, 2]. As a result

m = min
{

1(3−1)
2 , 2(3−2)

2

}
= 1.
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If the matrix

A = 9
π2

ā1
(

π
3 + 1

)
ā1 ā1

ā2 ā2 ā2
ā2 ā3 ā3


is convergent to zero, then the system (23) has a solution (u∗, v∗, w∗) such that
(v∗, w∗) is a Nash equilibrium on (K)r,R × (K)r,R for the energy functionals
associated with the second and third equations.

Proof. We will demonstrate that all the conditions outlined in Theorem 11
are satisfied. It is clear that the functions f1, f2, f3 are all nonegative. Since
these functions are constructed from Lipschitz functions, each with a Lipschitz
constant not exceeding 1, the coefficients aij are:

aij = āi (i = 1, 3) and a14 = a1.

Therefore, condition (H1) is satisfied, given that the matrix A converges to
zero. On the condition (H2), the first relation (i) follows immediately, as the
function arctan is increasing.

Check of (ii). For each i ∈ {2, 3}, one has:

fi(x1, r, r) ⩾ āi arctan 2r ≥ r

As we sought solutions without upper bounds, it is not necessary to verify the
second conditions from (ii) and condition (iii). Thus, all the assumptions of
Theorem 11 are satisfied, which concludes our proof. □

In order the straighten our theory, below we present a numerical example
for a particular choice of constants āi.

Example 13. Let the system

(25)


−u′′(t) = 0.1

(
e−u2(t) + e−(u′(t))2

+ e−v2(t) + e−w2(t)
)

−v′′(t) = 0.40
(
e−u2(t) + arctan(v(t) + w(t))

)
−w′′(t) = 0.45

(
e−u2(t) + arctan(v(t) + w(t))

)
together with the boundary conditions

u(0) = u(3) = 0
v(0) = v(3) = 0
w(0) = w(3) = 0

.

Here, we chose r := min{r2, r3} where r2 and r3 are the solutions of the
equations

0.4 arctan
(
2x + π

2
)

= x and 0.45 arctan
(
2x + π

2
)

= x.

After straightforward calculations, we obtain an approximate solution of
r ≈ 0.478.
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Fig. 1. Plot of the solutions

In Fig. 1, you can observe the approximated solutions of the system (25).
It is clear that the minimum values of the second and third solutions over the
interval [1, 2] surpass the threshold of r = 0.478, that is,

min
t∈[1,2]

{v(t), w(t)} ≥ r.

However, the first equation does not satisfy this requirement since we did not
request localization.
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