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NONLINEAR RANDOM EXTRAPOLATION ESTIMATES OF π

UNDER DIRICHLET DISTRIBUTIONS

SHASHA WANG†, ZECHENG LI‡ and WEN-QING XU∗

Abstract. We construct optimal nonlinear extrapolation estimates of π based
on random cyclic polygons generated from symmetric Dirichlet distributions.
While the semiperimeter Sn and the area An of such random inscribed polygons
and the semiperimeter (and area) S′

n of the corresponding random circumscrib-
ing polygons are known to converge to π w.p.1 and their distributions are also
asymptotically normal as n → ∞, we study in this paper nonlinear extrapola-
tions of the forms Wn = Sα

n Aβ
nS′ γ

n and Wn(p) = (αSp
n + βAp

n + γS′ p
n )1/p where

α + β + γ = 1 and p ̸= 0. By deriving probabilistic asymptotic expansions with
carefully controlled error estimates, we show that Wn and Wn(p) also converge
to π w.p.1 and are asymptotically normal. Furthermore, to minimize the ap-
proximation error associated with Wn and Wn(p), the parameters must satisfy
the optimality condition α + 4β − 2γ = 0. Our results generalize previous work
on nonlinear extrapolations of π which employ inscribed polygons only and the
vertices are also assumed to be independently and uniformly distributed on the
unit circle.

MSC. Primary 65C20, 60F05; Secondary 05C80, 60D05.
Keywords. Random polygons, nonlinear extrapolations, Dirichlet distribution,
central limit theorems; Cramér’s theorem.

1. INTRODUCTION

Given a convex set K ⊆ Rd, the stochastic properties of the convex hull Kn

generated by n independent random points on K, such as the area, volume
and number of vertices of Kn, their probability distributions and asymptotic
behavior have attracted extensive attention (see, e.g., [7, 10, 11, 16, 17, 20]).
In the case of n points randomly selected on a unit circle in R2, the resulting
convex hull is a random n-gon inscribed in the circle which is obtained by con-
necting all adjacent vertices on the circle. Using the same set of random points,
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one may also construct (w.p.1) a random circumscribing n-gon which is tan-
gent to the circle at each of the n random points. In the simplest case when the
vertices are independent and uniformly distributed on the circle, it is known
that the semiperimeter Sn and area An of such random inscribed polygons,
and the semiperimeter (or area) S′

n of the random circumscribing polygons
all converge to π w.p.1 as n → ∞ and their distributions are also asymptoti-
cally Gaussian [4, 24]. Furthermore, by using extrapolation techniques [12, 15]
originating exactly from the famous Archimedean approximations of π based
on regular polygons [3, 13, 19], it has been shown [22, 23, 25] that simple
weighted averages such as 4

3Sn − 1
3An, 2

3Sn + 1
3S′

n and 16
15Sn − 1

5An + 2
15S′

n, etc.,
provide much more accurate approximations of π, and at the same time also
satisfy similar central limit theorems as n → ∞. We note that extrapolation
methods are useful in many important applications such as numerical evalua-
tion of integrals, numerical solution of differential equations, and polynomial
interpolations, etc. To accelerate the convergence associated with existing
low-precision approximations, extrapolation seeks to combine them in a way
such that the leading order error terms are cancelled out as much as possi-
ble. For example, in the simpler case of the Archimedean approximation of
π, while both Sn = n sin(π/n) and An = 1

2n sin(2π/n) = Sn/2 converge to π

with errors of order O(n−2), a closer look reveals that Sn − π ≈ − π3

6n2 and
An − π ≈ −2π3

3n2 . This implies the error of An roughly quadruples that of Sn.
Consequently, the weighted average 4

3Sn − 1
3An, or equivalently, 4

3Sn − 1
3Sn/2,

exactly cancels out the leading order error terms in Sn and An to yield an
improved estimate of π with a reduced error now of order O(n−4).

More recently, in [26], the authors have initiated the study of novel non-
linear extrapolation estimates of π in the forms Xn = Sα

n Aβ
n and Yn(p) =

(αSp
n + βAp

n)1/p where α + β = 1 and p ̸= 0. By deriving probabilistic
asymptotic expansions with carefully controlled error estimates, it is shown
that, for both Xn and Yn(p), the same choice α = 4/3, β = −1/3 minimizes
the approximation error with Xn = π + n−3+δo(1), Yn(p) = π + n−3+δo(1)
where δ > 0 is any positive number and o(1) represents a random variable
which converges to 0 w.p.1 as n → ∞. Furthermore, Xn and Yn(p) are
also asymptotically normal with Xn ∼ AN(π − 2π5/n4, 2496π10/n9), Yn(p) ∼
AN(π − 2(p + 1)π5/n4, (160p2 + 960p + 2496)π10/n9) where for a sequence of
random variables {Zn} and µn ∈ R, σn > 0, the notation Zn ∼ AN(µn, σ2

n)
means (Zn − µn) /σn

L−→ N (0, 1). In particular, for p = 1, Yn(1) reduces
to the optimal linear extrapolation estimate 4

3Sn − 1
3An. Moreover, Xn may

be viewed as the limit of Yn(p) when p → 0, a reflection of the relation
limp→0(αxp + βyp)1/p = xαyβ for any x, y > 0 and α + β = 1.

In this paper, we aim to further develop nonlinear random extrapolation
methods for approximating π. On the one hand, it would be natural to include
also random circumscribing polygons in the approximation process. Motivated
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by the work in [26], we study nonlinear functions of Sn, An and S′
n in the forms

Wn = Sα
n Aβ

nS′γ
n , Wn(p) = (αSp

n + βAp
n + γS′ p

n )1/p where α + β + γ = 1 and
p ̸= 0. On the other hand, we are also interested in extending the theory to
more general random cyclic polygons whose vertices are not independently and
uniformly distributed on the circle. While this is a very challenging problem
in general, as a first step, we focus on the particular case of random cyclic
polygons generated from symmetric Dirichlet distributions with an arbitrary
concentration parameter a > 0. We note that in such cases, it has been proved
[21] that the respective semiperimeters and areas, again denoted by Sn, An

and S′
n, satisfy similar convergence estimates and central limit theorems as in

[4, 24] for the uniform case, which in fact corresponds to the special case a = 1
of the Dirichlet distribution.

Clearly, as in [26], the case p = 1 reduces to linear extrapolations based on
Sn, An and S′

n, and due to the relation limp→0 (αxp +βyp +γzp)1/p = xαyβzγ ,
we expect to recover Wn from Wn(p) in the limit p → 0. More importantly,
based on similar asymptotic expansion results established in [21] for Sn, An

and S′
n in terms of various power sums of the underlying Dirichlet distri-

bution, we derive rigorous probabilistic asymptotic expansions with carefully
controlled error estimates for various nonlinear functions of Sn, An and S′

n,
particularly Wn and Wn(p). Such probabilistic asymptotic expansions resem-
ble the well-known Taylor series expansions in many deterministic approxi-
mation problems and provide a cornerstone for establishing the corresponding
probability convergence estimates and central limit theorems.

It turns out that, for both Wn and Wn(p), the optimal approximation occurs
when α + 4β − 2γ = 0 with Wn = π + n−3+δo(1) and Wn(p) = π + n−3+δo(1).
Such results are comparable with those obtained in [26] for the case γ = 0 and
are actually weaker than the corresponding optimal linear extrapolation esti-
mate Wn(1) = 16

15Sn − 1
5An + 2

15S′
n = π+n−5+δo(1), see Theorems 11–13 below

for details. Note that together with α+β+γ = 1, the condition α+4β−2γ = 0
implies that α = 4/3 − 2γ, β = −1/3 + γ where γ is an arbitrary constant.
Due to complicated nonlinear effects, however, the extra “free” parameter γ
can no longer be used to further improve the approximation associated with
Wn and Wn(p). Nevertheless, by further combining such nonlinear extrap-
olation estimates with different values of γ, it is possible achieve additional
improvements better than the linear case.

Finally, it is interesting to note that in the case of the classical Archimedean
polygons, for both Wn and Wn(p), the optimal estimates also occur when
α+4β−2γ = 0 with Wn = π+ 1

45
π5

n4 +O(n−6), Wn(p) = π+ 1
180

π5

n4 [45γp−10p+
4]+O(n−6). In fact, for Wn(p), by choosing γ = 10p−4

45p and p = p± = −21±
√

721
70 ,

we can further obtain Wn(p±) = π − 119±
√

721
661500

π9

n8 + O(n−10), which is two
orders of magnitude higher than the optimal linear extrapolation estimate
Wn(1) = 16

15Sn − 1
5An + 2

15S′
n = π + π7

105n6 + O(n−8). However, for Wn, the
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result turns out to be completely independent of γ. This is due to the relation
AnS′

n = S2
n, a variant of Archimedes’s celebrated geometric mean relation,

which implies Wn = Sα
n Aβ

nS′ γ
n = Sα+2γ

n Aβ−γ
n .

The remainder of the paper is organized as follows. In Section 2, we present
some useful preliminary results related to the Dirichlet distribution and its
various power sums. Section 3 is devoted to the study of nonlinear extrapo-
lation estimates of π based on random inscribed and circumscribing polygons
generated from symmetric Dirichlet distributions. Finally, we offer several
additional remarks in Section 4 and some concrete numerical simulation re-
sults in Section 5 to conclude our study on nonlinear random extrapolation
approximations.

2. PRELIMINARIES

2.1. Basic properties of Dirichlet distributions. Recall that a random
vector Y′ = (Y1, · · · , Yn−1) ∈ Rn−1, n ≥ 2, is said to have Dirichlet distribu-
tion [2] with parameters a = (a1, · · · , an−1; an) ∈ Rn+ if it has joint probability
density function

fY1,··· ,Yn−1(y1, · · · , yn−1) = Γ(a1+···+an)
Γ(a1)···Γ(an) ya1−1

1 · · · y
an−1−1
n−1 yan−1

n

where yi > 0,
∑n−1

i=1 yi < 1, yn = 1 −
∑n−1

i=1 yi, and Γ(a) =
∫∞

0 va−1e−v dv is
the gamma function defined for all a > 0. Let Yn = 1 −

∑n−1
i=1 Yi. With slight

abuse of notation, we also refer to Y = (Y′, Yn) ∈ Rn as Dirichlet distribution
and write Y ∼ Dir(a), Y′ ∼ Dir′(a).

In this paper, we focus on symmetric Dirichlet distributions, that is, ai =
a > 0 for all 1 ≤ i ≤ n. In such cases, all Yi ∼ Beta(a, (n − 1)a) have identical
Beta distribution.

Lemma 1 (Tail probability, [21]). Let ∆n = max
1≤i≤n

Yi and Zn any measurable
function of Y1, Y2, · · · , Yn. Then for any t ∈ (0, 1),

(1) Pr(∆n ≥ t) decays exponentially as n → ∞.
(2) Zn · 1{∆n≥t} → 0 w.p.1 as n → ∞.

Lemma 2 (Dirichlet integrals, [2]). Let k = (k1, · · · , kn) ∈ Rn such that
a + kj > 0 for all 1 ≤ j ≤ n. Then

(1) E

 n∏
j=1

Y
kj

j

 = Γ(|a|)
Γ(|a+k|)

n∏
j=1

Γ(a+kj)
Γ(a) = Γ(na)

Γ(na+
∑n

j=1 kj)

n∏
j=1

Γ(a+kj)
Γ(a) .

Let Dn,k =
∑n

i=1 Y k
i , k ∈ N. Then n−(k−1) ≤ Dn,k ≤ 1 w.p.1. Further-

more, for large n, by using the above Dirichlet integrals, it is easy to compute
E(Dn,k) = nγk(a)/γk(na) ≈ n−(k−1)mk and Var(Dn,k) ≈ n−(2k−1)σ2

k where
γk(a) = Γ(a)−1Γ(a + k) = a(a + 1) · · · (a + k − 1), mk = a−kγk(a), and
σ2

k = m2k − (1 + k2/a)m2
k.
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Lemma 3 (Asymptotic convergence of Dn,k, [21]). Let k ∈ N. Then
(1) nk−1−δDn,k → 0 in probability for all δ > 0 as n → ∞.
(2) nk−2−δDn,k → 0 w.p.1 for all δ > 0 as n → ∞.
(3) Dn,k ∼ AN

(
n−(k−1)mk, n−(2k−1)σ2

k

)
, that is,

√
n
(
nk−1Dn,k − mk

) L−→
N
(
0, σ2

k

)
as n → ∞.

The following two lemmas provide additional asymptotic convergence re-
sults for various nonlinear expressions of Dn,k. Their proofs are slightly lengthy
and are deferred to the Appendix.

Lemma 4. For any l ≥ 1, k1, k2, · · · , kl and p1, p2, · · · , pl ∈ N, then for any
δ > 0, it holds that

(1) n
(∑l

i=1(ki−1)pi

)
−δ ∏l

j=1 Dpj

n,kj
→ 0 in probability.

(2) n
(∑l

i=1(ki−1)pi

)
−1−δ ∏l

j=1 Dpj

n,kj
→ 0 w.p.1 as n → ∞.

Lemma 5. Let α, β ∈ R, α2 + β2 ̸= 0 and Tn = αD2
n,3 + βDn,5. Then

Tn ∼ AN
(
n−4µT (α, β), n−9σ2

T (α, β)
)

where µT (α, β) = αm2
3 +βm5 = a−4(a+

1)(a + 2)
[
α(a + 1)(a + 2) + β(a + 3)(a + 4)

]
and

σ2
T (α, β) = 4α2m2

3σ2
3 + β2σ2

5 + 4αβ(m3m8 − (1 + 15/a)m2
3m5)

= 8a−9(a + 1)(a + 2)
[
3α2(a + 1)2(a + 2)2(3a + 7)

+ 30αβ(a + 1)(a + 2)(a + 3)2(a + 4)
+ 5β2(a + 3)(a + 4)(5a3 + 60a2 + 250a + 363)

]
.

Remark 6. The underlying matrix A = (aij) associated with the quadratic
form in σ2

T (α, β) is strictly positive definite with

a11 = 3(a + 1)2(a + 2)2(3a + 7),
a12 = a21 = 15(a + 1)(a + 2)(a + 3)2(a + 4),
a22 = 5(a + 3)(a + 4)(5a3 + 60a2 + 250a + 363),

det A = 15(a + 1)2(a + 2)2(a + 3)(a + 4)
{

20a3 + 225a2 + 814a + 921
}

> 0.

This implies that σ2
T (α, β) is non-degenerate unless α = β = 0.

2.2. Random cyclic polygons under symmetric Dirichlet distributions.
The Dirichlet distribution Y ∼ Dir(a) is naturally associated with the (non-
uniform) random division 0 = X0 < X1 < · · · < Xn−1 < Xn = 1 of the unit
interval where X0 = 0 and Xi =

∑i
j=1 Yj for 1 ≤ i ≤ n. In the special case

a = 1, this corresponds to the classical uniform random division [6, 14] gener-
ated by n − 1 independent and uniformly distributed random points on (0, 1).
With the rescaling Xi 7→ θi = 2πXi, this can be further mapped to a random
division of the unit circle, separated by points Pi(cos θi, sin θi), 0 ≤ i ≤ n, in
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counterclockwise direction where Pn represents the same point as P0. By con-
necting these points consecutively, we obtain an inscribed random n-gon with
its semiperimeter Sn and area An given by Sn =

∑n
i=1 sin π(Xi − Xi−1) =∑n

i=1 sin πYi, An = 1
2
∑n

i=1 sin 2π(Xi − Xi−1) = 1
2
∑n

i=1 sin 2πYi. Similarly,
using the same random vertices Pi, we can also construct w.p.1 a circum-
scribing random n-gon which is tangent to the circle at each point Pi with
its semiperimeter and area both given by S′

n =
∑n

i=1 tan π(Xi − Xi−1) =∑n
i=1 tan πYi. Note that in the event (which has probability 0) all vertices

are equally spaced, that is, Yi = 1/n for all 1 ≤ i ≤ n, these random n-gons
happen to be regular n-gons inscribed in or circumscribed about the circle
with Sn = n sin(π/n), An = 1

2n sin(2π/n) = Sn/2 and S′
n = n tan(π/n). Addi-

tionally, such random cyclic polygons generated from the symmetric Dirichlet
distribution Y ∼ Dir(a) also degenerate to regular n-gons in the limit as
a → ∞.

By using the Taylor series expansion of the sine and tangent functions,
it is easy to obtain, at least formally, the following probabilistic asymptotic
expansions for Sn, An and S′

n:

Sn =
∞∑

j=1

(−1)j−1

(2j−1)! π2j−1Dn,2j−1

=π − 1
3!π

3Dn,3 + 1
5!π

5Dn,5 − 1
7!π

7Dn,7 + · · · ,(2)

An =
∞∑

j=1

(−1)j−122j−2

(2j−1)! π2j−1Dn,2j−1

=π − 4
3!π

3Dn,3 + 16
5! π5Dn,5 − 64

7! π7Dn,7 + · · · ,(3)

S′
n =

∞∑
j=1

B2j(−4)j(1−4j)
(2j)! π2j−1Dn,2j−1

=π + 1
3π3Dn,3 + 2

15π5Dn,5 + 17
315π7Dn,7 + · · · .(4)

where Bj is the jth Bernoulli number. Note that by Lemma 3, the random
infinitesimal terms Dn,k in the above expansions decrease progressively in or-
der of magnitude. The validity of these asymptotic expansions is rigorously
justified by the following lemma.

Lemma 7 ([21]). Let m be any positive integer and δ > 0. Then

Sn =
m∑

j=1

(−1)j−1

(2j−1)! π2j−1Dn,2j−1 + n−(2m−1)+δo(1),

An =
m∑

j=1

(−1)j−122j−2

(2j−1)! π2j−1Dn,2j−1 + n−(2m−1)+δo(1),

S′
n =

m∑
j=1

B2j(−4)j(1−4j)
(2j)! π2j−1Dn,2j−1 + n−(2m−1)+δo(1).
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In particular, this implies that Sn, An and S′
n all converge to π w.p.1 and their

distributions are also asymptotically normal with
Sn ∼ AN

(
π − 1

6n−2m3π3, 1
36n−5σ2

3π6),
An ∼ AN

(
π − 2

3n−2m3π3, 4
9n−5σ2

3π6
)

,

S′
n ∼ AN

(
π + 1

3n−2m3π3, 1
9n−5σ2

3π6)
where m3 = a−2(a + 1)(a + 2) and σ2

3 = 6a−5(a + 1)(a + 2)(3a + 7).

3. NONLINEAR EXTRAPOLATION ESTIMATES

3.1. Probabilistic asymptotic expansions for nonlinear functions of
Sn, An and S′

n. In this section, we study nonlinear random extrapolation
estimates of π based on the semiperimeters and areas of both inscribed and
circumscribed random polygons with an aim to construct more accurate non-
linear extrapolation estimates than in [26]. To facilitate the derivation of
asymptotic expansions for nonlinear functions of Sn, An and S′

n in the forms
Wn = Sα

n Aβ
nS′γ

n and Wn(p) = (αSp
n + βAp

n + γS′ p
n )1/p where α + β + γ = 1 and

p ̸= 0, we follow the development in [26] and write
Wn,1 = 1

3!Dn,3, Wn,2 = 1
2(3!)2 D2

n,3 − 1
5!Dn,5,

Wn,3 = 1
3(3!)3 D3

n,3 − 1
3!5!Dn,3Dn,5 + 1

7!Dn,7,

Un,p,1 = 1
3!
(p

1
)
Dn,3, Un,p,2 = 1

(3!)2
(p

2
)
D2

n,3 + 1
5!
(p

1
)
Dn,5,

Un,p,3 = 1
(3!)3

(p
3
)
D3

n,3 + 2
3!5!
(p

2
)
Dn,3Dn,5 + 1

7!
(p

1
)
Dn,7.

Lemma 8. Let δ > 0. Then it holds that
log (Sn/π) = −π2Wn,1 − π4Wn,2 − π6Wn,3 + n−7+δo(1),(5)
log (An/π) = −4π2Wn,1 − 16π4Wn,2 − 64π6Wn,3 + n−7+δo(1),(6)

(Sn/π)p = 1 − Un,p,1π2 + Un,p,2π4 − Un,p,3π6 + n−7+δo(1),(7)
(An/π)p = 1 − 4 Un,p,1π2 + 16 Un,p,2π4 − 64 Un,p,3π6 + n−7+δo(1).(8)

We mention that while the analysis in [26] is carried out for uniform random
divisions only, with Lemmas 1, 3 and 4, it is straightforward to verify that
exactly the same asymptotic expansion results in fact extend to the case of
symmetric Dirichlet distributions Y ∼ Dir(a) for arbitrary a > 0. Note also
that, in view of Lemmas 3 and 4, we have, for any δ > 0, Wn,1 = n−1+δo(1),
Un,p,1 = n−1+δo(1), Wn,2 = n−3+δo(1), Un,p,2 = n−3+δo(1), Wn,3 = n−5+δo(1),
Un,p,3 = n−5+δo(1). Thus, the above probabilistic asymptotic expansions in
Lemma 8 imply, log (Sn/π) = −π2Wn,1 + n−3+δo(1) = −π2Wn,1 − π4Wn,2 +
n−5+δo(1) and (Sn/π)p = 1 − Un,p,1π2 + n−3+δo(1) = 1 − Un,p,1π2 + Un,p,2π4 +
n−5+δo(1).

Next, to derive asymptotic expansions for nonlinear functions of S′
n such as

log(S′
n/π) and S′ p

n , we apply the same Taylor series expansions of log(1 + x)
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and (1 + x)p on S′
n/π − 1 = 1

3π2Dn,3 + 2
15π4Dn,5 + 17

315π6Dn,7 + n−7+δo(1).
Similar to Lemma 8, we now obtain

Lemma 9. As n → ∞, it holds that, for any δ > 0,

log(S′
n/π) = Mn,1π2 + Mn,2π4 + Mn,3π6 + n−7+δo(1),(9)

(S′
n/π)p = 1 + Vn,p,1π2 + Vn,p,2π4 + Vn,p,3π6 + n−7+δo(1)(10)

where

Mn,1 = 1
3Dn,3, Mn,2 = − 1

18D2
n,3 + 2

15Dn,5,

Mn,3 = 1
81D3

n,3 − 2
45Dn,3Dn,5 + 17

315Dn,7,

Vn,p,1 = 1
3
(p

1
)
Dn,3, Vn,p,2 = 1

9
(p

2
)
D2

n,3 + 2
15
(p

1
)
Dn,5,

Vn,p,3 = 1
27
(p

3
)
D3

n,3 + 4
45
(p

2
)
Dn,3Dn,5 + 17

315
(p

1
)
Dn,7.

Proof. Let 0 < t < 1/2 and τ = πt. From Lemma 1, it is clear that
log(S′

n/π) 1{∆n>t} = n−ko(1) for all k ≥ 0. Next we consider log(S′
n/π) 1{∆n≤t}.

For ∆n ≤ t, since S′
n =

n∑
i=1

tan πYi, by using the uniform estimate T2m−1 ≤

tan x ≤ T2m−1 + Cm,τ x2m+1 for 0 ≤ x ≤ τ where m ≥ 1 and T2m−1 =∑m
j=1

(−1)j−14j(4j−1)B2j

(2j)! x2j−1 is the mth Taylor polynomial of the tangent func-
tion and Cm,τ is some positive constant which depends on m and τ , we obtain

Tn,2m−1 ≤ S′
n ≤ Tn,2m−1 + Cm,τ Dn,2m+1

where

Tn,2m−1 =
m∑

j=1

(−1)j−14j(4j−1)B2j

(2j)! Dn,2j−1.

With Tn,1 = π and Dn,k ≤ ∆k−1
n ≤ tk−1, it is clear that we may choose t

suitably small such that 0 < S′
n/π − 1 ≤ 1/2 and 0 ≤ Tn,2m−1/π − 1 ≤ 1/2.

By the mean value theorem, we thus obtain

log(S′
n/π)1{∆n≤t} − log(Tn,2m−1/π)1{∆n≤t}

≤ S′
n/π − Tn,2m−1/π = n−(2m−1)+δo(1).

We now take m = 4. By inserting Tn,7/π − 1 = 1
3π2Dn,3 + 2

15π4Dn,5 +
17
315π6Dn,7 = n−1+δo(1) into the Taylor series approximation log(1 + x) =
x− 1

2x2+ 1
3x3+O(1)x4 for |x| ≤ 1/2 and keeping only terms at order n−7+δ and

below, we obtain log(Tn,7/π)1{∆n≤t} = 1
3π2Dn,3 +

(
− 1

18D2
n,3 + 2

15Dn,5
)

π4 +(
1
81D3

n,3 − 2
45Dn,3Dn,5 + 17

315Dn,7
)

π6+n−7+δo(1) = Mn,1π2+Mn,2π4+Mn,3π6

+n−7+δo(1). Consequently, we have log(S′
n/π) = Mn,1π2+Mn,2π4+Mn,3π6+

n−7+δo(1). Similarly, we can verify (S′
n/π)p = 1+Vn,p,1π2+Vn,p,2π4+Vn,p,3π6+

n−7+δo(1). □
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3.2. Nonlinear extrapolations of the form Wn = Sα
n Aβ

nS′ γ
n . With the

above preparations, we are now ready to derive probabilistic asymptotic expan-
sions for the nonlinear extrapolation estimates Wn = Sα

n Aβ
nS′ γ

n and Wn(p) =
(αSp

n + βAp
n + γS′ p

n )1/p where α + β + γ = 1 and p ̸= 0. By taking the ex-
ponential of the linear combination of log(Sn/π), log(An/π) and log(S′

n/π) in
(5), (6) and (9), or by multiplying Sα

n , Aβ
n and S′ γ

n directly from (7), (8), and
(10), we obtain

Lemma 10. For any δ > 0, it holds that
log(Wn/π) = − [(α + 4β)Wn,1 − γMn,1] π2 − [(α + 16β)Wn,2 − γMn,2] π4

− [(α + 64β)Wn,3 − γMn,3] π6 + n−7+δo(1),
Wn =π − π3[(α + 4β)Wn,1 − γMn,1]

+ π5
{

1
2 [(α + 4β)Wn,1 − γMn,1]2 − (α + 16β)Wn,2 + γMn,2

}
+ π7

{
− 1

3! [(α + 4β)Wn,1 − γMn,1]3

+ [(α + 4β)Wn,1 − γMn,1] [(α + 16β)Wn,2 − γMn,2]

− [(α + 64β)Wn,3 − γMn,3]
}

+ n−7+δo(1),(11)

where
(α + 4β)Wn,1 − γMn,1 =1

6(α + 4β − 2γ)Dn,3,

(α + 16β)Wn,2 − γMn,2 = 1
72(α + 16β + 4γ)D2

n,3 − 1
120(α + 16β + 16γ)Dn,5,

(α + 64β)Wn,3 − γMn,3 = 1
648(α + 64β − 8γ)D3

n,3

− 1
720(α + 64β − 32γ)Dn,3Dn,5

+ 1
5040(α + 64β − 272γ)Dn,7.

Let η = α+4β−2γ. Then with α+β+γ = 1, we may write α = 4
3 −2γ− 1

3η,
β = −1

3 + γ + 1
3η. Clearly if η ̸= 0, we have Wn = π + n−1+δo(1) = π −

1
6ηπ3Dn,3 + n−3+δo(1). Then by Slutsky’s theorem, it follows that Wn(p) ∼
AN(π − 1

6n−2ηπ3m3, 1
36n−5η2π6σ2

3).
However, if η = 0, that is, α = 4/3−2γ, β = −1/3+γ and γ is an arbitrary

constant, it is then possible to eliminate the leading error term involving Dn,3
in (11) to obtain

Wn =π − 1
4π5

[
(γ − 2/9) D2

n,3 + (2/15 − γ) Dn,5
]

− 1
4536π7

[
14(27γ − 10)D3

n,3 − 63(3γ − 2)Dn,3Dn,5 − 9(21γ + 2)Dn,7
]

+ n−7+δo(1).(12)

In particular, this implies Wn = π − 1
4π5

[(
γ − 2

9

)
D2

n,3 +
(

2
15 − γ

)
Dn,5

]
+

n−5+δo(1). By Lemma 5 and Remark 6, it is clear that Tn = Tn(γ− 2
9 , 2

15 −γ) =
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γ − 2

9

)
D2

n,3 +
(

2
15 − γ

)
Dn,5 is nondegenerate for all γ ∈ R and is asymptot-

ically normal with Tn ∼ AN
(
n−4µT (γ − 2

9 , 2
15 − γ), n−9σ2

T (γ − 2
9 , 2

15 − γ)
)

.

By further applying Slutsky’s theorem, a related central limit theorem
can be established for the optimal nonlinear extrapolation estimate Wn =
S

4/3−2γ
n A

−1/3+γ
n S′ γ

n . Note that in such cases, it is impossible to take advan-
tage of γ to further eliminate the leading order error term in (12) to achieve
Wn = π + n−5+δo(1).

Theorem 11. (1) If η = 0, then Wn = π + n−3+δo(1) for any δ > 0,
Wn ∼ AN

(
π − π5

4n4 µT (γ − 2
9 , 2

15 − γ), π10

16n9 σ2
T (γ − 2

9 , 2
15 − γ)

)
.

(2) If η ̸= 0, then Wn = π + n−1+δo(1) for any δ > 0 and Wn ∼
AN

(
π − 1

6n−2ηπ3m3, 1
36n−5η2π6σ2

3

)
.

3.3. Nonlinear extrapolations of the form Wn(p) = (αSp
n+βAp

n+γS′ p
n )1/p.

Next, we consider Wn(p) = (αSp
n + βAp

n + γS′ p
n )1/p. By taking the linear com-

bination of (Sn/π)p, (An/π)p and (S′
n/π)p in (7), (8) and (10), and applying

Newton’s generalized binomial formula for (1 + x)1/p, we derive
Lemma 12. For any δ > 0, it holds that

(Wn(p)/π)p = 1 − [(α + 4β)Un,p,1 − γVn,p,1]π2

+ [(α + 16β)Un,p,2 + γVn,p,2]π4

− [(α + 64β)Un,p,3 − γVn,p,3]π6 + n−7+δo(1),

Wn(p) = π − π3(1/p
1
)

[(α + 4β)Un,p,1 − γVn,p,1]

+ π5
{(1/p

2
)
[(α + 4β)Un,p,1 − γVn,p,1]2

+
(1/p

1
)
[(α + 16β)Un,p,2 + γVn,p,2]

}
+ π7

{(1/p
3
)
[−(α + 4β)Un,p,1 + γVn,p,1]3

+ 2
(1/p

2
)
[−(α + 4β)Un,p,1 + γVn,p,1][(α + 16β)Un,p,2 + γVn,p,2]

−
(1/p

1
)
[(α + 64β)Un,p,3 − γVn,p,3]

}
+ n−7+δo(1),

where
(α + 4β)Un,p,1 − γVn,p,1 = 1

6
(p

1
)
(α + 4β − 2γ)Dn,3,

(α + 16β)Un,p,2 + γVn,p,2 = 1
36
(p

2
)
(α +16β+4γ)D2

n,3+ 1
120
(p

1
)
(α+16β+16γ)Dn,5,

(α+64β)Un,p,3−γVn,p,3 = 1
216
(p

3
)
(α + 64β − 8γ)D3

n,3

+ 1
360
(p

2
)
(α + 64β − 32γ)Dn,3Dn,5

+ 1
5040

(p
1
)
(α + 64β − 272γ)Dn,7.

Again, let η = α + 4β − 2γ so that α = 4
3 − 2γ − 1

3η, β = −1
3 + γ + 1

3η.
Thus as in the case of Wn, if η ̸= 0, then Wn(p) = π − 1

6ηπ3Dn,3 + n−3+δo(1)
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and Wn(p) ∼ AN(π − 1
6n−2ηπ3m3, 1

36n−5η2π6σ2
3). However, if η = 0, that is,

α = 4/3 − 2γ, β = −1/3 + γ, a further improvement as in Theorem 11 is
possible. In such cases, we have

Wn(p) = π + π5

4

[
(p − 1) (γ − 2/9) D2

n,3 + (γ − 2/15) Dn,5
]

− π7

4536
[
7(p − 1)(p − 2)(27γ − 10)D3

n,3

+ 63(p − 1)(3γ − 2)Dn,3Dn,5 − 9(21γ + 2)Dn,7
]

+ n−9+δo(1).(13)

Theorem 13. (1) If η = 0, then Wn(p) = π + n−3+δo(1) for any δ > 0
and Wn(p) ∼ AN

(
π + 1

4n−4π5µT

(
(p − 1)(γ − 2

9), γ − 2
15

)
,

1
16n−9π10σ2

T

(
(p − 1)(γ − 2

9), γ − 2
15
))

.
(2) If η ̸= 0, then Wn(p) = π + n−1+δo(1) for any δ > 0 and Wn(p) ∼

AN
(
π − 1

6n−2ηπ3m3, 1
36n−5η2π6σ2

3

)
.

Remark 14. The asymptotic estimates for Wn in Theorem 11 can be re-
covered from those for Wn(p) in Theorem 13 by setting p = 0.

Remark 15. When p = 1, we may choose γ = 2
15 to further eliminate the

leading order error term in (13). This yields α = 16
15 , β = −1

5 and the optimal
linear extrapolation estimate Wn(1) = 16

15Sn − 1
5An + 2

15S′
n = π + n−5+δo(1) in

[21], which satisfies Wn(1) ∼ AN(π + 1
105n−6π7m7, 1

11025n−13π14σ2
7). However

this is not possible if p ̸= 1 since, as in the case of Wn, that would require
γ = 2

9 and γ = 2
15 simultaneously.

4. ADDITIONAL REMARKS

We offer some additional remarks to conclude our study on the nonlinear
random extrapolation estimates Wn = Sα

n Aβ
nS′ γ

n and Wn(p) = (αSp
n + βAp

n +
γS′ p

n )1/p. For brevity, we address for both Wn and Wn(p) the optimal case
only with α + 4β − 2γ = 0, that is, α = 4/3 − 2γ, β = −1/3 + γ.

4.1. Special cases of α = 0, β = 0, or γ = 0. Note that for γ = 0, γ = 1/3
and γ = 2/3, Wn reduces to Xn = S

4/3
n A

−1/3
n , Yn = S

2/3
n S

′ 1/3
n and Zn =

A
1/3
n S

′ 2/3
n respectively with Xn = π + π5

90

(
5D2

n,3 − 3Dn,5
)

+ n−5+δo(1), Yn =

π− π5

180

(
5D2

n,3 − 9Dn,5
)

+n−5+δo(1), Zn = π− π5

45

(
5D2

n,3 − 6Dn,5
)

+n−5+δo(1).

Corollary 16. For any δ > 0, it holds that
(1) Xn = π + n−3+δo(1),

Xn ∼ AN
(
π + 1

90n−4π5µT (5, −3), 1
8100n−9π10σ2

T (5, −3)
)
.

(2) Yn = π + n−3+δo(1),
Yn ∼ AN

(
π − 1

180n−4π5µT (5, −9), 1
32400n−9π10σ2

T (5, −9)
)
.
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(3) Zn = π + n−3+δo(1),
Zn ∼ AN

(
π − 1

45n−4π5µT (5, −6), 1
2025n−9π10σ2

T (5, −6)
)
.

Similarly, for Wn(p), the same choices γ = 0, γ = 1/3, γ = 2/3 yield
Xn(p) =

(
4
3Sp

n − 1
3Ap

n

)1/p
= π − 1

90π5
[
5(p − 1)D2

n,3 + 3Dn,5
]

+ n−5+δo(1),

Yn(p) =
(

2
3Sp

n + 1
3S′ p

n

)1/p
= π + 1

180π5
[
5(p − 1)D2

n,3 + 9Dn,5
]

+ n−5+δo(1),

Zn(p) =
(

1
3Ap

n + 2
3S′ p

n

)1/p
= π + 1

45π5
[
5(p − 1)D2

n,3 + 6Dn,5
]

+ n−5+δo(1).

Corollary 17. For any δ > 0, it holds that
(1) Xn(p) = π + n−3+δo(1),

Xn(p) ∼ AN
(
π − π5

90n4 µT (5(p − 1), 3), π10

8100n9 σ2
T (5(p − 1), 3)

)
.

(2) Yn(p) = π + n−3+δo(1),
Yn(p) ∼ AN

(
π + π5

180n4 µT (5(p − 1), 9) , π10

32400n9 σ2
T (5(p − 1), 9)

)
.

(3) Zn(p) = π + n−3+δo(1),
Zn(p) ∼ AN

(
π + π5

45n4 µT (5(p − 1), 6) , π10

2025n9 σ2
T (5(p − 1), 6)

)
.

4.2. Uniform spacings. In the special case of a = 1, the symmetric Dirichlet
distribution corresponds to the uniform spacings generated by n − 1 indepen-
dent and uniformly distributed random points on the unit interval. Thus,
by setting a = 1, we immediately obtain optimal nonlinear extrapolation es-
timates for random polygons generated by independent and uniformly dis-
tributed random points on the unit circle.

Theorem 18 (Uniform spacings). (1) Wn = π + n−3+δo(1), Wn(p) =
π + n−3+δo(1) for any δ > 0.

(2) Wn ∼ AN
(
π + n−4π5(21γ − 2), 48n−9π10(3405γ2 − 840γ + 52)

)
.

(3) Wn(p) ∼ AN
(
π + n−4π5µp,γ , n−9π10σ2

p,γ

)
where µp,γ = (9p + 21)γ −

2(p + 1), σ2
p,γ = 1

16σ2
T ((p − 1)(γ − 2/9), γ − 2/15) = 360(9p2 + 102p +

454)γ2 − 480(3p2 + 26p + 84)γ + 32(5p2 + 30p + 78).
(4) For p = 1 and γ = 2/15, Wn(1) = 16

15Sn − 1
5An + 2

15S′
n satisfies

Wn(1) = π + 1
105π7Dn,7 + n−7+δo(1) = π + n−5+δo(1), Wn(1) ∼

AN(π + 48n−6π7, 7792128n−13π14).

4.3. Regular polygons. Finally, we remark that in the case of regular poly-
gons, with Yi = 1/n and Dn,k = n−(k−1), it is straightforward to check that
the optimal estimate for both Wn and Wn(p) occurs also when α+4β −2γ = 0
with

Wn = π + 1
45

π5

n4 + 4
567

π7

n6 + 1
405

π9

n8 + O(n−10),

Wn(p) = π + π5

180n4 [45γp − 10p + 4]

− π7

4536n6

[
189p(p − 2)γ − 70p2 + 84p − 32

]
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− π9

25920n8
[
810p2(p − 1)γ2 − 45(13p2 − 20p + 20)γ
+ 2(55p3 − 120p2 + 100p − 32)

]
+ O(n−10).

Note that the result for Wn actually does not depend on the parameter γ at
all. This is due to the fact AnS′

n = S2
n, a variant of Archimedes’s celebrated

geometric mean relation, which implies Wn = Sα
n Aβ

nS′ γ
n = Sα+2γ

n Aβ−γ
n . In

particular, in such cases, Xn = S
4/3
n A

−1/3
n , Yn = A

2/3
n S

′ 1/3
n and Zn = A

1/3
n S

′ 2/3
n

all yield exactly the same result. While this relation no longer holds for random
polygons, it helps explain why throwing in an extra term does not always
increase the accuracy of the extrapolation estimates.

For Wn(p), however, by taking γ = 10p−4
45p , it is possible to eliminate the

leading error term O(n−4) to obtain Wn(p) = π + 1
5670

π7

n6 (35p2 + 21p − 2) −
1

32400
π9

n8 (25p3 − 75p2 − 52p + 12) + O(n−10). Thus if we choose p± = −21±
√

721
70 ,

we can further obtain Wn(p±) = π − 119±
√

721
661500

π9

n8 + O(n−10), which is two
orders of magnitude higher than the optimal linear estimate Wn(1) = 16

15Sn −
1
5An + 2

15S′
n = π + 1

105
π7

n6 + 1
360

π9

n8 + O(n−10).

5. NUMERICAL SIMULATIONS

In this section, we present numerical simulation results to confirm the main
probabilistic convergence estimates obtained in this paper. For this purpose,
we use the MATLAB command gamrnd(a,1) to first generate n indepen-
dent gamma random variables V = (V1, V2, · · · Vn) with shape parameter
a > 0. The symmetric Dirichlet random vector Y ∼ Dir(a1) is then ob-
tained by normalization Y = V/∥V∥1. Next, we compute Sn =

∑n
i=1 sin πYi,

An = 1
2
∑n

i=1 sin 2πYi, S′
n =

∑n
i=1 tan πYi, and subsequently, Wn = Sα

n Aβ
nS′γ

n ,
Wn(p) = (αSp

n + βAp
n + γS′p

n )1/p for n = 96 × 2k, k = 4, 5, 6, 7. For simplicity,
we consider two p values: p = 2, p = −1 and choose α = 16/15, β = −1/5,
γ = 2/15 which clearly satisfies the optimality condition η = α + 4β − 2γ = 0.
We repeat these simulations for m = 100, 000 times. For each of these random
samples, we compute its empirical mean µ̂(Xn) and empirical standard devi-
ation σ̂(Xn) with normalization X̃n = (Xn − µ̂(Xn))/σ̂(Xn). The histograms
(with bin size 400) for the empirical PDFs of normalized Sn, An, S′

n, Wn,
Wn(p) are displayed in Fig. 1 and Fig. 2 below for specified parameter values.

To effectively compare the empirical data with their theoretical asymptotic
values, suitable scaling factors are used for µ̂(Xn) and σ̂(Xn) in the tables
below. For Wn and Wn(p), by Theorems 11 and 13, it is clear that µ̂(Xn) = π+
O(1)n−4π5, and σ̂(Xn) = O(1)n−9/2π5. Thus, for easy numerical comparison,
we display µ̂n = n4π−5(µ̂(Xn) − π) and σ̂n = n9/2π−5σ̂(Xn) instead, together
with similarly scaled limiting values. For Sn, An and S′

n, the scaling factors
for the mean and standard deviation are n2π−3 and n5/2π−3 respectively.

Finally, we note that for p = 1, the optimal linear extrapolation Wn(1) =
16
15Sn−1

5An+ 2
15S′

n converges most rapidly with an asymptotical mean µ̂(Wn(1))
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= π + O(1)n−6 and standard deviation σ̂(Wn(1)) = O(1)n−13/2. At such
“atomic” scales, however, for n in the range 103 ∼ 104, the usual double pre-
cision computation may not be enough to prevent severe loss of significant
digits. In such cases, the distribution of the rescaled simulated data would
appear to be more “discrete” with unusually large variance. As a compro-
mise, partial numerical evidence of the convergence results may be witnessed
by using relatively smaller values of n instead. See Fig. 3 and Table 7. Such
phenomena also occur to Wn and Wn(p), but to a much lesser extent.

Fig. 1. Empirical PDF of normalized Sn, An, S′
n: a = 1, a = 2 and

n = 12288.
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Fig. 2. Empirical PDF of normalized Wn, Wn(2), Wn(−1): a = 1,
n = 3072 and a = 2, n = 1536.

n µ̂n µ∞ µ̂n/µ∞ σ̂n σ∞ σ̂n/σ∞

1536 -0.9980 -1.0000 0.9980 3.1522 3.1623 0.9968
a = 1 3072 -0.9989 -1.0000 0.9989 3.1388 3.1623 0.9926

6144 -0.9996 -1.0000 0.9996 3.1692 3.1623 1.0022
12288 -0.9998 -1.0000 0.9998 3.1627 3.1623 1.0001
1536 -0.4997 -0.5000 0.9993 0.8996 0.9014 0.9980

a = 2 3072 -0.4998 -0.5000 0.9996 0.9018 0.9014 1.0005
6144 -0.4999 -0.5000 0.9997 0.9021 0.9014 1.0008
12288 -0.5000 -0.5000 0.9999 0.9026 0.9014 1.0013

Table 1. Adjusted means and standard deviations of Sn: µ̂(Sn) =
π + π3n−2µ̂n, σ̂(Sn) = π3n−5/2σ̂n. The first four rows are for a = 1,
and the next four rows for a = 2.
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Fig. 3. Empirical PDF of normalized Wn(1) = 16
15 Sn − 1

5 An + 2
15 S′

n:
a = 1, n = 1536, 3072, 6144 and a = 2, n = 768, 1536, 3072.

n µ̂n µ∞ µ̂n/µ∞ σ̂n σ∞ σ̂n/σ∞

1536 -3.9921 -4.0000 0.9980 12.6082 12.6491 0.9968
a = 1 3072 -3.9955 -4.0000 0.9989 12.5550 12.6491 0.9926

6144 -3.9984 -4.0000 0.9996 12.6769 12.6491 1.0022
12288 -3.9992 -4.0000 0.9998 12.6510 12.6491 1.0001
1536 -1.9987 -2.0000 0.9993 3.5983 3.6056 0.9980

a = 2 3072 -1.9993 -2.0000 0.9996 3.6072 3.6056 1.0004
6144 -1.9995 -2.0000 0.9997 3.6085 3.6056 1.0008
12288 -1.9998 -2.0000 0.9999 3.6102 3.6056 1.0013

Table 2. Adjusted means and standard deviations of An: µ̂(An) =
π + π3n−2µ̂n, σ̂(An) = π3n−5/2σ̂n for a = 1 and a = 2.
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n µ̂n µ∞ µ̂n/µ∞ σ̂n σ∞ σ̂n/σ∞

1536 1.9962 2.0000 0.9981 6.3053 6.3246 0.9970
a = 1 3072 1.9978 2.0000 0.9989 6.2778 6.3246 0.9926

6144 1.9992 2.0000 0.9996 6.3385 6.3246 1.0022
12288 1.9996 2.0000 0.9998 6.3255 6.3246 1.0002
1536 0.9994 1.0000 0.9994 1.7993 1.8028 0.9981

a = 2 3072 0.9996 1.0000 0.9996 1.8036 1.8028 1.0005
6144 0.9997 1.0000 0.9997 1.8042 1.8028 1.0008
12288 0.9999 1.0000 0.9999 1.8051 1.8028 1.0013

Table 3. Adjusted means and standard deviations of S′
n: µ̂(S′

n) =
π + π3n−2µ̂n, σ̂(S′

n) = π3n−5/2σ̂n for a = 1 and a = 2.

n µ̂n µ∞ µ̂n/µ∞ σ̂n σ∞ σ̂n/σ∞

1536 0.8022 0.8000 1.0027 5.1913 5.0596 1.0260
a = 1 3072 0.8008 0.8000 1.0009 5.0906 5.0596 1.0061

6144 0.8001 0.8000 1.0001 5.1441 5.0596 1.0167
12288 0.7905 0.8000 0.9881 11.5189 5.0596 2.2766
1536 0.2002 0.2000 1.0008 0.7266 0.7211 1.0076

a = 2 3072 0.2000 0.2000 1.0002 0.7258 0.7211 1.0065
6144 0.1995 0.2000 0.9976 0.9367 0.7211 1.2990
12288 0.1926 0.2000 0.9631 10.2946 0.7211 14.2760

Table 4. Adjusted means and standard deviations of Wn: µ̂(Wn) =
π + π5n−4µ̂n, σ̂(Wn) = π5n−9/2σ̂n for a = 1 and a = 2.

n µ̂n µ∞ µ̂n/µ∞ σ̂n σ∞ σ̂n/σ∞

1536 -0.8018 -0.8000 1.0022 5.1782 5.0596 1.0234
a = 1 3072 -0.8007 -0.8000 1.0009 5.0872 5.0596 1.0055

6144 -0.8010 -0.8000 1.0012 5.1421 5.0596 1.0163
12288 -0.8075 -0.8000 1.0094 11.2584 5.0596 2.2251
1536 -0.2001 -0.2000 1.0007 0.7261 0.7211 1.0070

a = 2 3072 -0.2001 -0.2000 1.0004 0.7258 0.7211 1.0065
6144 -0.2003 -0.2000 1.0013 0.9326 0.7211 1.2932
12288 -0.2025 -0.2000 1.0123 10.1136 0.7211 14.0251

Table 5. Adjusted means and standard deviations of Wn(2):
µ̂(Wn(2)) = π + π5n−4µ̂n, σ̂(Wn(2)) = π5n−9/2σ̂n for a = 1 and
a = 2.

APPENDIX

Proof for Lemma 4. We use similar ideas in [21] to prove Lemmas 4 and 5.
First, by using the multinomial expansion formula

(x1 + x2 + · · · + xn)p =
∑
m

( p
m
)
xm1

1 xm2
2 · · · xmn

n =
∑
m

( p
m
) n∏

j=1
x

mj

j
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n µ̂n µ∞ µ̂n/µ∞ σ̂n σ∞ σ̂n/σ∞

1536 1.6042 1.6000 1.0026 10.3763 10.1193 1.0254
a = 1 3072 1.6016 1.6000 1.0010 10.1794 10.1193 1.0059

6144 1.6016 1.6000 1.0010 10.2350 10.1193 1.0114
12288 1.6028 1.6000 1.0017 14.5945 10.1193 1.4422
1536 0.4003 0.4000 1.0008 1.4529 1.4422 1.0074

a = 2 3072 0.4002 0.4000 1.0004 1.4503 1.4422 1.0056
6144 0.4004 0.4000 1.0011 1.5646 1.4422 1.0849
12288 0.4046 0.4000 1.0115 10.5186 1.4422 7.2933

Table 6. Adjusted means and standard deviations of Wn(−1):
µ̂(Wn(−1)) = π + π5n−4µ̂n, σ̂(Wn(−1)) = π5n−9/2σ̂n for a = 1
and a = 2.

n µ̂n µ∞ µ̂n/µ∞ σ̂n σ∞ σ̂n/σ∞

768 46.6014 48 0.9709 2330.9783 2791.4383 0.8351
a = 1 1536 46.8429 48 0.9759 2704.3826 2791.4383 0.9688

3072 9.3958 48 0.1957 34597.5684 2791.4383 12.3942
768 2.9572 3 0.9857 82.3636 83.7250 0.98374

a = 2 1536 2.5341 3 0.8447 467.2516 83.7250 5.5808
3072 25.8888 3 -8.6296 34440.6661 83.7250 411.3546

Table 7. Adjusted means and standard deviations of Wn(1) = 16
15 Sn−

1
5 An + 2

15 S′
n: µ̂(Wn(1)) = π + π7n−6µ̂n, σ̂(Wn(1)) = π7n−13/2σ̂n for

a = 1 and a = 2.

where p is a positive integer, m = (m1, m2, · · · , mn) is a multi-index with each
mj ≥ 0 and |m| =

∑n
j=1 mj = p, and

( p
m
)

is given by( p
m
)

=
( p

m1,m2,··· ,mn

)
= p!

m1!m2! · · · mn! ,

we obtain for each 1 ≤ i ≤ l

Dpi
n,ki

=

 n∑
j=1

Y ki
j

pi

=
∑
mi

( pi
mi

) n∏
j=1

Y
kimi,j

j

where mi = (mi,1, mi,2, · · · , mi,n) such that |mi| =
∑n

j=1 mi,j = pi. Then for
all 1 ≤ i ≤ l, we obtain

l∏
i=1

Dpi
n,ki

=
∑
mi

[
l∏

i=1

( pi
mi

)] n∏
j=1

Y

∑l

i=1 kimi,j

j .

By using (1) and
∑n

j=1
∑l

i=1 kimi,j =
∑l

i=1
∑n

j=1 kimi,j =
∑l

i=1 kipi, we ob-
tain

E
(

l∏
i=1

Dpi
n,ki

)
=

∑
mi

[
l∏

i=1

( pi
mi

)] Γ(na)
Γ(na+

∑n

j=1

∑l

i=1 kimi,j)

n∏
j=1

Γ(a+
∑l

i=1 kimi,j)
Γ(a)
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=
∑
mi

[
l∏

i=1

( pi
mi

)] Γ(na)
Γ(na+

∑l

i=1 kipi)

n∏
j=1

Γ(a+
∑l

i=1 kimi,j)
Γ(a) .(14)

The key is to estimate
∏n

j=1
Γ(a+qj)

Γ(a) with qj =
∑l

i=1 kimi,j . Note that

n∏
j=1

Γ(a+qj)
Γ(a) =


∏

j: qj≥1
γqj (a), if qj ≥ 1,

1, if qj = 0.

Since
n∑

j=1
qj =

n∑
j=1

l∑
i=1

kimi,j =
l∑

i=1

n∑
j=1

kimi,j =
l∑

i=1
kipi = m∗,

the number r of indices #{1 ≤ j ≤ n : qj ≥ 1} is at most m∗. Then if qj ≥ 1,
we have∏

j: qj≥1

Γ(a+qj)
Γ(a) =

∏
j: qj≥1

γqj (a)

≤
∏

j: qj≥1
γqj (â) = (â + qi1 − 1)! (â + qi2 − 1)! · · · (â + qir − 1)!

≤
(

m∗(â − 1) +
r∑

s=1
qis

)
! ≤

m∗(â − 1) +
n∑

j=1
qj

! = (m∗â)! = O(1),(15)

where â = ⌈a⌉ is the smallest integer that is greater than or equal to a, O(1)
is some positive constant independent of n. By using Stirling’s formula [1]

Γ(z) ∼ e−zzz−1/2(2π)1/2
[
1 + 1

12z + 1
288z2 − 139

51840z3 − 571
2488320z4 + · · ·

]
as z → ∞, we obtain

Γ(na)
Γ(na+

∑l

i=1 kipi)
∼ e−na(na)na−1/2

e
−(na+

∑l

i=1 kipi)(na+
∑l

i=1 kipi)
(na+

∑l

i=1 kipi)−1/2

= e
∑l

i=1 kipi

(
na +

l∑
i=1

kipi

)−
∑l

i=1 kipi (
1 −

∑l

i=1 kipi

na+
∑l

i=1 kipi

)na−1/2

∼ n−
∑l

i=1 kipi .(16)

Substituting (15) and (16) into (14), and using

∑
mi

l∏
i=1

(
pi

mi

)
=

l∏
i=1

∑
mi

(
pi

mi

)
=

l∏
i=1

npi = n
∑l

i=1 pi ,

we have

E
(

l∏
i=1

Dpi
n,ki

)
= O(1) n−

∑l

i=1(ki−1)pi , for large n.
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By applying Markov inequality, for any δ > 0 and ε > 0, we obtain

Pr
(

n

(∑l

i=1(ki−1)pi

)
−δ

l∏
i=1

Dpi
n,ki

> ε

)

≤ ε−1E
[
n

(∑l

i=1(ki−1)pi

)
−δ

l∏
i=1

Dpi
n,ki

]
= O(1)ε−1n−δ → 0

as n → ∞, which implies n

(∑l

i=1(ki−1)pi

)
−δ ∏l

j=1 Dpj

n,kj
→ 0 in probability as

n → ∞. In addition, we have∑
n≥3

Pr
(

n

(∑l

i=1(ki−1)pi

)
−1−δ

l∏
i=1

Dpi
n,ki

> ε

)
≤ O(1)ε−1 ∑

n≥3
n−1−δ < ∞.

By Borel-Cantelli Lemma, it follows that n

(∑l

i=1(ki−1)pi

)
−1−δ ∏l

i=1 Dpi
n,ki

→ 0
with probability 1 as n → ∞. This completes the proof of Lemma 4.

Proof for Lemma 5. By applying the equivalent representation [2]

(X1 − X0, X2 − X1, · · · , Xn − Xn−1) L=
(

V1∑n

i=1 Vi
, V2∑n

i=1 Vi
, · · · , Vn∑n

i=1 Vi

)
,

where V1, V2, · · · , Vn are independent gamma random variables with Vi ∼
Γ(a, 0, 1), i = 1, 2, · · · , n, for a > 0, we may rewrite

Tn = αD2
n,3 + βDn,5 = α

(
∑n

i=1 V 3
i )2

(
∑n

i=1 Vi)6 + β

∑n

i=1 V 5
i

(
∑n

i=1 Vi)5 .

With the above reformulation of Tn, we may consider the joint asymptotic
distribution of the three sums

∑n
i=1 Vi,

∑n
i=1 V 3

i ,
∑n

i=1 V 5
i . By using the mul-

tivariate central limit theorem, we obtain, as n → ∞,

√
n


 1

n

∑n
i=1 Vi

1
n

∑n
i=1 V 3

i
1
n

∑n
i=1 V 5

i

−

 µ1
µ2
µ3


 L−→ N (0, Σ)

where µ1 = E(Vi) = a, µ2 = E(V 3
i ) = γ3(a), µ3 = E(V 5

i ) = γ5(a), and Σ is the
covariance matrix of the random vector (Vi, V 3

i , V 5
i ) with

Σ =

 a 3γ3(a) 5γ5(a)
3γ3(a) γ6(a) − γ2

3(a) γ8(a) − γ3(a)γ5(a)
5γ5(a) γ8(a) − γ3(a)γ5(a) γ10(a) − γ2

5(a)

 .

Next, we apply Cramér’s theorem [9] to obtain
√

n

(
f

(
1
n

n∑
i=1

Vi,
1
n

n∑
i=1

V 3
i , 1

n

n∑
i=1

V 5
i

)
− f(µ)

)
L−→ N (0, σ2

T )

where f is a mapping: R3 → R such that ∇f(µ) is continuous in a neigh-
borhood of µ = (µ1, µ2, µ3) ∈ R3, and σ2

F = ∇f(µ)Σ(∇f(µ))T . To do so,
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we choose f(x, y, z) = αx−6y2 + βx−5z with ∂f
∂x = −6αx−7y2 − 5βx−6z,

∂f
∂y = 2αx−6y, ∂f

∂z = βx−5. Then we have

f

(
1
n

n∑
i=1

Vi,
1
n

n∑
i=1

V 3
i , 1

n

n∑
i=1

V 5
i

)
= n4Tn

with f(µ) = αm2
3 + βm5 = a−4(a + 1)(a + 2)

[
α(a + 1)(a + 2) + β(a +

3)(a + 4)
]
, ∇f(µ) = (−6αa−1m2

3 − 5βa−1m5, 2αa−6γ3(a), βa−5). Then σ2
T =

∇f(µ)Σ(∇f(µ))T = 4α2m2
3σ2

3 + 4αβ(m3m8 − (1 + 15/a)m2
3m5) + β2σ2

5 =
8a−9(a+1)(a+2)

[
3α2(a+1)2(a+2)2(3a+7)+5β2(a+3)(a+4)(5a3 +60a2 +

250a + 363) + 30αβ(a + 1)(a + 2)(a + 3)2(a + 4)
]
. This completes the proof of

Lemma 5.
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