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LINEAR COMPLEMENTARITY PROBLEM
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Abstract. For the large and sparse linear complementarity problem, we provide
a family of new accelerated modulus-based iteration methods in this article. We
provide some sufficient criteria for the convergence analysis when the system
matrix is a P -matrix or an H+-matrix. In addition, we provide some numerical
examples of the different parameters to illustrate the efficacy of our proposed
methods. These methods help us reduce the number of iterations and the time
required by the CPU, which improves convergence performance.
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1. INTRODUCTION

The large and sparse matrices are matrices that have a large number of rows
and columns but a small number of non-zero elements. In other words, they
are matrices where the majority of the elements are zero. Sparse matrices are
commonly used to represent complex systems or large datasets in fields such as
computer science, mathematics, physics and engineering. The sparsity of the
matrix means that it is not practical to store each element individually and
specialized data structures and algorithms must be used to efficiently store
and manipulate the matrix.

Let us assume that the matrix A ∈ Rn×n is large and sparse and that it is
associated with the vector σ ∈ Rn. The objective of the linear complementar-
ity problem, referred to as LCP(σ, A), is to determine the solution λ ∈ Rn to
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the following system:

λ ≥ 0, ω = Aλ + σ ≥ 0, λT (Aλ + σ) = 0.(1)

Applications of the linear complementarity problem that have received signif-
icant study in the literature on mathematical programming include the free
boundary problem, the Nash equilibrium point of the bimatrix game, opera-
tions research, control theory, mathematical economics, optimization theory,
stochastic optimal control, and the American option pricing problem.

The methods available for solving the linear complementarity problems are
into two groups namely the pivotal method [25], [17] and the iterative method
[11], [3], [6] and [7]. The objective behind the iterative method is to produce a
sequence of iterates that lead to a solution, but the pivotal method develops a
series of pivot steps that lead to a basic feasible complementary vector through
a series of pivot steps.

Reformulating the LCP(σ, A) into an equation whose solution must be the
same as the LCP (σ, A) is one of the most well-known and attractive methods
of constructing fast and inexpensive iteration methods. Consequently, certain
useful LCP(σ, A) equivalent forms have arisen. Mangasarian [21] presented
three methods: projected Jacobi over-relaxation, projected SOR and projected
symmetric SOR. For additional details regarding developing iteration methods
based on Mangasarian’s notion, see also [5], [34] and [9]. Bai has offered the
following equivalent form in [33]:

(2) (Θ1 + M)κ = Nκ + (Θ1 − A)|κ| − rσ,

where r > 0 and Θ1 ∈ Rn×n is a positive diagonal matrix and developed
a class of modulus-based matrix splitting iteration methods. The Equation
(2) covers the published works in [?], [27], [19], [12] and [4]. This kind of
modulus-based matrix splitting iteration method has been considered efficient
for solving the LCP(σ, A). For other formulations of Equation (2), see [20],
[15], [28], [30] and [16] for more details. Furthermore, this concept has been
successfully applied to other complementarity problems, including the horizon-
tal linear complementarity problem [10], the implicit complementarity prob-
lem [18], the nonlinear complementarity problem [8] and [32], [13] and the
quasi-complementarity problem [26].

Bai [33] solved linear complementarity problems using modulus-based ma-
trix splitting methods. However, the number of iterations in these methods is
large enough to accomplish the optimal approximate solution to the numerical
instances. In this paper, we introduce a class of new accelerated modulus-
based iteration techniques for solving the large and sparse LCP(σ, A). These
methods are based on the work of Shilang [29] and Bai [33]. We demonstrate
that the linear complementarity problem and the fixed point equation are
equivalent and both have the same solution. In addition, we present several
convergence conditions for the method that we proposed.
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The article is structured as follows: In Section 2, we provide necessary
definitions, notations and well-known lemmas. All of these things will be used
in the discussions in the subsequent sections of this work. A new accelerated
modulus-based iteration method is presented in Section 3 and it makes use of
the new equivalent fixed point form of the LCP(σ, A). In Section 4, we define
certain convergence domains for the proposed approach. Section 5 gives some
examples of the numerical comparison that is made between the methods that
have been suggested and the modulus-based matrix splitting methods that
were presented by Bai [33]. Section 6 provides the conclusion.

2. PRELIMINARIES

In this section, we introduce some basic notations, definitions and lemmas,
most of which may be found in [31], [2], [24], that will be used throughout the
article to examine the convergence analysis of the proposed methods.

The following is a list of related notations that are used for a given large
and sparse matrix A:

• Let A = (aij) ∈ Rn×n and B = (bij) ∈ Rn×n. We use A> (≥) B to denotes
aij>(≥) bij , ∀ 1 ≤ i, j ≤ n;

• (⋆)T denotes the transpose of the given matrix or vector;
• We use A = 0 ∈ Rn×n to denotes aij = 0, ∀ i, j;
• |A| = (|aij |), ∀ i, j;
• A−1 represents the inverse of the matrix A;
• Θ1 is a real positive diagonal matrix of order n;
• ∥ ⋆ ∥2 is euclidean norm of a vector i.e. let x = (xi) ∈ Rn, then ∥x∥2 =√∑n

i=1 x2
i ;

• Let x, y ∈ Rn, min(x, y) is the vector whose ith component is
min(xi, yi);

• Assume A = D − L − U where D = diag(A) and L, U are the strictly
lower, upper triangular matrices of A, respectively.

Let A = (aij) ∈ Rn×n and B = (bij) ∈ Rn×n be square matrices. The com-
parison matrix of A is defined as ⟨aij⟩ = |aij | if i = j and ⟨aij⟩ = −|aij | if i ̸= j;
a Z-matrix if all of its non-diagonal elements are less than equal to zero; an
M -matrix if A−1 ≥ 0 as well as Z-matrix; an H-matrix, if ⟨A⟩ is an M -matrix
and an H+-matrix if A is an H-matrix as well as aii> 0 ∀ i ∈ {1, 2, . . . , n};
a P -matrix if all its principle minors are positive such that det(Aα1α1) > 0
∀ α1 ⊆ {1, 2, . . . , n}. The splitting A = M − N is called an M -splitting if
M is a nonsingular M -matrix and N ≥ 0; an H-splitting if ⟨M⟩ − |N | is an
M -matrix; an H-compatible splitting if ⟨A⟩ = ⟨M⟩ − |N |.

Lemma 1 ([22]). Let x, y ∈ Rn. x ≥ 0, y ≥ 0, xT y = 0 if and only if
x + y = |x − y|.
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Lemma 2 ([2]). Let A, B ∈ Rn×n. If A and B are M and Z-matrices,
respectively, with A ≤ B then B is an M -matrix. If A is an H-matrix then
|A−1| ≤ ⟨A⟩−1.

Lemma 3 ([31]). Let A ∈ Rn×n be an M -matrix and A = M − N be an
M -splitting, then ρ(M−1N ) < 1.

Lemma 4 ([2]). Suppose A ≥ 0 ∈ Rn×n, if there exist v > 0 ∈ Rn and a
scalar α1>0 such that Av ≤ α1v, then ρ(A) ≤ α1. Moreover, if Av<v, then
ρ(A)<1.

3. MAIN RESULTS

Suppose vector κ ∈ Rn and A = (M + I − L) − (N + I − L), where I is the
identity matrix of order n and L is the strictly lower triangular matrix of A. In
the following result, we convert the LCP(σ, A) into a fixed point formulation.

Theorem 5. Suppose A ∈ Rn×n with the splitting A = (M + I − L) −
(N + I − L) and σ ∈ Rn. Let λ = τ(|κ| + κ), ω = Θ1(|κ| − κ), where τ ≥ 0,
r ≥ 0 and Θ1 is a positive diagonal matrix and the matrix (M + Θ1 + I − L)
be a nonsingular. Then the equivalent formulation of the LCP(σ, A) in form
of fixed point equation is

κ = (M + Θ1 + I − L)−1[(N + I − L)κ + (Θ1 − A)|κ| − rσ](3)

Proof. We have λ = τ(|κ| +κ) and ω = Θ1(|κ| −κ), from Equation (1) we
obtain

Θ1(|κ| − κ) = Aτ(|κ| + κ) + σ

Since A = (M + I − L) − (N + I − L), this is implies that
((M + I − L)τ + Θ1)κ = (N + I − L)τκ + (Θ1 − Aτ)|κ| − σ.

Let τ = 1
r , the above equation can be rewritten as,

κ = (M + I − L + Θ1)−1[(N + I − L)κ + (Θ1 − A)|κ| − rσ].
Hence, this is the equivalent form of the LCP(σ, A) as a fixed point equation.

□

In the following, based on Equation (3), we propose an iteration method
which is referred to as a “new accelerated modulus-based iteration method” to
solve the LCP(σ, A). Let the Euclidean norm of the error vector be denoted
by the term ”residual,” which is defined as follows:

Res(λ(η)) =
∥∥∥ min(λ(η), Aλ(η) + σ)

∥∥∥
2
.

Let’s assume that λ(0) ∈ Rn is an initial vector that is not negative. When
the sequence {λ(η)}+∞

η=0 ⊂ Rn converges or Res(λ(η)) < 10−5, the iteration
process stops. To calculate λ(η+1) ∈ Rn, we apply an algorithm that is shown
here.



122 B. Kumar, Deepmala and A.K. Das 5

Algorithm 1 (New Accelerated Modulus-Based Iteration Method)
Step 1. Given an initial vector κ(0) ∈ Rn, ϵ > 0 and set η = 0;
Step 2. Generate the sequence λ(η) using the following scheme:
(4) κ(η+1) = (M + Θ1 + I − L)−1[(N + I − L)κ(η) + (Θ1 − A)|κ(η)| − rσ]

and set λ(η+1) = 1
r (|κ(η+1)| + κ(η+1)), where λ(η) is a ηth approximate

solution of LCP(σ, A) and κ(η) is a ηth approximate solution of Equation (4);
Step 3. Stop if Res(λ(η)) < ϵ; otherwise, set η = η + 1 and return to Step 2.

Furthermore, the proposed new accelerated modulus-based iteration method
offers a generic framework for solving LCP(σ, A). We created a new family
of accelerated modulus based relaxation methods using matrix splitting. In
specifically, the system matrix A is expressed as follows: A as A = (M + I −
L) − (N + I − L). Then

(a) when M = A, N = 0, Θ1 = I and r = 1, Equation (4) gives the new
accelerated modulus iteration method is
κ(η+1) = (A + 2I − L)−1[(I − L)κ(η) + (I − A)|κ(η)| − σ].

(b) when M = A, N = 0, Θ1 = α1I and r = 1, Equation (4) gives the new
accelerated modified modulus-based iteration method is

κ(η+1) = (A + (α1 + 1)I − L)−1[(I − L)κ(η) + (α1I − A)|κ(η)| − σ].
(c) when M = D, N = L + U and r = 2, Equation (4) gives the new

accelerated modulus-based Jacobi iteration method is
κ(η+1) = (D + Θ1 + I − L)−1[(U + I)κ(η) + (Θ1 − A)|κ(η)| − 2σ].

(d) when M = D − L, N = U and r = 2, Equation (4) gives the new
accelerated modulus-based Gauss-Seidel iteration (NAMGS) method is

κ(η+1) = (D − 2L + Θ1 + I)−1[(U + I − L)κ(η) + (Θ1 − A)|κ(η)| − 2σ].
(e) when M = ( 1

α1
D − L) and N = ( 1

α1
− 1)D + U , Equation (4) gives

the new accelerated modulus-based successive over-relaxation iteration
(NAMSOR) method is

κ(η+1) = (D − 2α1L + α1Θ1 + α1I))−1[((1 − α1)D + α1U

+ α1I − L)κ(η) + (α1Θ1 − α1A)|κ(η)| − 2α1σ].

(f) when M = ( 1
α1

)(D −β1L) and N = ( 1
α1

)[(1−α1)D +(α1 −β1)L+α1U ],
Equation (4) gives the new accelerated modulus-based accelerated over-
relaxation iteration (NAMAOR) method is

κ(η+1) = (D − (β1 + α1)L + α1Θ1 + α1I)−1[((1 − α1)D + (2α1 − β1)L

+ α1U + α1I)κ(η) + (α1Θ1 − α1A)|κ(η)| − 2α1σ].
The NAMAOR method clearly converts into the following methods:
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(a) New accelerated modulus-based successive over-relaxation (NAMSOR)
method when (α1, β1) takes the values (α1, α1).

(b) New accelerated Gauss-Seidel (NAMGS) method when α1 = β1 = 1.
(c) New accelerated Jacobi method when α1 = 1 and β1 = 0.

4. CONVERGENCE ANALYSIS

In the following result, we prove the convergence conditions when the system
matrix A is a P -matrix. When A is a P -matrix, Equation (1) has a unique
solution for every σ ∈ Rn [14].

Theorem 6. Let A = (M + I − L) − (N + I − L) ∈ Rn×n be a P -matrix
and κ∗ be the solution of Equation (3). Suppose

ρ
(
|(M + I − L + Θ1)−1|

(
|N + I − L| + |Θ1 − A|

))
< 1.

Then the sequence {κ(η)}+∞
η=1 generated by Algorithm 1 converges to the solu-

tion κ∗ for any starting vector κ(0) ∈ Rn.

Proof. Let κ∗ be the solution of Equation (3), then error is

κ(η+1) − κ∗ =

= (M + I − L + Θ1)−1
[
(N + I − L)(κ(η) − κ∗) + (Θ1 − A)(|κ(η)| − |κ∗|)

]
.

Using absolute value, both sides

|κ(η+1) − κ∗| =

=
∣∣∣(M + I − L + Θ1)−1[

(N + I − L)(κ(η) − κ∗) + (Θ1 − A)(|κ(η)| − |κ∗|)
]∣∣∣

We have |κ(η)| − |κ∗| ≤ |κ(η) − κ∗|, therefore

≤ |(M + I − L + Θ1)−1|(|(N + I − L)(κ(η) − κ∗)| + |Θ1 − A)(|κ(η) − κ∗|)|.

|κ(η+1) − κ∗| ≤ |(M + I − L + Θ1)−1|(|N + I − L| + |Θ1 − A|)|κ(η) − κ∗|.

This implies that
|κ(η+1) − κ∗|<|κ(η) − κ∗|.

Therefore the sequence {κ(η)}+∞
η=1 for any starting vector κ(0) ∈ Rn is con-

vergent.
Since λ(η) = 1

r (|κ(η)| + κ(η)), when the sequence {κ(η)}+∞
η=1 generated by

Algorithm 1 converges to the solution κ∗, then the sequence {λ(η)}+∞
η=1 also

converges. □

When the system matrix A is an H+-matrix, the following result discusses
the convergence domain of Θ1 for a new accelerated modulus based iteration
method.
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Theorem 7. Let A be an H+-matrix and A = M − N = (M + I −
L) − (N + I − L) be an H-compatible splitting of the matrix A, such that
⟨A⟩ = ⟨M + I − L⟩ − |N + I − L| and either one of the following conditions
hold:

1) Θ1 ≥ D;
2) Θ1<D and 2Θ1 − D − |B|, is an M - matrix, B = L + U .
Then the sequence {κ(η)}+∞

η=1 generated by Algorithm 1 converges to the
solution κ∗ for any starting vector κ(0) ∈ Rn.

Proof. Let A = M − N = (M + I − L) − (N + I − L) and it holds that
⟨A⟩ ≤ ⟨M + I − L⟩ ≤ diag(M + I − L), (M + I − L) is an H+-matrix. and
it holds that

|(Θ1 + M + I − L)−1| ≤ (Θ1 + ⟨M⟩ + I − L)−1.

From Theorem 6, let T = |(M + I − L + Θ1)−1|(|N + I − L| + |Θ1 − A|), then

T = |(M + Θ1 + I − L)−1|[|N + I − L| + |Θ1 − A|]
≤ (⟨M⟩ + Θ1 + I − L)−1[|N + I − L| + |Θ1 − A|]
≤ (⟨M⟩ + Θ1 + I − L)−1[|N + I − L| + |Θ1 − D + L + U|]
≤ (⟨M⟩ + Θ1 + I − L)−1[(⟨M⟩ + Θ1 + I − L) − (⟨M⟩ + Θ1 + I − L)

+ |N + I − L| + |Θ1 − D| + |L + U|].

Case 1. Θ1 ≥ D,

≤ I − (⟨M⟩ + Θ1 + I − L)−1[(⟨M⟩ + I − L) − |N + I − L| + D − |L + U|]
≤ I − 2(Θ1 + ⟨M⟩ + I − L)−1⟨A⟩.

Since ⟨A⟩ is an M -matrix, then there exists a positive vector v > 0 such
that

⟨A⟩v > 0.

Therefore

Tv ≤ (I − 2(Θ1 + ⟨M⟩ + I − L)−1⟨A⟩)v < v.

Now, we are able to establish that ρ(T )<1 by making use of the Lemma 4.
Case 2. Θ1 < D and ⟨A⟩ + 2Θ1 − D − |B| is an M -matrix. Then,

T ≤ (⟨M⟩ + Θ1 + I − L)−1[(⟨M⟩ + Θ1 + I − L) − (⟨M⟩ + Θ1 + I − L)
+ |N + I − L| + |Θ1 − D| + |L + U|]

≤ I − (⟨M⟩ + Θ1 + I − L)−1[(⟨M⟩ + I − L) − |N + I − L|
+ 2Θ1 − D − |L + U|].
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Since [⟨A⟩ + 2Θ1 − |D| − |L + U|] is an M -matrix. Then there exists a positive
vector v > 0 such that

[⟨A⟩ + 2Θ1 − |D| − |L + U|]v > 0.

Therefore

Tv ≤ I − (Θ1 + ⟨M⟩ + I − L)−1[⟨A⟩ + 2Θ1 − D − |L + U|]v < v.

We are able to establish that ρ(T )<1 by making use of the Lemma 4. Due
to this, the Theorem 6 states that the iteration sequence {κ(η)}+∞

η=1 generated
by the Algorithm 1 converges to κ∗ for any starting vector κ(0). □

5. NUMERICAL EXAMPLES

In this section, several numerical examples are provided to demonstrate
how effective our suggested methods are. IT stands for the number of itera-
tion steps, while CPU represents the amount of time utilized on the CPU in
seconds. Consider the LCP (σ, A), which always provides a unique solution.
Let A = P1 + δ1I and σ = −Aλ∗, where λ∗ = (1, 2, . . . , 1, 2, . . .)T ∈ Rn is
the unique solution of Equation (1). Let κ(0) = (1, 0, . . . 1, 0, . . .)T ∈ Rn be
initial vector. The proposed methods (NAMGS and NAMSOR) are compared
to the modulus-based Gauss-Seidel (MGS) method and the successive over-
relaxation (MSOR) method [33], which are effective in solving LCP(σ, A). For
all computations, Matlab version 2021a is used on an Acer desktop equipped
with an Intel Core i7-8700 processor running at 3.2 GHz 3.19 GHz, and 16.00
GB of RAM. Tables 1 to 3 provide the numerical results of the new acceler-
ated modulus-based iteration methods and the modulus-based matrix splitting
method described in [33].

Example 8. A is the system matrix and it is formed by the expression
A = P1 + δ1I, where δ1 is the positive real parameter, the identity matrix of
order m is denoted by the symbol I1 and

P1 =


T −I1 0 . . . 0

−I1 T −I1 . . . 0
0 −I1 T −I1 0

0 . . . −I1
. . . −I1

0 . . . 0 −I1 T

, T =


4 −1 . . . . . . 0

−1 4 −1 . . . 0
0 −1 4 −1 0

0 . . . −1 . . . −1
0 . . . . . . −1 4

,

where P1 ∈ Rn×n, T ∈ Rm×m.

Example 9. A is the system matrix and it is formed by the expression
A = P1 + δ1I, where δ1 is the positive real parameter, the identity matrix of
order m is denoted by the symbol I1 and
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n 10 000 40 000 160 000 640 000 1 000 000

MGS IT 42 43 44 45 45
α = 1 CPU 0.026006 0.071892 0.36788 0.9905 1.59

Res 8.391e-06 8.630e-06 8.768e-06 8.855e-06 9.9128e-06
NAMGS IT 18 18 19 19 19
α1 = 1 CPU 0.013853 0.033635 0.12218 0.47709 0.70497

Res 5.098e-06 7.3423e-06 4.272e-06 6.069e-06 6.7921e-06
MSOR IT 19 19 20 21 21
α = 0.85 CPU 0.013312 0.034213 0.12642 0.473 0.73996

Res 4.325e-06 8.943e-06 6.945e-06 5.351e-06 6.7001e-06
NAMSOR IT 13 14 14 15 15
α1 = 0.91 CPU 0.010234 0.027824 0.090817 0.34313 0.52105

Res 5.763e-06 2.763e-06 5.265e-06 2.561e-06 3.1766e-06

Table 1. Results for MGS and MSOR methods [33] and NAMGS and NAMSOR methods, δ1 = 4.

P1 =


T −0.5I1 0 . . .

−1.5I1 T −0.5I1 . . .
... −1.5I1

. . . −0.5I1
0 . . . −1.5I1 T

, T =


4 −0.5 . . . . . .

−1.5 4 −0.5 . . .
... −1.5 . . . −0.5
0 . . . −1.5 4


P1 ∈ Rn×n, T ∈ Rm×m.

n 10 000 40 000 160 000 640 000 1 000 000

MGS IT 27 28 28 29 29
α = 1 CPU 0.015293 0.04906 0.26455 0.63857 0.9857

Res 7.385e-06 6.193e-06 8.809e-06 7.332e-06 8.2027e-06
NAMGS IT 13 13 14 14 15
α1 = 1 CPU 0.010722 0.026676 0.091557 0.32604 0.54924

Res 5.291e-06 9.578e-06 4.257e-06 8.154e-06 2.3597e-06
MSOR IT 15 16 16 16 17
α = 0.88 CPU 0.012181 0.028711 0.10672 0.36204 0.58685

Res 6.344e-06 3.485e-06 5.645e-06 9.671e-06 3.7163e-06
NAMSOR IT 9 10 10 10 10
α1 = 0.88 CPU 0.0072254 0.019398 0.066067 0.23302 0.34536

Res 5.874e-06 1.640e-06 3.335e-06 6.727e-06 8.4226e-06

Table 2. Results for MGS and MSOR methods [33] and NAMGS and NAMSOR methods, δ1 = 4.

Example 10. A is the system matrix and it is formed by the expression
A = P1 + δ1I, where δ1 is the positive real parameter, the identity matrix of
order m is denoted by the symbol I1 and
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P1 = Tridiag(−I1, T , −I1) =


T −I1 −I1 . . . 0
0 T −I1 −I1 0
0 0 T −I1 −I1

0 . . . 0 . . . −I1
0 . . . 0 0 T

∈ Rn×n,

T = Tridiag(−1, 4, −1) =


4 −1 . . . . . . 0

−1 4 −1 . . . 0
0 −1 4 −1 0

0 . . . −1 . . . −1
0 . . . . . . −1 4

 ∈ Rm×m.

n 10 000 40 000 160 000 640 000 1 000 000

MGS IT 44 46 47 48 48
α = 1 CPU 0.021707 0.075858 0.38078 1.0475 1.6284

Res 9.7023e-06 7.152e-06 7.306e-06 7.414e-06 8.3004e-06
NAMGS IT 21 22 22 23 23
α1 = 1 CPU 0.013821 0.038337 0.13761 0.50668 0.79966

Res 8.262e-06 5.740e-06 8.187e-06 5.625e-06 6.2949e-06
MSOR IT 20 21 21 22 22
α = 0.87 CPU 0.014358 0.039287 0.12957 0.48699 0.7618

Res 5.683e-06 4.798e-06 9.742e-06 7.990e-06 9.9999e-06
NAMSOR IT 17 17 18 19 19
α1 = .94 CPU 0.01243 0.029982 0.11366 0.42354 0.66273

Res 4.841e-06 8.427e-06 5.388e-06 3.473e-06 4.2525e-06

Table 3. Results for MGS and MSOR methods [33] and NPGS and NPSOR methods, when δ1 = 4.

From Tables 1 to 3, we can observe that the iteration steps required by
our proposed NAMGS and NAMSOR methods have lesser number of iteration
steps, faster processing (CPU time), and greater computational efficiency than
the MGS and MSOR methods in [33] respectively.

6. CONCLUSION

The article introduces a class of new accelerated modulus-based iteration
methods for the solution of large and sparse LCP(σ, A) problems using matrix
splitting. This iteration form maintains the sparsity and size of the matrix A
during the iteration process. Additionally, when system matrix A is an H+-
matrix, we demonstrate some convergence conditions. At last, the efficacy
of the proposed methods is demonstrated through the presentation of various
numerical instances.
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